Generally described, computing devices and communication networks can be utilized to exchange information. In a common application, a computing device can request content from another computing device via the communication network. For example, a user at a personal computing device can utilize a software browser application to request a Web page from a server computing device via the Internet. In such embodiments, the user computing device can be referred to as a client computing device (“client”) and the server computing device can be referred to as a content provider.
Content providers are generally motivated to provide requested content to client computing devices often with consideration of efficient transmission of the requested content to the client computing device and/or consideration of a cost associated with the transmission of the content. For larger scale implementations, a content provider may receive content requests from a high volume of client computing devices which can place a strain on the content provider's computing resources. Additionally, the content requested by the client computing devices may have a number of components, which can further place additional strain on the content provider's computing resources.
With reference to an illustrative example, a requested Web page, or original content, may be associated with a number of additional resources, such as images or videos, which are to be displayed with the Web page. In one specific embodiment, the additional resources of the Web page are identified by a number of embedded resource identifiers, such as uniform resource locators (“URLs”). In turn, software on the client computing devices typically processes embedded resource identifiers to generate requests for the content. Often, the resource identifiers associated with the embedded resources reference a computing device associated with the content provider such that the client computing device would transmit the request for the additional resources to the referenced content provider computing device. Accordingly, in order to satisfy a content request, the content provider would provide client computing devices data associated with the Web page as well as the data associated with the embedded resources.
Some content providers attempt to facilitate the delivery of requested content, such as Web pages and/or resources identified in Web pages, through the utilization of a content delivery network (“CDN”) service provider. A CDN server provider typically maintains a number of computing devices in a communication network that can maintain content from various content providers. In turn, content providers can instruct, or otherwise suggest to, client computing devices to request some, or all, of the content provider's content from the CDN service provider's computing devices.
As with content providers, CDN service providers are also generally motivated to provide requested content to client computing devices often with consideration of efficient transmission of the requested content to the client computing device and/or consideration of a cost associated with the transmission of the content. Accordingly, CDN service providers often consider factors such as latency of delivery of requested content in order to meet service level agreements or to generally improve the quality of delivery service.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Generally described, the present disclosure is directed to DNS query processing that provides for the use of various routing modes responsive to receipt of a DNS query corresponding to a requested resource. More specifically, aspects of the disclosure will be described with regard to processing resource requests associated with content providers having a flat-rate pricing for use of a CDN service provider's computing devices. In some embodiments, in response to a DNS query corresponding to a requested resource, a CDN service provider may select a less optimal POP to service the requested resource based on one or more criteria and thereby select a “sloppy routing” scheme. For example, the one or more criteria may correspond to aspects of a flat-rate pricing model offered to content providers by the CDN service provider to provide content on their behalf Continuing with this example, in such an approach, if a content provider has exceeded a threshold network usage, which may, for example, be based at least in part on pricing information for CDN service provider to provide content on behalf of the content provider, DNS query processing at a DNS server of the CDN service provider can include routing a response to the DNS query, in a “sloppy” routing manner and/or fashion, to a suboptimal POP by determining an alternative resource identifier or cache IP address at another POP (e.g., located at another edge server).
Further, aspects of the disclosure will be described with regard to DNS query processing that can determine a suboptimal, or sloppy, routing approach to avoid costs associated with data links of cache servers providing the requested resources. Accordingly, the one or more criteria used by the CDN service provider may also correspond to aspects of the CDN service provider cost information. More specifically, the data links, provisioned by a CDN service provider, can correspond to a financial cost for the content delivery bandwidth available on the data links of the cache servers. This financial cost can be determined in relation to a threshold content delivery bandwidth. For example, if a current content delivery bandwidth exceeds the threshold content delivery bandwidth, the CDN service provider incurs greater costs. In various embodiments, responses to DNS queries, such as an alternative resource identifier or a cache IP address, can be sloppy routed to another POP location with associated data links of cache servers operating below the threshold content delivery bandwidth.
In one embodiment, the one or more criteria for selecting a “sloppy routing” scheme includes a latency associated with providing requested resources for the content provider. In various other embodiments, other criteria that may affect the selection of sloppy routing for the response to a DNS query can include: optimizing content accessibility via hashing algorithms, security concerns, favoring certain content providers (e.g., customers), or favoring certain content uses.
Still further, aspects of the disclosure will be described with regard to DNS query processing for sloppy routing schemes using one or more criteria. The one or more criteria may include both the threshold network usage and the threshold content delivery bandwidth. For example, in such multi-criterion approach, the latency associated with routing a response of a DNS query to a suboptimal POP is considered in combination with the marginal cost to service a content request at a data link operating above the content delivery bandwidth threshold. Accordingly, a content provider that has exceeded a threshold network usage can be routed in a sloppy manner during a peak time, when other available data links of cache servers located at another POP are available at a lower cost or no cost because the data links of those cache servers are operating under the threshold content delivery bandwidth. Thus, a DNS server can use the one or more criteria to determine whether to use a suboptimal POP instead of an optimal or original POP.
Further aspects of the disclosure will be described with regard to determining an appropriate routing mode for providing a requested resource. In various embodiments, a spectrum of routing modes are available to the CDN service provider for use in responding to DNS queries. The routing modes can include: a default routing mode, a sloppy routing mode, a regional anycast routing mode, an anycast routing mode, and a “follow-the-moon” routing mode. (The “follow-the-moon” routing mode is described in U.S. patent application Ser. No. 14/229,568, titled “Scaling Computing Instances” and filed on Mar. 28, 2014, the entirety of which is incorporated herein by reference). The CDN service provider may determine a routing mode for providing a requested resource from a plurality of available routing modes based on one or more criteria. For example, the one or more criteria may include the network usage associated with the content provider, the content delivery bandwidth associated with the CDN service provider, a susceptibility factor associated with the content provider, or a latency associated with a POP in providing the requested resource. Additionally or alternatively, the one or more criteria may include one or more susceptibility factors and/or one or more latencies. For example, in one embodiment, the CDN service provider may determine that an anycast routing mode is appropriate if a susceptibility factor indicates that the anycast routing mode is a more appropriate routing mode when providing the requested resource. In another embodiment, the CDN service provider may determine that a default routing mode is appropriate if the one or more criteria indicate that a latency for providing the resource request is to be minimized. After selection of the routing mode, the CDN service provider may provide a response to the DNS query in accordance with the determined routing mode.
In another example, a regional anycast routing mode can be determined as the appropriate routing mode when the one or more criteria indicate that a susceptibility factor (e.g., a security concern) associated with the plurality of available routing modes is higher for a default routing mode, than the regional anycast routing mode. Continuing with this example, the response to the DNS query may be routed in accordance with the regional anycast routing mode so that several cache servers could be used to service the request, thereby enhancing security. In contrast, in the default routing mode, a cache server can be a single cache server (e.g., an optimal cache server with minimal latency for providing the resource request). Thus, the CDN service provider can provide responses to DNS queries in accordance with one of a plurality of available routing modes based on a variety of criteria.
Although various aspects of the disclosure will be described with regard to illustrative examples and embodiments, one skilled in the art will appreciate that the disclosed embodiments and examples should not be construed as limiting.
The client computing devices 102 may also include necessary hardware and software components for requesting content from network entities in the form of an originally requested resource that may include identifiers to two or more embedded resources that need to be requested. Further, the client computing devices 102 may include or be associated with necessary hardware and software components, such as browser software applications, plugins, scripts, etc., for fulfilling the original resource request and each embedded resource request. In other embodiments, the client computing devices 102 may be otherwise associated with an external proxy application or device, as well as any other additional software applications or software services, used in conjunction with requests for content.
Although not illustrated in
The content delivery environment 100 can also include a content provider 104 in communication with the client computing devices 102 via the communication network 108. The content provider 104 illustrated in
With continued reference to
In an illustrative embodiment, the DNS server components 118 and 124 and resource cache component 120 and 126 are considered to be logically grouped, regardless of whether the components, or portions of the components, are physically separate. Additionally, although the POPs 116 and 122 are illustrated in
The CDN service provider 106 can further include a routing mode and POP selection service 128, pricing data store 130, and back-end processing service 132. Illustratively, the routing mode and POP selection service 128 can implement various computational, statistical, or machine learning methods to route the response (e.g., an answer) to a DNS query received at the CDN service provider 106 (e.g., received at DNS server component 118). For example, the routing mode and POP selection service 128 can determine an appropriate routing mode for the alternative resource identifier (e.g., a CNAME) associated with the second DNS server 124 to the second POP 122 of the CDN service provider 106 or fort the IP address of a cache component in the resource cache 126 of the second POP 122. The routing mode and POP selection service 128 may include different modules or components, which may facilitate or implement various methods and processes described herein. Further, these modules or components may include additional components, systems, and subsystems for facilitating the methods and processes. Pricing data store 130 can include pricing information that indicates a price at which the CDN provider 106 provides content on behalf of the content provider 104. Pricing data store 130 can, additionally or alternatively, include cost information indicating a financial cost of content delivery bandwidth for the CDN service provider 106 (e.g., the costs to operate provisioned data links at cache servers). For example, in some embodiments, the pricing information can include a flat-rate price for monthly service for the content provider 104 by CDN provider 106.
Illustratively, back-end processing service 132 can include a number of hardware and software components. More specifically, the back-end processing service 132 may include hardware, software, configuration data, data structures, computer-readable code, or any type of information that can be loaded into memory and processed by back-end processing service 132. Aspects of the back-end processing service 132 will be described in further detail below with respect to
With reference now to
With reference to
One skilled in the relevant art will appreciate that upon identification of appropriate origin servers 112, the content provider 104 can begin to direct requests for content from client computing devices 102 to the CDN service provider 106. Specifically, in accordance with DNS routing principles, a client computing device request corresponding to a resource identifier would eventually be directed toward a POP 116 and 122 associated with the CDN service provider 106. In the event that the resource cache component 120 and 126 of a selected POP does not have a copy of a resource requested by a client computing device 102, the resource cache component will request the resource from the origin server 112 previously registered by the content provider 104.
With continued reference to
The CDN service provider 106 returns an identification of applicable domains for the CDN service provider (unless it has been previously provided) and any additional information to the content provider 104. In turn, the content provider 104 can then process the stored content with content provider specific information. In one example, as illustrated in
Generally, the identification of the resources originally directed to the content provider 104 will be in the form of a resource identifier that can be processed by the client computing device 102, such as through a browser software application. In an illustrative embodiment, the resource identifiers can be in the form of a uniform resource locator (“URL”). Because the resource identifiers are included in the requested content directed to the content provider 104, the resource identifiers can be referred to generally as “content provider URLs.” For purposes of an illustrative example, a content provider URL can identify a domain of the content provider 104 (e.g., contentprovider.com), a name of the resource to be requested (e.g., “resource.xxx”) and a path where the resource will be found (e.g., “path”). In this illustrative example, the content provider URL has the form of:
http://www.contentprovider.com/path/resource.xxx
During an illustrative translation process, the content provider URL is modified such that requests for the resources associated with the translated URLs resolve to a POP associated with the CDN service provider 106. In one embodiment, the translated URL identifies the domain of the CDN service provider 106 (e.g., “cdnprovider.com”), the same name of the resource to be requested (e.g., “resource.xxx”) and the same path where the resource will be found (e.g., “path”). Additionally, the translated URL can include additional processing information (e.g., “additional information”). The translated URL would have the form of:
http://additional_information.cdnprovider.com/path/resources.xxx
In another embodiment, the information associated with the CDN service provider 106 is included the modified URL, such as through prepending or other techniques, such that the translated URL can maintain all of the information associated with the original URL. In this embodiment, the translated URL would have the form of:
http://additional_information.cdnprovider.com/www.contentprovider.com/path/resource.xxx
With reference now to
Upon receipt of the requested content, the client computing device 102, such as through a browser software application, begins processing any of the markup code included in the content and attempts to acquire the resources identified by the embedded resource identifiers. Accordingly, the first step in acquiring the content corresponds to the issuance, by the client computing device 102 (through its local DNS resolver), of a DNS query for the original URL resource identifier that results in the identification of a DNS server authoritative to the “.” and the “com” portions of the translated URL. After resolving the “.” and “com” portions of the embedded URL, the client computing device 102 then issues a DNS query for the resource URL that results in the identification of a DNS server authoritative to the “.cdnprovider” portion of the embedded URL. The issuance of DNS queries corresponding to the “.” and the “com” portions of a URL are well known and have not been illustrated.
With reference now to
With continued reference to
Returning to the embodiment of
In one embodiment of sloppy routing using the CDN service provider cost information as the one or more criteria, the routing mode and POP selection service 128 of the CDN service provider 106 can determine to route the response to a DNS query (e.g., a content request) to a different DNS server associated with an alternative resource identifier or a cache IP address that, in this example, is not the optimal service location for that DNS query. In various embodiments, the CDN service provider 106 can determine a suboptimal routing approach to avoid costs associated with data links of the resource cache components 120 and 126 servicing the content requests. In this approach, the CDN service provider 106 can provision the data links (e.g., hardware) necessary at the resource cache components 120 and 126 based on the available content delivery bandwidths of the resource cache components 120 and 126 or the DNS query processing of DNS server components 118 and 124 for servicing the requested resources. These data links, not illustratively depicted in
More specifically, the cost of these data links at resource cache components 120 and 126 can correspond to a threshold content delivery bandwidth for a particular data link (or all of the data links). In an illustrative example, the CDN service provider 106 may incur an additional cost when a data link at the DNS server component 118 is used at a 95th percentile capacity of request handling at one or more cache servers of resource cache component 120 for a certain period of time corresponding to a time bucket. Time buckets may be used to determine the cost of operating the cache server above the threshold content delivery bandwidth. For example, a five-minute time bucket of operating above the threshold content delivery bandwidth can correspond to a certain cost; a thirty-minute time bucket, an even higher cost. If, on the other hand, the request handling at one or more cache servers of resource cache component 120 operates below that percentile, the CDN service provider 106 may incur no cost or a lesser cost. Thus the CDN service provider 106 can route various content requests to different data links of alternative cache servers (e.g., cache servers at resource cache component 126) based on the request handling capacity at cache servers of resource cache component 120 operating below or above that cost percentile. In another illustrative example, if the data link at resource cache component 120 is operating at the 98th percentile, the CDN service provider 106 can determine that another resource cache component 126, operating only at a 50th percentile, may be include alternative cache servers to handle the content requests because even this rerouted content request only raises the request handling at the cache servers of resource cache component 126 to the 55th percentile. With this rerouting approach, eventually, the overloaded 98 percentile data link at resource cache component 120 may fall below the threshold, for example, now operating at the 90th percentile. With this approach, the CDN service provider 106 has now lowered its cost operating below the threshold content delivery bandwidth at both data links of resource cache components 120 and 126. This can be referred to as a sloppy routing mode. In this continued example, the CDN service provider 106 can determine an alternative DNS server associated with an alternative resource identifier (as depicted in
In various embodiments, the CDN service provider 106 can use the back-end processing service 132 to process stored historical data to determine whether a particular POP exceeds the threshold content delivery bandwidth during regular daily intervals, seasonally, or on a monthly basis. Back-end processing service 132 may use various methods associated with DNS query processing to track the DNS query at DNS servers or the content delivery bandwidth of data links associated with the resource cache components, located at various POPs (e.g., on edge servers) connected via the network 108.
In another illustrative example of sloppy routing, the CDN service provider 106 can determine to route the response of a DNS query (e.g., a content request) to a cache IP address that is not the optimal location for that content request because the content provider 104 has exceeded a threshold network usage. The CDN service provider 106 can determine a pricing structure for the content provider 104; for example, the content provider 104 can be charged a flat-rate price for network usage. This may allow the content provider 104 to determine that the CDN service provider 106 is cost efficient because a flat rate price is charged for network bandwidth. However with this predictability, the content service provider 106 can determine that some content providers exceed their threshold network usage that has been predicted corresponding to a determined flat-rate price. When the content provider 104 has exceeded the flat-rate price, the CDN service provider 106 can use a sloppy routing approach to reroute content requests to a suboptimal location. In some embodiments, this approach provides a balanced or reasonable latency: not the optimal latency in a default routing approach that determines the optimal cache IP address to service a DNS query, but also not the worst latency that a content provider 104 might find using an anycast routing approach. Thus the sloppy routing mode, in these embodiments, balances the latency for the content provider 104 (e.g., a customer) with the flat-rate price that the content provider 104 has paid for a corresponding network usage at that flat-rate price. In one embodiment, the content provider 104 can be on a monthly network usage plan: The content provider 104 is routed to the optimal location in the default routing approach; but, once the customer has exceeded the threshold network usage for the month, the routing mode and POP selection service 128 determines that the sloppy routing mode can be used to route a response to an alternative DNS server (which may be identified with an alternative resource identifier as depicted in
In various embodiments, the back-end processing service 132 can retrieve from pricing data store 130 various prices for the content provider 104 and costs of the CDN service provider 106. With this data, the back-end processing service 132 can process the tracked behavior of the network usage for the content provider 104 with various monitoring mechanisms and or approaches used by the CDN service provider 106. For example, the CDN service provider 106 may keep records of the network usage of various content providers 104 on a daily basis. In various other approaches, the CDN service provider 106 can store the pricing structure for various content providers 104 in the pricing data store 130. For example, the pricing structure can include a graduated pricing structure for a new customer (e.g., another content provider 104) or a discounted pricing structure for a loyal customer (e.g., another content provider 104). Using both the pricing data store 130 and the back-end processing service 132, the CDN service provider 106 can determine the network usage of various content providers 104.
In another illustrative example, the DNS server component 118 may use a combination of the one or more criteria to determine a sloppy routing scheme; for example, using both the threshold content delivery bandwidth and the threshold network usage for the content provider 104. Continuing in this illustrative example, the CDN service provider 106 can determine that a flat-rate price corresponds to a marginal increase in cost for a particular data link because that data link corresponds to an optimal routing approach using DNS. Thus if a content provider 104 has exceeded their monthly network usage, the CDN service provider 106 can use sloppy routing to reroute the DNS query to another POP (e.g., either via an alternative resource identifier or via a resource cache component operated by that POP) that is operating under the cost percentile for that data link, which corresponds to a threshold content delivery bandwidth. In this combined approach, the CDN service provider 106 balances the cost of provisioning subsequent data links against the latency introduced to the content provider 104 for the use of servicing DNS queries.
In an additional illustrative example of the sloppy routing mode not depicted in
Further in various sloppy routing schemes using a combination of the one or more criteria, the CDN service provider 106 can determine various permutations of the sloppy routing mode based on information regarding the pricing structure of a content provider 104 stored in the pricing data store 130. In the same continued example from above, the latency incurred by a flat-rate price on the data link at the third IP address may be a greater cost in terms of latency for the content provider 104 when compared to the marginal cost incurred by the CDN service provider 106 when servicing that DNS query on the data link at the second IP address, which would have resulted in exceeding the threshold content delivery bandwidth for the CDN service provider 106. Thus the routing mode and POPs selection service 128 can include a determination that balances the latency for the content provider 104 operating above a threshold network usage with the cost incurred by operating a data link above the content delivery bandwidth threshold. With this approach in view, various embodiments are possible balancing the latency incurred for the content provider 104 for a particular cost incurred by CDN service provider 106. Thus CDN service provider 106 can use a pricing structure stored in pricing data store 130 for content provider 104 that is based primarily on the latency that content provider 104 is willing to incur.
Further still, this latency criterion can be related to the use case of the content request for that the content provider 104. For example, CDN service provider 106 can have a pricing structure for content provider 104 that charges more for HD video than for public information or text-based file formats. In some instances, as one of skill in the art can appreciate, HD video may incur greater latency than files with text-based formats or emails.
In various embodiments, as one of skill in the art can appreciate, data can be collected by CDN service provider 106 regarding the content requests of the content provider 104 according to time of day, or month, or based on certain content requests. This data can be processed in the back-end processing service 132. All of these factors can be used as the one or more criteria to determine a sloppy routing approach for the response of a particular DNS query. Various factors can be processed by back-end processing service 132 as will now be described herein. For example, in various embodiments, latency may not be the criterion to be optimized for sloppy routing, but instead, content accessibility for the content provider 104 may be the criterion.
In this sloppy routing approach using content accessibility as one of the one or more criteria, the CDN service provider 106 can additionally use hashing algorithms to determine a POP location with the lowest latency to service a particular DNS query. With hashing algorithms, the CDN the service provider 106 can use the routing mode and POP and selection service 128 to divide a certain number of POP into stripes to be used in computing likelihoods of content availability. Then, a hashing algorithm can use the name of the content provider 104 with the DNS query to determine the likelihood that content is stored for that content provider 104 at a particular POP that would service the resource request with the lowest latency. In this approach, content requests are more likely to be serviced with less latency by using that POP having a higher likelihood of content stored at the resource cache component of that POP than others. In some embodiments, if the content provider 104 includes several requests for the same content, feedback can be used to indicate that any of the POPs may have an equal likelihood of having the content stored and thus offer nearly equivalent low latencies.
Additional criteria can be used by routing mode and POP selection service 128 during DNS query processing to determine which POP locations or IP addresses to sloppy route for the response of a particular DNS query.
Another one or more criteria of sloppy routing include determining POP locations that can enhance security. In this approach, routing mode and POP selection service 128 can determine that the second POP 122 is less secure so that the list of available IP addresses at the resource cache component 120 no longer includes cache IP addresses associated with the second POP 122 or moves the cache IP addresses associated with the second POP 122 to the bottom of the list for servicing DNS queries. More specifically, routing mode and POP selection service 128 can use information that CDN service provider 106 receives from a look-up table of IP addresses that have security concerns. With this look-up table of IP addresses, routing mode and POP selection service 128 can compare that list with the list available of cache IP address for sloppy routing at DNS server component 118 to determine whether a particular IP address should be avoided for the content provider 104 that has an increased security concerns (e.g., an increased susceptibility factor). In some embodiments, this may be additionally addressed by changing the routing mode. For example, the routing mode at routing mode and POP selection service 128 can be changed to a regional anycast routing mode or anycast routing mode for enhanced security. In some embodiments, CDN service provider 106 can financially charge the content provider 104 more to provide this enhanced security, especially if the content provider 104 requests secure connection for content requests (e.g., because content provider 104 is servicing DNS queries that include secure or financial transactions).
Another one or more criteria of sloppy routing include using a favored or biased approach for a particular content provider 104: the CDN service provider 106 can determine that a certain content provider 104 is favored because it has been a customer of CDN service provider 106 for a long period of time (or pays CDN service provider 106 more than other content providers). In one embodiment then, even though this favored or loyal customer has exceeded their threshold network usage, the routing mode and POP selection service 128 can determine that that content provider 104 is not sloppy routed, but, instead, content provider is provided the optimal IP address at DNS server 118. In contrast, this favored approach may also be used for new customers. For example, a new customer that has only exceeded their threshold at work usage on day 20 of the month could still be provided the optimal IP address if the CDN service provider 106 determines that the marginal cost of servicing new customers with a lower latency, even though it incurs a greater cost for the data link, is less than the likelihood that that new customer may drop coverage or choose another CDN service provider.
With this description, as one of skill in the art can appreciate, various approaches are possible to favor certain content provider 104 over another based on preferences determined and processed by back-end processing service 132. In some embodiments this may include using historical data to analyze content provider 104 behavior based on: latency, price, security concerns, content accessibility, whether a content provider 104 is primarily downloading bulk data, whether a particular POP is a peer of CDN service provider 106 network, or any other relevant factors that affect servicing a particular DNS query. Further, a combination of factors may be used to determine the alternative resource identifier associated with another POP location or cache IP address to be used when routing a DNS query. For example, CDN service provider 106 may determine that latency and susceptibility factors should be the only factors to be used when selecting a cache IP address from the list of available addresses at DNS server 118.
With further reference to
With reference now to
Returning to
http://request_routing_information.cdnprovider.com/path/resource.xxx
CNAME request_routing_information.cdnprovider.com
In an illustrative embodiment, the CNAME records are generated and provided by the DNS servers to direct a more appropriate DNS server of the CDN service provider 106. As used in accordance with the present disclosure, appropriateness can be defined in any manner by the CDN service provider 106 for a variety of purposes. In an illustrative embodiment, as will be described in greater detail below in reference to
In another embodiment, building on the foregoing example, the CDN service provider 106 can utilize client location information associated with the client computing device 102 or its local DNS resolver, at least in part, to identify the more appropriate DNS server of the CDN service provider 106. In particular, the CDN service provider 106 can utilize an IP address associated with a client computing device DNS query to identify a best sub-optimal POP to process the request. Based on the client location information, the CDN service provider 106 can then select a POP 116, 122 from a set of sub-optimal POPs that are identified as being available to service resource requests under the circumstances. In one example, if more than one POP is identified in the set of sub-optimal POPs, the CDN service provider 106 can utilize a distribution allocation for selecting a specific POP associated with the client location information. In another example, once a POP is selected, the CDN service provider 106 can further use health information to determine whether the selected POP is available to service requests before providing the client computing device with a CNAME corresponding to the selected POP. This health information may in one embodiment correspond to a threshold content delivery bandwidth available at the POP as also described above. One skilled in the art will appreciate that the above functionality is illustrative in nature and accordingly should not be construed as limiting.
As described above, in addition to the consideration of client location information (either of the end-client or its associated local DNS resolver component), the CDN service provider 106 can utilize the additional information (e.g., the “additional information”) included in the translated URL to select a more appropriate DNS server. In one aspect, the CDN service provider 106 can utilize the additional information to select from a set of DNS servers identified as satisfying criteria associated with the client location information or from a set of DNS services identified as satisfying any other criterion or combination of criteria, such as those described in other example embodiments herein. In another aspect, the CDN service provider 106 can utilize the additional information to validate the DNS server selected in accordance with the client location information or to select an alternative DNS server previously selected in accordance with the client location information. In one example, the CDN service provider 106 can attempt to direct a DNS query to DNS servers according to additional geographic criteria. The additional geographic criteria can correspond to geographic-based regional service plans contracted between the CDN service-provider 106 and the content provider 104 in which various CDN service provider 106 POPs are grouped into geographic regions. Accordingly, a client computing device 102 DNS query received in a region not corresponding to the content provider's regional plan may be better processed by a DNS server in region corresponding to the content provider's regional plan. In another example, the CDN service provider 106 can attempt to direct a DNS query to DNS servers according to service level criteria. The service level criteria can correspond to service or performance metrics contracted between the CDN service provider 106 and the content provider 104. Examples of performance metrics can include latencies of data transmission between the CDN service provider POPs and the client computing devices 102, total data provided on behalf of the content provider 104 by the CDN service provider POPs, error rates for data transmissions, and the like.
In still a further example, the CDN service provider 106 can attempt to direct a DNS query to DNS servers according to network performance criteria. The network performance criteria can correspond to measurements of network performance for transmitting data from the CDN service provider POPs to the client computing device 102. Examples of network performance metrics can include network data transfer latencies (measured by the client computing device or the CDN service provider 106, network data error rates, and the like).
In accordance with an illustrative embodiment, the DNS server maintains a data store that defines CNAME records for various original URLs. If a DNS query corresponding to a particular original URL matches an entry in the data store, the DNS server component 118 returns a CNAME record as defined in the data store. In an illustrative embodiment, the data store can include multiple CNAME records corresponding to a particular original URL. The multiple CNAME records would define a set of potential candidates that can be returned to the client computing device 102. In such an embodiment, the DNS server component 118, either directly or via a network-based service, can implement additional logic in selecting an appropriate CNAME from a set of possible of CNAMEs. In an illustrative embodiment, each DNS server component 118, 124 maintains the same data stores that define CNAME records, which can be managed centrally by the CDN service provider 106. Alternatively, each DNS server component 118 and 124 can have POP specific data stores that define CNAME records, which can be managed centrally by the CDN service provider 106 or locally at the POP 116, 122.
Returning to
With reference now to
For purposes of illustration, assume that the DNS server component 124 processes the content request by returning an IP address of a resource cache component. In an illustrative embodiment, the DNS server component 124 can utilize a variety of information in selecting a resource cache component. In one example, the DNS server component 124 can default to a selection of a resource cache component of the same POP. In another example, the DNS server components can select a resource cache component based on various load balancing or load sharing algorithms. Still further, the DNS server components can utilize network performance metrics or measurements to assign specific resource cache components. The IP address selected by a DNS server component may correspond to a specific caching server in the resource cache. Alternatively, the IP address can correspond to a hardware/software selection component (such as a load balancer).
With reference now to
Alternatively, in another embodiment corresponding to
A selected resource cache component (either selected directly by a POP receiving a DNS query as shown in
With reference now to
At block 704, a DNS server component 118 at a first POP 116 of the CDN service provider 106 receives a DNS query corresponding to a resource identifier from a client computing device 102. As previously discussed, the resource identifier can be a URL that has been embedded in content requested by the client computing device 102 and previously provided by the content provider 104. Alternatively, the resource identifier can also correspond to a CNAME provided by a content provider DNS server in response to a DNS query previously received from the client computing device 102. While not illustrated, the receiving DNS server also obtains, in some embodiments, an IP address associated with the DNS query from the requesting client computing device 102 (“query IP address”). The query IP address can correspond to an IP address of the client computing device or any local DNS resolver component associated with the client computing device.
Next, at decision block 706, the CDN service provider 106 determines whether it has exceeded a threshold content delivery bandwidth at the first POP. As discussed above, the threshold content delivery bandwidth is determined based, at least in part, on CDN service provider cost information, which corresponds to a financial cost to the CDN service provider 106 for content delivery bandwidth. In particular, in one embodiment, assuming that the first POP, or more specifically the DNS server component at the first POP, receiving the DNS query is the optimal POP or DNS server component for processing the DNS query, this determination at block 706 corresponds to a determination of whether the resource cache component at the POP receiving the DNS query (which can correspond to either a single cache server or a bank of cache servers at the POP) is operating above a threshold content delivery bandwidth. Continuing with this embodiment, the resource cache component at the first POP can also be referred to as the default or optimal resource cache component. In a further illustrative embodiment, the threshold content delivery bandwidth is lower than a maximum available content delivery bandwidth for the first POP or resource cache component.
If the first POP or resource cache component has not exceeded its threshold content delivery bandwidth, the CDN service provider 106 responsively provides the client computing device 102 with an IP address of the default or optimal resource cache component at the first POP at block 708. Thereafter, at block 716, routine 702 ends. Alternatively, if at decision block 706, the first POP or resource cache component has exceeded its threshold content delivery bandwidth (which may be indicative, for example, of the CDN service provider 106 incurring additional financial costs to provide the requested content from the first POP or its default resource cache component), the CDN service provider 106 determines whether a content provider corresponding to a domain associated with the DNS query has exceeded a threshold network usage at block 710.
If the content provider has not exceeded its threshold network usage, the CDN service provider 106 responsively provides the client computing device 102 with an IP address of the default or optimal resource cache component of the first POP at block 710. Thereafter, at block 716, routine 702 ends. Alternatively, if at decision block 710, the content provider has exceeded its threshold network usage (which may be indicative, for example, of the CDN service provider incurring the burden of additional financial costs above a pricing structure, such as a flat fee structure, offered to the content provider), processing continues at block 712. As described above, in an illustrative embodiment, the threshold network usage is determined based, at least in part, on pricing information for the CDN provider to provide content on behalf of the content provider.
While the routine 702 illustrates making both determinations at blocks 706 and 710, in another embodiment, the determination at block 706 may be optional, while in a yet further alternative embodiment, the determination at block 710 may be optional.
Continuing at block 712, if either or both of the determinations at blocks 706 and 710 result in a “YES” determination, the CDN service provider 106 selects an alternative resource identifier associated with an alternative POP of the CDN service provider 106 or an alternative cache IP address associated with an alternative POP. In particular, in one illustrative embodiment, where an alternative resource identifier is selected, the CDN service provider 106 more specifically selects an alternative resource identifier which would resolve to a particular alternative DNS server at the alternative POP. In another illustrative embodiment, where an alternative cache IP address is selected, the CDN service provider 106 may select an alternative cache IP address for a particular cache server of a resource cache component at the alternative POP or generally for a group of cache servers at the alternative POP. In this way, the CDN service provider 106 directs further processing of the request to an alternative POP of the CDN service provider.
Next, at block 714, the selected alternative resource identifier or alternative cache IP address is transmitted to the client in response to the obtained DNS query for further processing. Thereafter, at block 716, routine 702 ends. In various embodiments, routine 702 may be performed by the CDN service provider 106 generally, or by DNS server components 118, 124 or individual DNS servers associated with the DNS server components 118, 124. The CDN service provider 106, DNS server components 118, 124, or individual DNS servers associated with the DNS server component 118, 124 may themselves include or otherwise access a service to implement the routine 702, such as the routing mode and POP selection service 128 of
With reference now to
At block 804, a DNS server component 118 at a first POP 116 of the CDN service provider 106 receives a DNS query corresponding to a resource identifier from a client computing device 102. As previously discussed, the resource identifier can be a URL that has been embedded in content requested by the client computing device 102 and previously provided by the content provider 104. Alternatively, the resource identifier can also correspond to a CNAME provided by a content provider DNS server in response to a DNS query previously received from the client computing device 102. While not illustrated, the receiving DNS server also obtains, in some embodiments, an IP address associated with the DNS query from the requesting client computing device 102 (“query IP address”). The query IP address can correspond to an IP address of the client computing device or any local DNS resolver component associated with the client computing device.
Next, at block 806, the CDN service provider 106 responsively determines a routing mode for the response to the DNS query obtained at block 804. In some embodiments, this determination can be made during DNS query processing as described above with reference to
With continuing reference to block 806, the CDN service provider can determine an appropriate routing mode for providing the requested resource. As discussed previously with reference to
In contrast, the anycast routing mode uses a selected anycast IP address (e.g., a cache IP address or destination IP address) to process resource requests. An anycast IP address (e.g., a global IP address that may be randomly assigned to available cache servers) can be associated or shared by several cache servers that can provide the requested resource. Because several cache servers can service the requested resource, the susceptibility factor of the anycast routing mode is lower than the default routing mode. For example, by providing a DNS server component at the CDN service provider with an option to determine an appropriate routing mode in which to respond to a DNS query, the DNS server component may select the anycast routing mode to provide enhanced security, as compared to the default routing mode. Such a determination offers enhanced security because an original cache server that would service the resource request in a default routing mode can be quickly changed to a secondary cache server (e.g., another cache server) associated with a shared anycast IP address (e.g., a randomly assigned global IP address), if a security concern is discovered to be associated with the POP or DNS server component receiving the DNS query, and hence the original default cache server corresponding to that POP. But, at the same time, such a secondary cache server can be more geographically distant (e.g., traveling through intercontinental optical cables) from the client 102, and thus incurring a higher latency, especially when compared with the default routing mode that uses the optimal cache server. In one embodiment, the anycast routing mode, as discussed herein, may correspond to traditional anycast routing as known to those of skill in the art.
In another embodiment of determining the appropriate routing mode at block 806, a content provider can be assigned a susceptibility factor that relates to the security concerns of each available routing mode. For example, a content provider 104 (e.g., a customer of the CDN service provider 106) that has its content typically served by the CDN service provider 106 in a geographical location (e.g., region with less security) can have an increased susceptibility factor in a default routing mode. Instead, the anycast routing mode can be determined as the appropriate routing mode to offer enhanced security as an anycast IP address is associated with several cache servers via randomly assigned global IP address. Thus, in contrast to a specific optimal cache server associated with a pre-specified IP address that may be leaked, there are many available cache servers in the anycast routing mode for providing responsive content which are not individually designated and hence specifically targeted. Accordingly, the susceptibility factors may bias the determination of the appropriate routing mode in favor of the anycast routing mode because the anycast routing mode can provide enhanced security. In contrast, a default cache IP address stored at a DNS server may be more easily discernible as it is individually pre-designated.
In another example, a regional anycast routing mode can be determined as the appropriate routing mode, at block 806. In some embodiments, the CDN service provider 106 may consider the security factor like the anycast routing mode, but additionally consider the latency factor. This can be undertaken when the one or more criteria indicate that a susceptibility factor is to be associated with the plurality of available routing modes, but also the latency factor associated with the plurality of available routing modes. Continuing in this example, the regional anycast routing mode can be used to route the response to the DNS query so that several cache servers are available with a regional IP address (e.g., a regional IP address can be randomly assigned and associated with several cache servers in a region) used to service the request, thereby enhancing security. This determination can be made dynamically at the DNS server component 118 or it can have been considered by a central computing component of the CDN service provider 106, which, in turn, provides a list of available cache servers from which the DNS server component 118 can select from. Thus, the one or more criteria can in part dictate, or de facto, determine a routing mode for providing the requested resource.
In another example, a particular DNS resolver may service a diverse set of client computing devices 102, such as clients that are located in multiple different geographic regions. Such a resolver is hereinafter referred to as a diverse DNS resolver. In this example, since the clients are geographically diverse, some clients' resource requests may experience more latency than others being serviced by the same DNS resolver. With this information, the CDN service provider 106 may determine that a regional anycast routing mode may be the appropriate routing mode for providing the requested resource at block 806. The regional anycast routing mode corresponds to a modified version of an anycast routing mode which utilizes a one-to-many network routing schema, but in this instance the one-to-many network routing schema is limited by region, such as a geographic region. In particular, a regional one-to-many network routing schema provides that a specific POP, DNS server component 118, or resource cache component in a particular region will receive the request as a function of network topology in that region. For example, in a regional anycast implementation, a request issued by a client computing device 102 to a shared IP address will arrive at a POP, DNS server component 118, or resource cache component logically having the shortest network topology distance, often referred to as network hops, from the client computing device. The network topology distance does not necessarily correspond to geographic distance. However, in some embodiments, the network topology distance can be inferred to be the shortest network distance between a client computing device 102 and a POP, DNS server component, or resource cache component.
As a further specific example, the regional anycast routing mode can involve the selection of a cache IP address from a grouping or list of cache IP addresses or anycast node locations that are located within a certain geographical and/or regional location of the nodes (e.g., U.S. East Coast, U.S. West Coast, Canada, or Southeast Asia). In other embodiments, the CDN service provider 106 can select a cache IP address from a list of IP addresses that are associated with a location of nodes in a region specified by the CDN service provider 106. Accordingly, the CDN service provider 106 can specify certain nodes located in one geographical area (e.g., U.S. West Coast). In some embodiments, such a list may not include an IP address that is deemed unsecure (e.g., an IP address corresponding to a cache server that, due to security concerns, cannot provide requested resources). For example, in some embodiments, financial content such as credit card information may need to be routed with a routing mode offering higher security. In other embodiments, an unsecure IP address may be an anycast IP address that has been leaked, thereby making security a concern for that particular IP address.
In yet another example of determining the appropriate routing mode at block 806, the CDN service provider 106 may select a sloppy routing mode. As further described above, a sloppy routing mode can be used to service content requests from a suboptimal POP if, for example, if the original provider of the specifically requested content (e.g., the original content provider for that content) has exceeded a threshold network usage or if the CDN service provider 106 has exceeded a threshold content delivery bandwidth at data links of cache servers servicing requests for content originally provided by the content provider 104. Accordingly, in various embodiments, the determined routing mode can be the sloppy routing mode.
In one embodiment, as described above, the response to a DNS query utilizing this sloppy routing approach can be either: an alternative resource identifier (e.g., a CNAME) associated with an alternative DNS component at an alternative POP of the CDN service provider or an IP address of a resource cache component (e.g., a cache server) at the alternative POP (e.g., second POP 122). In this approach, the response to the DNS query may be routed to one of several cache servers that may be available at the alternative POP (or even several alternative POPs). In addition, in this embodiment, because the response to the DNS query may be routed to one of several cache servers at the alternative POP, the sloppy routing mode can enhance security because several cache servers are available, rather than one cache server (e.g., the optimal cache server that minimizes latency). In contrast to a default routing mode that may only route the response to a DNS query to one cache server (e.g., a default and/or optimal cache server that can minimize the latency in providing the requested resource) at the POP that received the DNS query, the slopping routing mode can provide enhanced security by routing the response to the DNS query to an alternative cache server at an alternative POP. Further, the sloppy routing mode selection allows the CDN service provider 106 to allocate or direct the response of the DNS query within the network of the CDN service provider 106, for example, to an alternative POP (e.g., second POP 122), which may minimize latency in servicing the resource request when compared to an anycast routing mode. Thus, the CDN service provider 106 can minimize latency by analyzing the request handling capacity of alternative POPs available to provide the requested resource. Accordingly, a sloppy routing mode selection can take into account both minimizing the latency when providing the requested resource and a susceptibility factor by providing enhanced security when providing the requested resource.
In various embodiments, information stored in pricing data store 130 can also be used as the one or more criteria to determine an appropriate routing mode. For example, one pricing structure may dictate that a flat-rate price is available for the default routing mode, a flat-rate price is available for the sloppy routing mode, and another flat-rate price is available for the regional anycast routing mode. Using this data from pricing data store 130 and the network usage, the back-end processing service 132 can determine whether a content provider 104 has exceeded their threshold network usage for a particular routing mode at a particular pricing structure. As one of skill in the art can appreciate, various routing modes are available when the one or more criteria are used in combination with a pricing structure (e.g., a price at which the CDN service provider 106 provides content on behalf of the content provider 104). For example, a content provider 104 can pay more for the CDN service provider 106 to determine whether a more secure routing mode is available for certain resource requests (e.g., resource requests with financial information). In this example, the back-end processing service 132 can determine that a regional anycast routing mode is available with less latency than an anycast routing mode, but also with more security than a default routing mode because the susceptibility factor of the DNS cache server servicing a particular content provider 104 is high.
In addition to the example criteria noted above, the one or more criteria can also include utilizing information obtained from the DNS query, at least in part, to identify the more appropriate routing mode. This information may include a domain associated with the content provider 104. This information may also include client subnet information associated with content provider 104. This information can be used to determine the routing mode.
Next, at block 808, in response to the obtained DNS query, the selected alternative resource identifier or selected cache IP address is transmitted to the client in accordance with the determined routing mode. For example, if the determined routing mode is the regional anycast routing mode, the selected IP cache address (e.g., selected from a list of IP addresses associated with a location of nodes in a region specified by the CDN service provider 106) can be provided and/or transmitted to the client 102 in accordance with the regional anycast routing mode. Thus, an IP address can be selected that is associated with a location of nodes on the US West Coast for example. Thereafter, at block 810, routine 802 ends.
In various embodiments, routine 802 may be performed by the CDN service provider 106 generally, or by DNS server components 118, 124 or individual DNS servers associated with the DNS server components 118, 124. The CDN service provider 106, DNS server components 118, 124, or individual DNS servers associated with the DNS server component 118, 124 may themselves include or otherwise access a service to implement the routine 802, such as the routing mode and POP selection service 128 of
With reference now to
At block 904, a DNS server component 118 at a first POP 116 of the CDN service provider 106 receives a DNS query corresponding to a resource identifier from a client computing device 102. As previously discussed, the resource identifier can be a URL that has been embedded in content requested by the client computing device 102 and previously provided by the content provider 104. Alternatively, the resource identifier can also correspond to a CNAME provided by a content provider DNS server in response to a DNS query previously received from the client computing device 102. While not illustrated, the receiving DNS server also obtains, in some embodiments, an IP address associated with the DNS query from the requesting client computing device 102 (“query IP address”). The query IP address can correspond to an IP address of the client computing device or any local DNS resolver component associated with the client computing device.
Next, at decision block 906, the CDN service provider 106 determines whether a content provider 104 corresponding to a domain associated with the DNS query is available. For example, the content provider 104 may be available if the content provider 104 has available network usage (e.g., network usage not exceeding a threshold network usage) or if no security concerns exist with providing content of the content provider. However, the content provider 104 may not be available if the content provider 104 has exceeded a threshold network usage or if security concerns exist regarding the provision of content originally provided by the content provider 104. For example, a cache server at the resource cache component 120 that is providing requested resources in accordance with a default routing mode for the content provider 104 may be unavailable due to security concerns associated with providing content of the content provider 104. In other embodiments, a content provider 104 may be physically located in a region or location more susceptible to security concerns and thus can have an increased susceptibility factor associated with the default routing mode. Accordingly, the optimal cache server, physically located in that same region or location, that is providing requested resources in accordance with a default routing mode for a particular content provider 104 may be unavailable due to security concerns associated with providing content of that particular content provider 104. In one embodiment, the CDN service provider 106 can determine the susceptibility factor for the content provider 104 associated with each available routing mode of a plurality of routing modes. In the depicted alternative embodiment of the POP selection routine 902, the available routing modes are: the default routing mode, the sloppy routing mode, and the anycast routing mode.
If the content provider 104 is available (i.e., the CDN service provider determines that content originally provided by the content provider 104 is available to be provided based on one or more criteria), the CDN service provider 106, responsive to the DNS query, provides and transmits to the client computing device 102 an IP address of the default or optimal resource cache component of the first POP at block 908 in accordance with the default routing mode. In this embodiment, the resource cache component at the first POP can also be referred to as the default or optimal resource cache component. Thereafter, at block 918, routine 902 ends. Alternatively, if at decision block 906, the content provider is not available, processing continues at decision block 910.
At decision block 910, the CDN service provider 106 determines whether an alternative POP is available. This decision can include determining an appropriate routing mode from the remaining available routing modes: the sloppy routing mode and the anycast routing mode. For example, as described above with reference to
While the routine 902 illustrates making both determinations at blocks 906 and 910, in another embodiment, the determination at block 906 may be optional; while in a yet further alternative embodiment, the determination at block 910 may be optional. For example, in various embodiments, routine 902 can proceed from decision block 906, if the content provider is not available, to block 912, where the CDN service provider 106 responsively provides and transmits to the client computing device 102 an IP address in accordance with the anycast routing mode. Or, in another optional embodiment not depicted in
Continuing at block 914, if the content provider is not available at decision block 906 and an alternative POP is available at block 910, the CDN service provider 106 selects an alternative resource identifier associated with an alternative POP of the CDN service provider 106 or an alternative cache IP address associated with an alternative POP. In particular, in one illustrative embodiment, where an alternative resource identifier is selected, the CDN service provider 106 more specifically selects an alternative resource identifier which would resolve to a particular alternative DNS server at the alternative POP. In another illustrative embodiment, where an alternative cache IP address is selected, the CDN service provider 106 may select an alternative cache IP address for a particular cache server of a resource cache component at the alternative POP or generally for a group of cache servers at the alternative POP. In this way, the CDN service provider 106 directs further processing of the request to an alternative POP of the CDN service provider.
Next, at block 916, in response to selecting either an alternative resource identifier or an alternative cache IP address at block 914, the selected alternative resource identifier or alternative cache IP address is transmitted to the client in response to the obtained DNS query for further processing in accordance with the sloppy routing mode. Thereafter, at block 918, routine 902 ends.
In various embodiments, routine 902 may be performed by the CDN service provider 106 generally, or by DNS server components 118, 124 or individual DNS servers associated with the DNS server components 118, 124. The CDN service provider 106, DNS server components 118, 124, or individual DNS servers associated with the DNS server component 118, 124 may themselves include or otherwise access a service to implement the routine 902, such as the routing mode and POP selection service 128 of
Depending on the embodiment, certain acts, events, or functions of any of the methods described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithm). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially.
The various illustrative logical blocks, modules, and method elements described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.
The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The elements of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of computer-readable storage medium known in the art. A storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and the storage medium can reside as discrete components in a user terminal.
Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” “involving” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
Disjunctive language such as the phrase “at least one of X, Y, or Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y, or Z, or any combination thereof (e.g., X, Y and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y or at least one of Z to each be present.
Unless otherwise explicitly stated, articles such as “a” or “an” should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B, and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.
While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Name | Date | Kind |
---|---|---|---|
5063500 | Shorter | Nov 1991 | A |
5341477 | Pitkin et al. | Aug 1994 | A |
5459837 | Caccavale | Oct 1995 | A |
5611049 | Pitts | Mar 1997 | A |
5701467 | Freeston | Dec 1997 | A |
5764910 | Shachar | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5852717 | Bhide et al. | Dec 1998 | A |
5892914 | Pitts | Apr 1999 | A |
5893116 | Simmonds et al. | Apr 1999 | A |
5895462 | Toki | Apr 1999 | A |
5905248 | Russell et al. | May 1999 | A |
5933811 | Angles et al. | Aug 1999 | A |
5937427 | Shinagawa et al. | Aug 1999 | A |
5974454 | Apfel et al. | Oct 1999 | A |
5991306 | Burns et al. | Nov 1999 | A |
5999274 | Lee et al. | Dec 1999 | A |
6016512 | Huitema | Jan 2000 | A |
6018619 | Allard et al. | Jan 2000 | A |
6026452 | Pitts | Feb 2000 | A |
6038601 | Lambert et al. | Mar 2000 | A |
6052718 | Gifford | Apr 2000 | A |
6078960 | Ballard | Jun 2000 | A |
6085234 | Pitts et al. | Jul 2000 | A |
6092100 | Berstis et al. | Jul 2000 | A |
6098096 | Tsirigotis et al. | Aug 2000 | A |
6108703 | Leighton et al. | Aug 2000 | A |
6128279 | O'Neil et al. | Oct 2000 | A |
6151631 | Ansell et al. | Nov 2000 | A |
6157942 | Chu et al. | Dec 2000 | A |
6167438 | Yates et al. | Dec 2000 | A |
6167446 | Lister et al. | Dec 2000 | A |
6173316 | De Boor et al. | Jan 2001 | B1 |
6182111 | Inohara et al. | Jan 2001 | B1 |
6182125 | Borella et al. | Jan 2001 | B1 |
6185598 | Farber et al. | Feb 2001 | B1 |
6192051 | Lipman et al. | Feb 2001 | B1 |
6205475 | Pitts | Mar 2001 | B1 |
6223288 | Byrne | Apr 2001 | B1 |
6243761 | Mogul et al. | Jun 2001 | B1 |
6275496 | Burns et al. | Aug 2001 | B1 |
6286043 | Cuomo et al. | Sep 2001 | B1 |
6286084 | Wexler et al. | Sep 2001 | B1 |
6304913 | Rune | Oct 2001 | B1 |
6324580 | Jindal et al. | Nov 2001 | B1 |
6330602 | Law et al. | Dec 2001 | B1 |
6338082 | Schneider | Jan 2002 | B1 |
6345308 | Abe | Feb 2002 | B1 |
6351743 | DeArdo et al. | Feb 2002 | B1 |
6351775 | Yu | Feb 2002 | B1 |
6363411 | Dugan et al. | Mar 2002 | B1 |
6366952 | Pitts | Apr 2002 | B2 |
6374290 | Scharber et al. | Apr 2002 | B1 |
6377257 | Borrel et al. | Apr 2002 | B1 |
6386043 | Millins | May 2002 | B1 |
6405252 | Gupta et al. | Jun 2002 | B1 |
6408360 | Chamberlain et al. | Jun 2002 | B1 |
6411967 | Van Renesse | Jun 2002 | B1 |
6415280 | Farber et al. | Jul 2002 | B1 |
6430607 | Kavner | Aug 2002 | B1 |
6438592 | Killian | Aug 2002 | B1 |
6442165 | Sitaraman et al. | Aug 2002 | B1 |
6452925 | Sistanizadeh et al. | Sep 2002 | B1 |
6457047 | Chandra et al. | Sep 2002 | B1 |
6459909 | Bilcliff et al. | Oct 2002 | B1 |
6473804 | Kaiser et al. | Oct 2002 | B1 |
6484143 | Swildens et al. | Nov 2002 | B1 |
6484161 | Chipalkatti et al. | Nov 2002 | B1 |
6493765 | Cunningham et al. | Dec 2002 | B1 |
6505241 | Pitts | Jan 2003 | B2 |
6523036 | Hickman et al. | Feb 2003 | B1 |
6529910 | Fleskes | Mar 2003 | B1 |
6529953 | Van Renesse | Mar 2003 | B1 |
6553413 | Leighton et al. | Apr 2003 | B1 |
6560610 | Eatherton et al. | May 2003 | B1 |
6611873 | Kanehara | Aug 2003 | B1 |
6622168 | Datta | Sep 2003 | B1 |
6643357 | Lumsden | Nov 2003 | B2 |
6643707 | Booth | Nov 2003 | B1 |
6654807 | Farber et al. | Nov 2003 | B2 |
6658462 | Dutta | Dec 2003 | B1 |
6665706 | Kenner et al. | Dec 2003 | B2 |
6678717 | Schneider | Jan 2004 | B1 |
6678791 | Jacobs et al. | Jan 2004 | B1 |
6681282 | Golden et al. | Jan 2004 | B1 |
6694358 | Swildens et al. | Feb 2004 | B1 |
6697805 | Choquier et al. | Feb 2004 | B1 |
6724770 | Van Renesse | Apr 2004 | B1 |
6732237 | Jacobs et al. | May 2004 | B1 |
6754699 | Swildens et al. | Jun 2004 | B2 |
6754706 | Swildens et al. | Jun 2004 | B1 |
6760721 | Chasen et al. | Jul 2004 | B1 |
6769031 | Bero | Jul 2004 | B1 |
6782398 | Bahl | Aug 2004 | B1 |
6785704 | McCanne | Aug 2004 | B1 |
6795434 | Kumar et al. | Sep 2004 | B1 |
6799214 | Li | Sep 2004 | B1 |
6804706 | Pitts | Oct 2004 | B2 |
6810291 | Card et al. | Oct 2004 | B2 |
6810411 | Coughlin et al. | Oct 2004 | B1 |
6829654 | Jungck | Dec 2004 | B1 |
6862607 | Vermeulen | Mar 2005 | B1 |
6868439 | Basu et al. | Mar 2005 | B2 |
6874017 | Inoue et al. | Mar 2005 | B1 |
6917951 | Orbits et al. | Jul 2005 | B2 |
6925499 | Chen et al. | Aug 2005 | B1 |
6928467 | Peng et al. | Aug 2005 | B2 |
6928485 | Krishnamurthy et al. | Aug 2005 | B1 |
6941562 | Gao et al. | Sep 2005 | B2 |
6963850 | Bezos et al. | Nov 2005 | B1 |
6976090 | Ben-Shaul et al. | Dec 2005 | B2 |
6981017 | Kasriel et al. | Dec 2005 | B1 |
6985945 | Farhat et al. | Jan 2006 | B2 |
6986018 | O'Rourke et al. | Jan 2006 | B2 |
6990526 | Zhu | Jan 2006 | B1 |
6996616 | Leighton et al. | Feb 2006 | B1 |
7003555 | Jungck | Feb 2006 | B1 |
7006099 | Gut et al. | Feb 2006 | B2 |
7007089 | Freedman | Feb 2006 | B2 |
7010578 | Lewin et al. | Mar 2006 | B1 |
7010598 | Sitaraman et al. | Mar 2006 | B2 |
7024466 | Outten et al. | Apr 2006 | B2 |
7031445 | Lumsden | Apr 2006 | B2 |
7032010 | Swildens et al. | Apr 2006 | B1 |
7058633 | Gnagy et al. | Jun 2006 | B1 |
7058706 | Iyer et al. | Jun 2006 | B1 |
7058953 | Willard et al. | Jun 2006 | B2 |
7065587 | Huitema et al. | Jun 2006 | B2 |
7072982 | Teodosiu et al. | Jul 2006 | B2 |
7076633 | Tormasov et al. | Jul 2006 | B2 |
7082476 | Cohen et al. | Jul 2006 | B1 |
7086061 | Joshi et al. | Aug 2006 | B1 |
7092505 | Allison et al. | Aug 2006 | B2 |
7092997 | Kasriel et al. | Aug 2006 | B1 |
7096266 | Lewin et al. | Aug 2006 | B2 |
7099936 | Chase et al. | Aug 2006 | B2 |
7103645 | Leighton et al. | Sep 2006 | B2 |
7114160 | Suryanarayana et al. | Sep 2006 | B2 |
7117262 | Bai et al. | Oct 2006 | B2 |
7133905 | Dilley et al. | Nov 2006 | B2 |
7136922 | Sundaram et al. | Nov 2006 | B2 |
7139808 | Anderson et al. | Nov 2006 | B2 |
7139821 | Shah et al. | Nov 2006 | B1 |
7143169 | Champagne et al. | Nov 2006 | B1 |
7143170 | Swildens et al. | Nov 2006 | B2 |
7146560 | Dang et al. | Dec 2006 | B2 |
7149809 | Barde et al. | Dec 2006 | B2 |
7152118 | Anderson, IV et al. | Dec 2006 | B2 |
7162539 | Garcie-Luna-Aceves | Jan 2007 | B2 |
7174382 | Ramanathan et al. | Feb 2007 | B2 |
7185063 | Kasriel et al. | Feb 2007 | B1 |
7185084 | Sirivara et al. | Feb 2007 | B2 |
7188214 | Kasriel et al. | Mar 2007 | B1 |
7194522 | Swildens et al. | Mar 2007 | B1 |
7194552 | Schneider | Mar 2007 | B1 |
7200667 | Teodosiu et al. | Apr 2007 | B2 |
7216170 | Ludvig et al. | May 2007 | B2 |
7225254 | Swildens et al. | May 2007 | B1 |
7228350 | Hong et al. | Jun 2007 | B2 |
7228359 | Monteiro | Jun 2007 | B1 |
7233978 | Overton et al. | Jun 2007 | B2 |
7240100 | Wein et al. | Jul 2007 | B1 |
7249196 | Peiffer et al. | Jul 2007 | B1 |
7251675 | Kamakura et al. | Jul 2007 | B1 |
7254626 | Kommula et al. | Aug 2007 | B1 |
7254636 | O'Toole, Jr. et al. | Aug 2007 | B1 |
7257581 | Steele et al. | Aug 2007 | B1 |
7260598 | Liskov et al. | Aug 2007 | B1 |
7260639 | Afergan et al. | Aug 2007 | B2 |
7269784 | Kasriel et al. | Sep 2007 | B1 |
7272227 | Beran | Sep 2007 | B1 |
7274658 | Bornstein et al. | Sep 2007 | B2 |
7284056 | Ramig | Oct 2007 | B2 |
7289519 | Liskov | Oct 2007 | B1 |
7293093 | Leighton | Nov 2007 | B2 |
7308499 | Chavez | Dec 2007 | B2 |
7310686 | Uysal | Dec 2007 | B2 |
7316648 | Kelly et al. | Jan 2008 | B2 |
7318074 | Iyengar et al. | Jan 2008 | B2 |
7320131 | O'Toole, Jr. | Jan 2008 | B1 |
7321918 | Burd et al. | Jan 2008 | B2 |
7337968 | Wilz, Sr. et al. | Mar 2008 | B2 |
7339937 | Mitra et al. | Mar 2008 | B2 |
7363291 | Page | Apr 2008 | B1 |
7363626 | Koutharapu et al. | Apr 2008 | B2 |
7370089 | Boyd et al. | May 2008 | B2 |
7372809 | Chen | May 2008 | B2 |
7373416 | Kagan et al. | May 2008 | B2 |
7376736 | Sundaram et al. | May 2008 | B2 |
7380078 | Ikegaya et al. | May 2008 | B2 |
7389354 | Sitaraman et al. | Jun 2008 | B1 |
7392236 | Rusch et al. | Jun 2008 | B2 |
7398301 | Hennessey et al. | Jul 2008 | B2 |
7406512 | Swildens et al. | Jul 2008 | B2 |
7406522 | Riddle | Jul 2008 | B2 |
7409712 | Brooks et al. | Aug 2008 | B1 |
7430610 | Pace et al. | Sep 2008 | B2 |
7441045 | Skene et al. | Oct 2008 | B2 |
7441261 | Slater et al. | Oct 2008 | B2 |
7454457 | Lowery et al. | Nov 2008 | B1 |
7454500 | Hsu et al. | Nov 2008 | B1 |
7461170 | Taylor et al. | Dec 2008 | B1 |
7464142 | Flurry et al. | Dec 2008 | B2 |
7478148 | Neerdaels | Jan 2009 | B2 |
7492720 | Pruthi et al. | Feb 2009 | B2 |
7496651 | Joshi | Feb 2009 | B1 |
7499998 | Toebes et al. | Mar 2009 | B2 |
7502836 | Menditto et al. | Mar 2009 | B1 |
7505464 | Okmianski et al. | Mar 2009 | B2 |
7506034 | Coates et al. | Mar 2009 | B2 |
7519720 | Fishman et al. | Apr 2009 | B2 |
7519726 | Palliyil et al. | Apr 2009 | B2 |
7523181 | Swildens et al. | Apr 2009 | B2 |
7543024 | Holstege | Jun 2009 | B2 |
7548947 | Kasriel et al. | Jun 2009 | B2 |
7552235 | Chase et al. | Jun 2009 | B2 |
7555542 | Ayers et al. | Jun 2009 | B1 |
7561571 | Lovett et al. | Jul 2009 | B1 |
7565407 | Hayball | Jul 2009 | B1 |
7568032 | Feng et al. | Jul 2009 | B2 |
7573916 | Bechtolsheim et al. | Aug 2009 | B1 |
7574499 | Swildens et al. | Aug 2009 | B1 |
7581009 | Hsu et al. | Aug 2009 | B1 |
7594189 | Walker et al. | Sep 2009 | B1 |
7596619 | Leighton et al. | Sep 2009 | B2 |
7617222 | Coulthard et al. | Nov 2009 | B2 |
7623460 | Miyazaki | Nov 2009 | B2 |
7624169 | Lisiecki et al. | Nov 2009 | B2 |
7631101 | Sullivan et al. | Dec 2009 | B2 |
7640296 | Fuchs et al. | Dec 2009 | B2 |
7650376 | Blumenau | Jan 2010 | B1 |
7653700 | Bahl et al. | Jan 2010 | B1 |
7653725 | Yahiro et al. | Jan 2010 | B2 |
7657613 | Hanson et al. | Feb 2010 | B1 |
7657622 | Douglis et al. | Feb 2010 | B1 |
7661027 | Langen et al. | Feb 2010 | B2 |
7664831 | Cartmell et al. | Feb 2010 | B2 |
7664879 | Chan et al. | Feb 2010 | B2 |
7676570 | Levy et al. | Mar 2010 | B2 |
7680897 | Carter et al. | Mar 2010 | B1 |
7684394 | Cutbill et al. | Mar 2010 | B1 |
7685109 | Ransil et al. | Mar 2010 | B1 |
7685251 | Houlihan et al. | Mar 2010 | B2 |
7693813 | Cao et al. | Apr 2010 | B1 |
7693959 | Leighton et al. | Apr 2010 | B2 |
7702724 | Brydon et al. | Apr 2010 | B1 |
7706740 | Collins et al. | Apr 2010 | B2 |
7707314 | McCarthy et al. | Apr 2010 | B2 |
7711647 | Gunaseelan et al. | May 2010 | B2 |
7711788 | Lev Ran et al. | May 2010 | B2 |
7716367 | Leighton et al. | May 2010 | B1 |
7725602 | Liu et al. | May 2010 | B2 |
7730187 | Raciborski et al. | Jun 2010 | B2 |
7739400 | Lindbo et al. | Jun 2010 | B2 |
7747720 | Toebes et al. | Jun 2010 | B2 |
7756913 | Day | Jul 2010 | B1 |
7756965 | Joshi | Jul 2010 | B2 |
7757202 | Dahlsted et al. | Jul 2010 | B2 |
7761572 | Auerbach | Jul 2010 | B1 |
7765304 | Davis et al. | Jul 2010 | B2 |
7769823 | Jenny et al. | Aug 2010 | B2 |
7773596 | Marques | Aug 2010 | B1 |
7774342 | Virdy | Aug 2010 | B1 |
7783727 | Foley et al. | Aug 2010 | B1 |
7787380 | Aggarwal et al. | Aug 2010 | B1 |
7792989 | Toebes et al. | Sep 2010 | B2 |
7805516 | Kettler et al. | Sep 2010 | B2 |
7809597 | Das et al. | Oct 2010 | B2 |
7813308 | Reddy et al. | Oct 2010 | B2 |
7814229 | Cabrera et al. | Oct 2010 | B1 |
7818454 | Kim et al. | Oct 2010 | B2 |
7827256 | Phillips et al. | Nov 2010 | B2 |
7836177 | Kasriel et al. | Nov 2010 | B2 |
7853719 | Cao et al. | Dec 2010 | B1 |
7865594 | Baumback et al. | Jan 2011 | B1 |
7865953 | Hsieh et al. | Jan 2011 | B1 |
7873065 | Mukerji et al. | Jan 2011 | B1 |
7890612 | Todd et al. | Feb 2011 | B2 |
7899899 | Joshi | Mar 2011 | B2 |
7904875 | Hegyi | Mar 2011 | B2 |
7912921 | O'Rourke et al. | Mar 2011 | B2 |
7925782 | Sivasubramanian et al. | Apr 2011 | B2 |
7930393 | Baumback et al. | Apr 2011 | B1 |
7930402 | Swildens et al. | Apr 2011 | B2 |
7930427 | Josefsberg et al. | Apr 2011 | B2 |
7933988 | Nasuto et al. | Apr 2011 | B2 |
7937477 | Day et al. | May 2011 | B1 |
7945693 | Farber et al. | May 2011 | B2 |
7949779 | Farber et al. | May 2011 | B2 |
7958222 | Pruitt et al. | Jun 2011 | B1 |
7958258 | Yeung et al. | Jun 2011 | B2 |
7962597 | Richardson et al. | Jun 2011 | B2 |
7966404 | Hedin et al. | Jun 2011 | B2 |
7970816 | Chess et al. | Jun 2011 | B2 |
7970940 | van de Ven et al. | Jun 2011 | B1 |
7979509 | Malmskog et al. | Jul 2011 | B1 |
7991910 | Richardson et al. | Aug 2011 | B2 |
7996533 | Leighton et al. | Aug 2011 | B2 |
7996535 | Auerbach | Aug 2011 | B2 |
8000724 | Rayburn et al. | Aug 2011 | B1 |
8001187 | Stochosky | Aug 2011 | B2 |
8010707 | Elzur et al. | Aug 2011 | B2 |
8019869 | Kriegsman | Sep 2011 | B2 |
8024441 | Kommula et al. | Sep 2011 | B2 |
8028090 | Richardson et al. | Sep 2011 | B2 |
8041773 | Abu-Ghazaleh et al. | Oct 2011 | B2 |
8041809 | Sundaram et al. | Oct 2011 | B2 |
8041818 | Gupta et al. | Oct 2011 | B2 |
8042054 | White et al. | Oct 2011 | B2 |
8065275 | Eriksen et al. | Nov 2011 | B2 |
8069231 | Schran et al. | Nov 2011 | B2 |
8073940 | Richardson et al. | Dec 2011 | B1 |
8082348 | Averbuj et al. | Dec 2011 | B1 |
8108623 | Krishnaprasad et al. | Jan 2012 | B2 |
8117306 | Baumback et al. | Feb 2012 | B1 |
8122098 | Richardson et al. | Feb 2012 | B1 |
8122124 | Baumback et al. | Feb 2012 | B1 |
8132242 | Wu | Mar 2012 | B1 |
8135820 | Richardson et al. | Mar 2012 | B2 |
8156199 | Hoche-Mong et al. | Apr 2012 | B1 |
8156243 | Richardson et al. | Apr 2012 | B2 |
8175863 | Ostermeyer et al. | May 2012 | B1 |
8190682 | Paterson-Jones et al. | May 2012 | B2 |
8195837 | McCarthy et al. | Jun 2012 | B2 |
8224971 | Miller et al. | Jul 2012 | B1 |
8224986 | Liskov et al. | Jul 2012 | B1 |
8224994 | Schneider | Jul 2012 | B1 |
8234403 | Richardson et al. | Jul 2012 | B2 |
8239530 | Sundaram et al. | Aug 2012 | B2 |
8250135 | Driesen et al. | Aug 2012 | B2 |
8250211 | Swildens et al. | Aug 2012 | B2 |
8250219 | Raciborski et al. | Aug 2012 | B2 |
8266288 | Banerjee et al. | Sep 2012 | B2 |
8266327 | Kumar et al. | Sep 2012 | B2 |
8271471 | Kamvar et al. | Sep 2012 | B1 |
8280998 | Joshi | Oct 2012 | B2 |
8281035 | Farber et al. | Oct 2012 | B2 |
8291046 | Farber et al. | Oct 2012 | B2 |
8291117 | Eggleston et al. | Oct 2012 | B1 |
8296393 | Alexander et al. | Oct 2012 | B2 |
8301600 | Helmick et al. | Oct 2012 | B1 |
8301645 | Crook | Oct 2012 | B1 |
8321568 | Sivasubramanian et al. | Nov 2012 | B2 |
8380831 | Barber | Feb 2013 | B2 |
8402137 | Sivasuramanian et al. | Mar 2013 | B2 |
8423408 | Barnes et al. | Apr 2013 | B1 |
8423662 | Weihl et al. | Apr 2013 | B1 |
8433749 | Wee et al. | Apr 2013 | B2 |
8447831 | Sivasubramanian et al. | May 2013 | B1 |
8447876 | Verma et al. | May 2013 | B2 |
8452745 | Ramakrishna | May 2013 | B2 |
8452874 | MacCarthaigh et al. | May 2013 | B2 |
8463877 | Richardson et al. | Jun 2013 | B1 |
8468222 | Sakata et al. | Jun 2013 | B2 |
8468245 | Farber et al. | Jun 2013 | B2 |
8473613 | Farber et al. | Jun 2013 | B2 |
8478903 | Farber et al. | Jul 2013 | B2 |
8504721 | Hsu et al. | Aug 2013 | B2 |
8510428 | Joshi | Aug 2013 | B2 |
8510807 | Elazary et al. | Aug 2013 | B1 |
8521851 | Richardson et al. | Aug 2013 | B1 |
8521880 | Richardson et al. | Aug 2013 | B1 |
8521908 | Holmes et al. | Aug 2013 | B2 |
8526405 | Curtis et al. | Sep 2013 | B2 |
8527639 | Liskov et al. | Sep 2013 | B1 |
8527658 | Holmes et al. | Sep 2013 | B2 |
8549646 | Stavrou et al. | Oct 2013 | B2 |
8572208 | Farber et al. | Oct 2013 | B2 |
8572210 | Farber et al. | Oct 2013 | B2 |
8577992 | Richardson et al. | Nov 2013 | B1 |
8589996 | Ma et al. | Nov 2013 | B2 |
8606996 | Richardson et al. | Dec 2013 | B2 |
8612565 | Schneider | Dec 2013 | B2 |
8615549 | Knowles et al. | Dec 2013 | B2 |
8619780 | Brandwine | Dec 2013 | B1 |
8626950 | Richardson et al. | Jan 2014 | B1 |
8635340 | Schneider | Jan 2014 | B1 |
8639817 | Sivasubramanian et al. | Jan 2014 | B2 |
8645539 | McCarthy et al. | Feb 2014 | B2 |
8676918 | Richardson et al. | Mar 2014 | B2 |
8683023 | Brandwine et al. | Mar 2014 | B1 |
8683076 | Farber et al. | Mar 2014 | B2 |
8688837 | Richardson et al. | Apr 2014 | B1 |
8712950 | Smith et al. | Apr 2014 | B2 |
8732309 | Richardson et al. | May 2014 | B1 |
8745177 | Kazerani et al. | Jun 2014 | B1 |
8756322 | Lynch | Jun 2014 | B1 |
8756325 | Sivasubramanian et al. | Jun 2014 | B2 |
8756341 | Richardson et al. | Jun 2014 | B1 |
8782236 | Marshall et al. | Jul 2014 | B1 |
8782279 | Eggleston et al. | Jul 2014 | B2 |
8812727 | Sorenson, III et al. | Aug 2014 | B1 |
8819283 | Richardson et al. | Aug 2014 | B2 |
8904009 | Marshall et al. | Dec 2014 | B1 |
8914514 | Jenkins et al. | Dec 2014 | B1 |
8924528 | Richardson et al. | Dec 2014 | B1 |
8930513 | Richardson et al. | Jan 2015 | B1 |
8930544 | Richardson et al. | Jan 2015 | B2 |
8935744 | Osterweil et al. | Jan 2015 | B2 |
8938526 | Richardson et al. | Jan 2015 | B1 |
8949459 | Scholl | Feb 2015 | B1 |
8966318 | Shah | Feb 2015 | B1 |
8972580 | Fleischman et al. | Mar 2015 | B2 |
9003035 | Richardson et al. | Apr 2015 | B1 |
9003040 | MacCarthaigh et al. | Apr 2015 | B2 |
9009286 | Sivasubramanian et al. | Apr 2015 | B2 |
9009334 | Jenkins et al. | Apr 2015 | B1 |
9021127 | Richardson et al. | Apr 2015 | B2 |
9021128 | Sivasubramanian et al. | Apr 2015 | B2 |
9021129 | Richardson et al. | Apr 2015 | B2 |
9026616 | Sivasubramanian et al. | May 2015 | B2 |
9037975 | Taylor et al. | May 2015 | B1 |
9075893 | Jenkins | Jul 2015 | B1 |
9083675 | Richardson et al. | Jul 2015 | B2 |
9083743 | Patel et al. | Jul 2015 | B1 |
9106701 | Richardson et al. | Aug 2015 | B2 |
9116803 | Agrawal et al. | Aug 2015 | B1 |
9130756 | Richardson et al. | Sep 2015 | B2 |
9130977 | Zisapel et al. | Sep 2015 | B2 |
9137302 | Makhijani et al. | Sep 2015 | B1 |
9154551 | Watson | Oct 2015 | B1 |
9160703 | Richardson et al. | Oct 2015 | B2 |
9172674 | Patel et al. | Oct 2015 | B1 |
9176894 | Marshall et al. | Nov 2015 | B2 |
9185012 | Richardson et al. | Nov 2015 | B2 |
9191338 | Richardson et al. | Nov 2015 | B2 |
9191458 | Richardson et al. | Nov 2015 | B2 |
9195996 | Walsh et al. | Nov 2015 | B1 |
9208097 | Richardson et al. | Dec 2015 | B2 |
9210235 | Sivasubramanian et al. | Dec 2015 | B2 |
9237087 | Risbood et al. | Jan 2016 | B1 |
9237114 | Richardson et al. | Jan 2016 | B2 |
9240954 | Ellsworth et al. | Jan 2016 | B1 |
9246776 | Ellsworth et al. | Jan 2016 | B2 |
9251112 | Richardson et al. | Feb 2016 | B2 |
9253065 | Richardson et al. | Feb 2016 | B2 |
9294391 | Mostert | Mar 2016 | B1 |
9323577 | Marr et al. | Apr 2016 | B2 |
9332078 | Sivasubramanian et al. | May 2016 | B2 |
9386038 | Martini | Jul 2016 | B2 |
9391949 | Richardson et al. | Jul 2016 | B1 |
9407676 | Archer et al. | Aug 2016 | B2 |
9407681 | Richardson et al. | Aug 2016 | B1 |
9407699 | Sivasubramanian et al. | Aug 2016 | B2 |
9444718 | Khakpour et al. | Sep 2016 | B2 |
9444759 | Richardson et al. | Sep 2016 | B2 |
9479476 | Richardson et al. | Oct 2016 | B2 |
9495338 | Hollis et al. | Nov 2016 | B1 |
9497259 | Richardson et al. | Nov 2016 | B1 |
9515949 | Richardson et al. | Dec 2016 | B2 |
9525659 | Sonkin et al. | Dec 2016 | B1 |
9544394 | Richardson et al. | Jan 2017 | B2 |
9571389 | Richardson et al. | Feb 2017 | B2 |
9584328 | Graham-cumming | Feb 2017 | B1 |
9590946 | Richardson et al. | Mar 2017 | B2 |
9608957 | Sivasubramanian et al. | Mar 2017 | B2 |
9621660 | Sivasubramanian et al. | Apr 2017 | B2 |
9628554 | Marshall et al. | Apr 2017 | B2 |
9705922 | Foxhoven et al. | Jul 2017 | B2 |
9712325 | Richardson et al. | Jul 2017 | B2 |
9712484 | Richardson et al. | Jul 2017 | B1 |
9734472 | Richardson et al. | Aug 2017 | B2 |
9742795 | Radlein et al. | Aug 2017 | B1 |
9774619 | Radlein et al. | Sep 2017 | B1 |
9787599 | Richardson et al. | Oct 2017 | B2 |
9787775 | Richardson et al. | Oct 2017 | B1 |
9794216 | Richardson et al. | Oct 2017 | B2 |
9794281 | Radlein et al. | Oct 2017 | B1 |
9800539 | Richardson et al. | Oct 2017 | B2 |
9819567 | Uppal et al. | Nov 2017 | B1 |
9832141 | Raftery | Nov 2017 | B1 |
9887915 | Richardson et al. | Feb 2018 | B2 |
9887931 | Uppal et al. | Feb 2018 | B1 |
9887932 | Uppal et al. | Feb 2018 | B1 |
9888089 | Sivasubramanian et al. | Feb 2018 | B2 |
20010000811 | May et al. | May 2001 | A1 |
20010025305 | Yoshiasa et al. | Sep 2001 | A1 |
20010027479 | Delaney et al. | Oct 2001 | A1 |
20010032133 | Moran | Oct 2001 | A1 |
20010034704 | Farhat et al. | Oct 2001 | A1 |
20010049741 | Skene et al. | Dec 2001 | A1 |
20010052016 | Skene et al. | Dec 2001 | A1 |
20010056416 | Garcia-Luna-Aceves | Dec 2001 | A1 |
20010056500 | Farber et al. | Dec 2001 | A1 |
20020002613 | Freeman et al. | Jan 2002 | A1 |
20020004846 | Garcia-Luna-Aceves et al. | Jan 2002 | A1 |
20020007413 | Garcia-Luna-Aceves et al. | Jan 2002 | A1 |
20020010783 | Primak et al. | Jan 2002 | A1 |
20020010798 | Ben-Shaul et al. | Jan 2002 | A1 |
20020035624 | Jun-Hyeong | Mar 2002 | A1 |
20020048269 | Hong et al. | Apr 2002 | A1 |
20020049608 | Hartsell et al. | Apr 2002 | A1 |
20020049857 | Farber et al. | Apr 2002 | A1 |
20020052942 | Swildens et al. | May 2002 | A1 |
20020062372 | Hong et al. | May 2002 | A1 |
20020068554 | Dusse | Jun 2002 | A1 |
20020069420 | Russell et al. | Jun 2002 | A1 |
20020078233 | Biliris et al. | Jun 2002 | A1 |
20020082858 | Heddaya et al. | Jun 2002 | A1 |
20020083118 | Sim | Jun 2002 | A1 |
20020083148 | Shaw et al. | Jun 2002 | A1 |
20020083178 | Brothers | Jun 2002 | A1 |
20020083198 | Kim et al. | Jun 2002 | A1 |
20020087374 | Boubez et al. | Jul 2002 | A1 |
20020091786 | Yamaguchi et al. | Jul 2002 | A1 |
20020091801 | Lewin et al. | Jul 2002 | A1 |
20020092026 | Janniello et al. | Jul 2002 | A1 |
20020099616 | Sweldens | Jul 2002 | A1 |
20020099850 | Farber et al. | Jul 2002 | A1 |
20020101836 | Dorenbosch | Aug 2002 | A1 |
20020103820 | Cartmell et al. | Aug 2002 | A1 |
20020103972 | Satran et al. | Aug 2002 | A1 |
20020107944 | Bai et al. | Aug 2002 | A1 |
20020112049 | Elnozahy et al. | Aug 2002 | A1 |
20020116481 | Lee | Aug 2002 | A1 |
20020116491 | Boyd et al. | Aug 2002 | A1 |
20020116582 | Copeland et al. | Aug 2002 | A1 |
20020120666 | Landsman et al. | Aug 2002 | A1 |
20020120782 | Dillon et al. | Aug 2002 | A1 |
20020124047 | Gartner et al. | Sep 2002 | A1 |
20020124098 | Shaw | Sep 2002 | A1 |
20020129123 | Johnson et al. | Sep 2002 | A1 |
20020131428 | Pecus et al. | Sep 2002 | A1 |
20020133741 | Maeda et al. | Sep 2002 | A1 |
20020135611 | Deosaran et al. | Sep 2002 | A1 |
20020138286 | Engstrom | Sep 2002 | A1 |
20020138437 | Lewin et al. | Sep 2002 | A1 |
20020138443 | Schran et al. | Sep 2002 | A1 |
20020143675 | Orshan | Oct 2002 | A1 |
20020143989 | Huitema et al. | Oct 2002 | A1 |
20020145993 | Chowdhury et al. | Oct 2002 | A1 |
20020147770 | Tang | Oct 2002 | A1 |
20020147774 | Lisiecki et al. | Oct 2002 | A1 |
20020150094 | Cheng et al. | Oct 2002 | A1 |
20020150276 | Chang | Oct 2002 | A1 |
20020152326 | Orshan | Oct 2002 | A1 |
20020154157 | Sherr et al. | Oct 2002 | A1 |
20020156884 | Bertram et al. | Oct 2002 | A1 |
20020156911 | Croman et al. | Oct 2002 | A1 |
20020161745 | Call | Oct 2002 | A1 |
20020161767 | Shapiro et al. | Oct 2002 | A1 |
20020163882 | Bornstein et al. | Nov 2002 | A1 |
20020165912 | Wenocur et al. | Nov 2002 | A1 |
20020169890 | Beaumont et al. | Nov 2002 | A1 |
20020184368 | Wang | Dec 2002 | A1 |
20020188722 | Banerjee et al. | Dec 2002 | A1 |
20020194324 | Guha | Dec 2002 | A1 |
20020194382 | Kausik et al. | Dec 2002 | A1 |
20020198953 | O'Rourke et al. | Dec 2002 | A1 |
20030002484 | Freedman | Jan 2003 | A1 |
20030005111 | Allan | Jan 2003 | A1 |
20030007482 | Khello et al. | Jan 2003 | A1 |
20030009488 | Hart, III | Jan 2003 | A1 |
20030009591 | Hayball et al. | Jan 2003 | A1 |
20030026410 | Lumsden | Feb 2003 | A1 |
20030028642 | Agarwal et al. | Feb 2003 | A1 |
20030033283 | Evans et al. | Feb 2003 | A1 |
20030037108 | Peiffer et al. | Feb 2003 | A1 |
20030037139 | Shteyn | Feb 2003 | A1 |
20030041094 | Lara et al. | Feb 2003 | A1 |
20030046343 | Krishnamurthy et al. | Mar 2003 | A1 |
20030065739 | Shnier | Apr 2003 | A1 |
20030070096 | Pazi et al. | Apr 2003 | A1 |
20030074401 | Connell et al. | Apr 2003 | A1 |
20030074471 | Anderson et al. | Apr 2003 | A1 |
20030074472 | Lucco et al. | Apr 2003 | A1 |
20030079027 | Slocom Be et al. | Apr 2003 | A1 |
20030093523 | Cranor et al. | May 2003 | A1 |
20030099202 | Lear et al. | May 2003 | A1 |
20030099237 | Mitra et al. | May 2003 | A1 |
20030101278 | Garcia-Luna-Aceves et al. | May 2003 | A1 |
20030112792 | Cranor et al. | Jun 2003 | A1 |
20030120741 | Wu et al. | Jun 2003 | A1 |
20030126387 | Watanabe | Jul 2003 | A1 |
20030133554 | Nykanen et al. | Jul 2003 | A1 |
20030135467 | Okamoto | Jul 2003 | A1 |
20030135509 | Davis et al. | Jul 2003 | A1 |
20030140087 | Lincoln et al. | Jul 2003 | A1 |
20030145038 | Tariq et al. | Jul 2003 | A1 |
20030145066 | Okada et al. | Jul 2003 | A1 |
20030149581 | Chaudhri et al. | Aug 2003 | A1 |
20030154239 | Davis et al. | Aug 2003 | A1 |
20030154284 | Bernardin et al. | Aug 2003 | A1 |
20030163722 | Anderson, IV | Aug 2003 | A1 |
20030172145 | Nguyen | Sep 2003 | A1 |
20030172183 | Anderson, IV et al. | Sep 2003 | A1 |
20030172291 | Judge et al. | Sep 2003 | A1 |
20030174648 | Wang et al. | Sep 2003 | A1 |
20030177321 | Watanabe | Sep 2003 | A1 |
20030182305 | Balva et al. | Sep 2003 | A1 |
20030182413 | Allen et al. | Sep 2003 | A1 |
20030182447 | Schilling | Sep 2003 | A1 |
20030187935 | Agarwalla et al. | Oct 2003 | A1 |
20030187970 | Chase et al. | Oct 2003 | A1 |
20030191822 | Leighton et al. | Oct 2003 | A1 |
20030200394 | Ashmore et al. | Oct 2003 | A1 |
20030204602 | Hudson et al. | Oct 2003 | A1 |
20030229682 | Day | Dec 2003 | A1 |
20030233423 | Dilley et al. | Dec 2003 | A1 |
20030233445 | Levy et al. | Dec 2003 | A1 |
20030233455 | Leber et al. | Dec 2003 | A1 |
20030236700 | Arning et al. | Dec 2003 | A1 |
20030236779 | Choi et al. | Dec 2003 | A1 |
20040003032 | Ma et al. | Jan 2004 | A1 |
20040010562 | Itonaga | Jan 2004 | A1 |
20040010563 | Forte et al. | Jan 2004 | A1 |
20040010588 | Slater et al. | Jan 2004 | A1 |
20040010601 | Afergan | Jan 2004 | A1 |
20040010621 | Afergan et al. | Jan 2004 | A1 |
20040015584 | Cartmell et al. | Jan 2004 | A1 |
20040019518 | Abraham et al. | Jan 2004 | A1 |
20040024841 | Becker et al. | Feb 2004 | A1 |
20040030620 | Benjamin et al. | Feb 2004 | A1 |
20040034744 | Karlsson et al. | Feb 2004 | A1 |
20040039798 | Hotz et al. | Feb 2004 | A1 |
20040044731 | Chen et al. | Mar 2004 | A1 |
20040044791 | Pouzzner | Mar 2004 | A1 |
20040054757 | Ueda et al. | Mar 2004 | A1 |
20040059805 | Dinker et al. | Mar 2004 | A1 |
20040064335 | Yang | Apr 2004 | A1 |
20040064501 | Jan et al. | Apr 2004 | A1 |
20040068542 | Lalonde et al. | Apr 2004 | A1 |
20040073596 | Kloninger et al. | Apr 2004 | A1 |
20040073707 | Dillon | Apr 2004 | A1 |
20040073867 | Kausik et al. | Apr 2004 | A1 |
20040078468 | Hedin et al. | Apr 2004 | A1 |
20040078487 | Cernohous et al. | Apr 2004 | A1 |
20040083283 | Sundaram et al. | Apr 2004 | A1 |
20040083307 | Uysal | Apr 2004 | A1 |
20040117455 | Kaminksy et al. | Jun 2004 | A1 |
20040128344 | Trossen | Jul 2004 | A1 |
20040128346 | Melamed et al. | Jul 2004 | A1 |
20040148520 | Talpade et al. | Jul 2004 | A1 |
20040167981 | Douglas et al. | Aug 2004 | A1 |
20040167982 | Cohen et al. | Aug 2004 | A1 |
20040172466 | Douglas et al. | Sep 2004 | A1 |
20040184456 | Binding et al. | Sep 2004 | A1 |
20040194085 | Beaubien et al. | Sep 2004 | A1 |
20040194102 | Neerdaels | Sep 2004 | A1 |
20040203630 | Wang | Oct 2004 | A1 |
20040205149 | Dillon et al. | Oct 2004 | A1 |
20040205162 | Parikh | Oct 2004 | A1 |
20040215823 | Kleinfelter et al. | Oct 2004 | A1 |
20040221019 | Swildens et al. | Nov 2004 | A1 |
20040221034 | Kausik et al. | Nov 2004 | A1 |
20040246948 | Lee et al. | Dec 2004 | A1 |
20040249939 | Amini et al. | Dec 2004 | A1 |
20040249971 | Klinker | Dec 2004 | A1 |
20040249975 | Tuck et al. | Dec 2004 | A1 |
20040250119 | Shelest et al. | Dec 2004 | A1 |
20040254921 | Cohen et al. | Dec 2004 | A1 |
20040267906 | Truty | Dec 2004 | A1 |
20040267907 | Gustafsson | Dec 2004 | A1 |
20050010653 | McCanne | Jan 2005 | A1 |
20050021706 | Maggi et al. | Jan 2005 | A1 |
20050021862 | Schroeder et al. | Jan 2005 | A1 |
20050027882 | Sullivan et al. | Feb 2005 | A1 |
20050038967 | Umbehocker et al. | Feb 2005 | A1 |
20050044270 | Grove et al. | Feb 2005 | A1 |
20050102683 | Branson et al. | May 2005 | A1 |
20050108169 | Balasubramanian et al. | May 2005 | A1 |
20050108262 | Fawcett | May 2005 | A1 |
20050108529 | Juneau | May 2005 | A1 |
20050114296 | Farber et al. | May 2005 | A1 |
20050117717 | Lumsden | Jun 2005 | A1 |
20050132083 | Raciborski et al. | Jun 2005 | A1 |
20050147088 | Bao et al. | Jul 2005 | A1 |
20050157712 | Rangarajan et al. | Jul 2005 | A1 |
20050160133 | Greenlee et al. | Jul 2005 | A1 |
20050163168 | Sheth et al. | Jul 2005 | A1 |
20050168782 | Kobashi et al. | Aug 2005 | A1 |
20050171959 | Deforche et al. | Aug 2005 | A1 |
20050172080 | Miyauchi | Aug 2005 | A1 |
20050181769 | Kogawa | Aug 2005 | A1 |
20050188073 | Nakamichi et al. | Aug 2005 | A1 |
20050192008 | Desai et al. | Sep 2005 | A1 |
20050198170 | Lemay et al. | Sep 2005 | A1 |
20050198334 | Farber et al. | Sep 2005 | A1 |
20050198453 | Osaki | Sep 2005 | A1 |
20050198571 | Kramer et al. | Sep 2005 | A1 |
20050216483 | Armstrong et al. | Sep 2005 | A1 |
20050216569 | Coppola et al. | Sep 2005 | A1 |
20050216674 | Robbin et al. | Sep 2005 | A1 |
20050223095 | Volz et al. | Oct 2005 | A1 |
20050228856 | Swildens et al. | Oct 2005 | A1 |
20050229119 | Torvinen | Oct 2005 | A1 |
20050232165 | Brawn et al. | Oct 2005 | A1 |
20050234864 | Shapiro | Oct 2005 | A1 |
20050240574 | Challenger et al. | Oct 2005 | A1 |
20050256880 | Nam Koong et al. | Nov 2005 | A1 |
20050259645 | Chen et al. | Nov 2005 | A1 |
20050259672 | Eduri | Nov 2005 | A1 |
20050262248 | Jennings, III et al. | Nov 2005 | A1 |
20050266835 | Agrawal et al. | Dec 2005 | A1 |
20050267937 | Daniels et al. | Dec 2005 | A1 |
20050267991 | Huitema et al. | Dec 2005 | A1 |
20050267992 | Huitema et al. | Dec 2005 | A1 |
20050267993 | Huitema et al. | Dec 2005 | A1 |
20050278259 | Gunaseelan et al. | Dec 2005 | A1 |
20050283759 | Peteanu et al. | Dec 2005 | A1 |
20050283784 | Suzuki | Dec 2005 | A1 |
20060013158 | Ahuja et al. | Jan 2006 | A1 |
20060020596 | Liu et al. | Jan 2006 | A1 |
20060020684 | Mukherjee et al. | Jan 2006 | A1 |
20060020714 | Girouard et al. | Jan 2006 | A1 |
20060020715 | Jungck | Jan 2006 | A1 |
20060021001 | Giles et al. | Jan 2006 | A1 |
20060026067 | Nicholas et al. | Feb 2006 | A1 |
20060026154 | Altinel et al. | Feb 2006 | A1 |
20060031239 | Koenig | Feb 2006 | A1 |
20060031319 | Nelson et al. | Feb 2006 | A1 |
20060031503 | Gilbert | Feb 2006 | A1 |
20060034494 | Holloran | Feb 2006 | A1 |
20060036720 | Faulk, Jr. | Feb 2006 | A1 |
20060036966 | Yevdayev | Feb 2006 | A1 |
20060037037 | Miranz | Feb 2006 | A1 |
20060039352 | Karstens | Feb 2006 | A1 |
20060041614 | Oe | Feb 2006 | A1 |
20060045005 | Blackmore et al. | Mar 2006 | A1 |
20060047787 | Aggarwal et al. | Mar 2006 | A1 |
20060047813 | Aggarwal et al. | Mar 2006 | A1 |
20060059246 | Grove | Mar 2006 | A1 |
20060063534 | Kokkonen et al. | Mar 2006 | A1 |
20060064476 | Decasper et al. | Mar 2006 | A1 |
20060064500 | Roth et al. | Mar 2006 | A1 |
20060070060 | Tantawi et al. | Mar 2006 | A1 |
20060074750 | Clark et al. | Apr 2006 | A1 |
20060075084 | Lyon | Apr 2006 | A1 |
20060075139 | Jungck | Apr 2006 | A1 |
20060083165 | McLane et al. | Apr 2006 | A1 |
20060085536 | Meyer et al. | Apr 2006 | A1 |
20060088026 | Mazur et al. | Apr 2006 | A1 |
20060107036 | Randle et al. | May 2006 | A1 |
20060112066 | Hamzy | May 2006 | A1 |
20060112176 | Liu et al. | May 2006 | A1 |
20060120385 | Atchison et al. | Jun 2006 | A1 |
20060129665 | Toebes et al. | Jun 2006 | A1 |
20060136453 | Kwan | Jun 2006 | A1 |
20060143293 | Freedman | Jun 2006 | A1 |
20060146820 | Friedman et al. | Jul 2006 | A1 |
20060149529 | Nguyen et al. | Jul 2006 | A1 |
20060155823 | Tran et al. | Jul 2006 | A1 |
20060155862 | Kathi et al. | Jul 2006 | A1 |
20060161541 | Cencini | Jul 2006 | A1 |
20060165051 | Banerjee et al. | Jul 2006 | A1 |
20060168088 | Leighton et al. | Jul 2006 | A1 |
20060173957 | Robinson | Aug 2006 | A1 |
20060179080 | Meek et al. | Aug 2006 | A1 |
20060184936 | Abels et al. | Aug 2006 | A1 |
20060190605 | Franz et al. | Aug 2006 | A1 |
20060193247 | Naseh et al. | Aug 2006 | A1 |
20060195866 | Thukral | Aug 2006 | A1 |
20060206568 | Verma et al. | Sep 2006 | A1 |
20060206586 | Ling et al. | Sep 2006 | A1 |
20060218256 | Farber et al. | Sep 2006 | A1 |
20060218304 | Mukherjee et al. | Sep 2006 | A1 |
20060224752 | Parekh et al. | Oct 2006 | A1 |
20060227740 | McLaughlin et al. | Oct 2006 | A1 |
20060227758 | Rana et al. | Oct 2006 | A1 |
20060230137 | Gare et al. | Oct 2006 | A1 |
20060230265 | Krishna | Oct 2006 | A1 |
20060233155 | Srivastava | Oct 2006 | A1 |
20060253546 | Chang et al. | Nov 2006 | A1 |
20060253609 | Andreev et al. | Nov 2006 | A1 |
20060259581 | Piersol | Nov 2006 | A1 |
20060259690 | Vittal et al. | Nov 2006 | A1 |
20060259984 | Juneau | Nov 2006 | A1 |
20060265497 | Ohata et al. | Nov 2006 | A1 |
20060265508 | Angel et al. | Nov 2006 | A1 |
20060265516 | Schilling | Nov 2006 | A1 |
20060265720 | Cai et al. | Nov 2006 | A1 |
20060271641 | Stavrakos et al. | Nov 2006 | A1 |
20060282522 | Lewin et al. | Dec 2006 | A1 |
20060288119 | Kim et al. | Dec 2006 | A1 |
20070005689 | Leighton et al. | Jan 2007 | A1 |
20070005801 | Kumar et al. | Jan 2007 | A1 |
20070005892 | Mullender et al. | Jan 2007 | A1 |
20070011267 | Overton et al. | Jan 2007 | A1 |
20070014241 | Banerjee et al. | Jan 2007 | A1 |
20070021998 | Laithwaite et al. | Jan 2007 | A1 |
20070028001 | Phillips et al. | Feb 2007 | A1 |
20070038729 | Sullivan et al. | Feb 2007 | A1 |
20070038994 | Davis et al. | Feb 2007 | A1 |
20070041393 | Westhead et al. | Feb 2007 | A1 |
20070043859 | Ruul | Feb 2007 | A1 |
20070050522 | Grove et al. | Mar 2007 | A1 |
20070050703 | Lebel | Mar 2007 | A1 |
20070055764 | Dilley et al. | Mar 2007 | A1 |
20070061440 | Sundaram et al. | Mar 2007 | A1 |
20070064610 | Khandani | Mar 2007 | A1 |
20070076872 | Juneau | Apr 2007 | A1 |
20070086429 | Lawrence et al. | Apr 2007 | A1 |
20070094361 | Hoynowski et al. | Apr 2007 | A1 |
20070101061 | Baskaran et al. | May 2007 | A1 |
20070101377 | Six et al. | May 2007 | A1 |
20070118667 | McCarthy et al. | May 2007 | A1 |
20070118668 | McCarthy et al. | May 2007 | A1 |
20070134641 | Lieu | Jun 2007 | A1 |
20070156919 | Potti et al. | Jul 2007 | A1 |
20070162331 | Sullivan | Jul 2007 | A1 |
20070168336 | Ransil et al. | Jul 2007 | A1 |
20070168517 | Weller | Jul 2007 | A1 |
20070174426 | Swildens et al. | Jul 2007 | A1 |
20070174442 | Sherman et al. | Jul 2007 | A1 |
20070174490 | Choi et al. | Jul 2007 | A1 |
20070183342 | Wong et al. | Aug 2007 | A1 |
20070198982 | Bolan et al. | Aug 2007 | A1 |
20070204107 | Greenfield et al. | Aug 2007 | A1 |
20070208737 | Li et al. | Sep 2007 | A1 |
20070219795 | Park et al. | Sep 2007 | A1 |
20070220010 | Ertugrul | Sep 2007 | A1 |
20070233705 | Farber et al. | Oct 2007 | A1 |
20070233706 | Farber et al. | Oct 2007 | A1 |
20070233846 | Farber et al. | Oct 2007 | A1 |
20070233884 | Farber et al. | Oct 2007 | A1 |
20070243860 | Aiello et al. | Oct 2007 | A1 |
20070244964 | Challenger et al. | Oct 2007 | A1 |
20070245022 | Olliphant et al. | Oct 2007 | A1 |
20070250467 | Mesnik et al. | Oct 2007 | A1 |
20070250560 | Wein et al. | Oct 2007 | A1 |
20070250601 | Amlekar et al. | Oct 2007 | A1 |
20070250611 | Bhogal et al. | Oct 2007 | A1 |
20070253377 | Janneteau et al. | Nov 2007 | A1 |
20070255843 | Zubev | Nov 2007 | A1 |
20070263604 | Tal | Nov 2007 | A1 |
20070266113 | Koopmans et al. | Nov 2007 | A1 |
20070266311 | Westphal | Nov 2007 | A1 |
20070266333 | Cossey et al. | Nov 2007 | A1 |
20070270165 | Poosala | Nov 2007 | A1 |
20070271375 | Hwang | Nov 2007 | A1 |
20070271385 | Davis et al. | Nov 2007 | A1 |
20070271560 | Wahlert et al. | Nov 2007 | A1 |
20070271608 | Shimizu et al. | Nov 2007 | A1 |
20070280229 | Kenney | Dec 2007 | A1 |
20070288588 | Wein et al. | Dec 2007 | A1 |
20070291739 | Sullivan et al. | Dec 2007 | A1 |
20080005057 | Ozzie et al. | Jan 2008 | A1 |
20080008089 | Bornstein et al. | Jan 2008 | A1 |
20080016233 | Schneider | Jan 2008 | A1 |
20080025304 | Venkataswami et al. | Jan 2008 | A1 |
20080037536 | Padmanabhan et al. | Feb 2008 | A1 |
20080046550 | Mazur et al. | Feb 2008 | A1 |
20080046596 | Afergan et al. | Feb 2008 | A1 |
20080056207 | Eriksson et al. | Mar 2008 | A1 |
20080065724 | Seed et al. | Mar 2008 | A1 |
20080065745 | Leighton et al. | Mar 2008 | A1 |
20080071859 | Seed et al. | Mar 2008 | A1 |
20080071987 | Karn et al. | Mar 2008 | A1 |
20080072264 | Crayford | Mar 2008 | A1 |
20080082551 | Farber et al. | Apr 2008 | A1 |
20080082662 | Dandliker et al. | Apr 2008 | A1 |
20080086434 | Chesla | Apr 2008 | A1 |
20080086559 | Davis et al. | Apr 2008 | A1 |
20080086574 | Raciborski et al. | Apr 2008 | A1 |
20080092242 | Rowley | Apr 2008 | A1 |
20080101358 | Van Ewijk et al. | May 2008 | A1 |
20080103805 | Shear et al. | May 2008 | A1 |
20080104268 | Farber et al. | May 2008 | A1 |
20080109679 | Wright et al. | May 2008 | A1 |
20080114829 | Button et al. | May 2008 | A1 |
20080125077 | Velazquez et al. | May 2008 | A1 |
20080126706 | Newport et al. | May 2008 | A1 |
20080134043 | Georgis et al. | Jun 2008 | A1 |
20080140800 | Farber et al. | Jun 2008 | A1 |
20080147866 | Stolorz et al. | Jun 2008 | A1 |
20080147873 | Matsumoto | Jun 2008 | A1 |
20080155059 | Hardin et al. | Jun 2008 | A1 |
20080155061 | Afergan et al. | Jun 2008 | A1 |
20080155613 | Benya et al. | Jun 2008 | A1 |
20080155614 | Cooper et al. | Jun 2008 | A1 |
20080162667 | Verma et al. | Jul 2008 | A1 |
20080162821 | Duran et al. | Jul 2008 | A1 |
20080162843 | Davis et al. | Jul 2008 | A1 |
20080172488 | Jawahar et al. | Jul 2008 | A1 |
20080189437 | Halley | Aug 2008 | A1 |
20080201332 | Souders et al. | Aug 2008 | A1 |
20080215718 | Stolorz et al. | Sep 2008 | A1 |
20080215730 | Sundaram et al. | Sep 2008 | A1 |
20080215735 | Farber et al. | Sep 2008 | A1 |
20080215747 | Menon et al. | Sep 2008 | A1 |
20080215750 | Farber et al. | Sep 2008 | A1 |
20080215755 | Farber et al. | Sep 2008 | A1 |
20080222281 | Dilley et al. | Sep 2008 | A1 |
20080222291 | Weller et al. | Sep 2008 | A1 |
20080222295 | Robinson et al. | Sep 2008 | A1 |
20080228574 | Stewart et al. | Sep 2008 | A1 |
20080228920 | Souders et al. | Sep 2008 | A1 |
20080235400 | Slocombe et al. | Sep 2008 | A1 |
20080256087 | Piironen et al. | Oct 2008 | A1 |
20080256175 | Lee et al. | Oct 2008 | A1 |
20080263135 | Olliphant | Oct 2008 | A1 |
20080275772 | Suryanarayana et al. | Nov 2008 | A1 |
20080281946 | Swildens et al. | Nov 2008 | A1 |
20080281950 | Wald et al. | Nov 2008 | A1 |
20080288722 | Lecoq et al. | Nov 2008 | A1 |
20080301670 | Gouge et al. | Dec 2008 | A1 |
20080312766 | Couckuyt | Dec 2008 | A1 |
20080319862 | Golan et al. | Dec 2008 | A1 |
20080320123 | Houlihan et al. | Dec 2008 | A1 |
20080320269 | Houlihan et al. | Dec 2008 | A1 |
20090013063 | Soman | Jan 2009 | A1 |
20090016236 | Alcala et al. | Jan 2009 | A1 |
20090029644 | Sue et al. | Jan 2009 | A1 |
20090031367 | Sue | Jan 2009 | A1 |
20090031368 | Ling | Jan 2009 | A1 |
20090031376 | Riley et al. | Jan 2009 | A1 |
20090043900 | Barber | Feb 2009 | A1 |
20090049098 | Pickelsimer et al. | Feb 2009 | A1 |
20090063038 | Shrivathsan et al. | Mar 2009 | A1 |
20090063704 | Taylor et al. | Mar 2009 | A1 |
20090070533 | Elazary et al. | Mar 2009 | A1 |
20090083228 | Shatz et al. | Mar 2009 | A1 |
20090083279 | Hasek | Mar 2009 | A1 |
20090086728 | Gulati et al. | Apr 2009 | A1 |
20090086741 | Zhang | Apr 2009 | A1 |
20090089869 | Varghese | Apr 2009 | A1 |
20090094252 | Wong et al. | Apr 2009 | A1 |
20090103707 | McGary et al. | Apr 2009 | A1 |
20090106381 | Kasriel et al. | Apr 2009 | A1 |
20090112703 | Brown | Apr 2009 | A1 |
20090125393 | Hwang et al. | May 2009 | A1 |
20090125934 | Jones et al. | May 2009 | A1 |
20090132368 | Cotter et al. | May 2009 | A1 |
20090132648 | Swildens et al. | May 2009 | A1 |
20090138533 | Iwasaki et al. | May 2009 | A1 |
20090144411 | Winkler et al. | Jun 2009 | A1 |
20090144412 | Ferguson et al. | Jun 2009 | A1 |
20090150926 | Schlack | Jun 2009 | A1 |
20090157850 | Gagliardi et al. | Jun 2009 | A1 |
20090158163 | Stephens et al. | Jun 2009 | A1 |
20090164331 | Bishop et al. | Jun 2009 | A1 |
20090164614 | Christian et al. | Jun 2009 | A1 |
20090177667 | Ramos et al. | Jul 2009 | A1 |
20090182815 | Czechowski et al. | Jul 2009 | A1 |
20090182837 | Rogers | Jul 2009 | A1 |
20090182945 | Aviles et al. | Jul 2009 | A1 |
20090187575 | DaCosta | Jul 2009 | A1 |
20090198817 | Sundaram et al. | Aug 2009 | A1 |
20090204682 | Jeyaseelan et al. | Aug 2009 | A1 |
20090210549 | Hudson et al. | Aug 2009 | A1 |
20090233623 | Johnson | Sep 2009 | A1 |
20090241167 | Moore | Sep 2009 | A1 |
20090248697 | Richardson et al. | Oct 2009 | A1 |
20090248786 | Richardson et al. | Oct 2009 | A1 |
20090248787 | Sivasubramanian et al. | Oct 2009 | A1 |
20090248852 | Fuhrmann et al. | Oct 2009 | A1 |
20090248858 | Sivasubramanian et al. | Oct 2009 | A1 |
20090248893 | Richardson et al. | Oct 2009 | A1 |
20090249222 | Schmidt et al. | Oct 2009 | A1 |
20090253435 | Olofsson | Oct 2009 | A1 |
20090254661 | Fullagar et al. | Oct 2009 | A1 |
20090259588 | Lindsay | Oct 2009 | A1 |
20090259971 | Rankine et al. | Oct 2009 | A1 |
20090262741 | Jungck et al. | Oct 2009 | A1 |
20090271498 | Cable | Oct 2009 | A1 |
20090271577 | Campana et al. | Oct 2009 | A1 |
20090271730 | Rose et al. | Oct 2009 | A1 |
20090276771 | Nickolov et al. | Nov 2009 | A1 |
20090279444 | Ravindran et al. | Nov 2009 | A1 |
20090282038 | Subotin et al. | Nov 2009 | A1 |
20090287750 | Banavar et al. | Nov 2009 | A1 |
20090307307 | Igarashi | Dec 2009 | A1 |
20090327489 | Swildens et al. | Dec 2009 | A1 |
20090327517 | Sivasubramanian et al. | Dec 2009 | A1 |
20090327914 | Adar et al. | Dec 2009 | A1 |
20100005175 | Swildens et al. | Jan 2010 | A1 |
20100011061 | Hudson et al. | Jan 2010 | A1 |
20100011126 | Hsu et al. | Jan 2010 | A1 |
20100020699 | On | Jan 2010 | A1 |
20100023601 | Lewin et al. | Jan 2010 | A1 |
20100023621 | Ezolt et al. | Jan 2010 | A1 |
20100030662 | Klein | Feb 2010 | A1 |
20100030914 | Sparks et al. | Feb 2010 | A1 |
20100034470 | Valencia-Campo et al. | Feb 2010 | A1 |
20100036944 | Douglis et al. | Feb 2010 | A1 |
20100042725 | Jeon et al. | Feb 2010 | A1 |
20100049862 | Dixon | Feb 2010 | A1 |
20100057894 | Glasser | Mar 2010 | A1 |
20100070603 | Moss et al. | Mar 2010 | A1 |
20100082320 | Wood et al. | Apr 2010 | A1 |
20100082787 | Kommula et al. | Apr 2010 | A1 |
20100088367 | Brown et al. | Apr 2010 | A1 |
20100088405 | Huang et al. | Apr 2010 | A1 |
20100095008 | Joshi | Apr 2010 | A1 |
20100100629 | Raciborski et al. | Apr 2010 | A1 |
20100103837 | Jungck et al. | Apr 2010 | A1 |
20100111059 | Bappu et al. | May 2010 | A1 |
20100115133 | Joshi | May 2010 | A1 |
20100115342 | Shigeta et al. | May 2010 | A1 |
20100121953 | Friedman et al. | May 2010 | A1 |
20100121981 | Drako | May 2010 | A1 |
20100122069 | Gonion | May 2010 | A1 |
20100125626 | Lucas et al. | May 2010 | A1 |
20100125673 | Richardson et al. | May 2010 | A1 |
20100125675 | Richardson et al. | May 2010 | A1 |
20100131646 | Drako | May 2010 | A1 |
20100138559 | Sullivan et al. | Jun 2010 | A1 |
20100150155 | Napierala | Jun 2010 | A1 |
20100161799 | Maloo | Jun 2010 | A1 |
20100169392 | Lev Ran et al. | Jul 2010 | A1 |
20100169452 | Atluri et al. | Jul 2010 | A1 |
20100174811 | Musiri et al. | Jul 2010 | A1 |
20100192225 | Ma et al. | Jul 2010 | A1 |
20100217801 | Leighton et al. | Aug 2010 | A1 |
20100217856 | Falkena | Aug 2010 | A1 |
20100223364 | Wei | Sep 2010 | A1 |
20100226372 | Watanabe | Sep 2010 | A1 |
20100228819 | Wei | Sep 2010 | A1 |
20100257024 | Holmes et al. | Oct 2010 | A1 |
20100257266 | Holmes et al. | Oct 2010 | A1 |
20100257566 | Matila | Oct 2010 | A1 |
20100268789 | Yoo et al. | Oct 2010 | A1 |
20100268814 | Cross et al. | Oct 2010 | A1 |
20100274765 | Murphy et al. | Oct 2010 | A1 |
20100281482 | Pike et al. | Nov 2010 | A1 |
20100293296 | Hsu et al. | Nov 2010 | A1 |
20100293479 | Rousso et al. | Nov 2010 | A1 |
20100299427 | Joshi | Nov 2010 | A1 |
20100299438 | Zimmerman et al. | Nov 2010 | A1 |
20100299439 | McCarthy et al. | Nov 2010 | A1 |
20100312861 | Kolhi et al. | Dec 2010 | A1 |
20100318508 | Brewer et al. | Dec 2010 | A1 |
20100322255 | Hao et al. | Dec 2010 | A1 |
20100325365 | Colglazier et al. | Dec 2010 | A1 |
20100332595 | Fullagar et al. | Dec 2010 | A1 |
20110010244 | Hatridge | Jan 2011 | A1 |
20110029598 | Arnold et al. | Feb 2011 | A1 |
20110040893 | Karaoguz et al. | Feb 2011 | A1 |
20110051738 | Xu | Mar 2011 | A1 |
20110055386 | Middleton et al. | Mar 2011 | A1 |
20110055714 | Vemulapalli et al. | Mar 2011 | A1 |
20110055921 | Narayanaswamy et al. | Mar 2011 | A1 |
20110058675 | Brueck et al. | Mar 2011 | A1 |
20110072138 | Canturk et al. | Mar 2011 | A1 |
20110072366 | Spencer | Mar 2011 | A1 |
20110078000 | Ma et al. | Mar 2011 | A1 |
20110078230 | Sepulveda | Mar 2011 | A1 |
20110085654 | Jana et al. | Apr 2011 | A1 |
20110087769 | Holmes et al. | Apr 2011 | A1 |
20110096987 | Morales et al. | Apr 2011 | A1 |
20110113467 | Agarwal et al. | May 2011 | A1 |
20110153938 | Verzunov et al. | Jun 2011 | A1 |
20110153941 | Spatscheck et al. | Jun 2011 | A1 |
20110154318 | Oshins et al. | Jun 2011 | A1 |
20110161461 | Niven-Jenkins | Jun 2011 | A1 |
20110166935 | Armentrout et al. | Jul 2011 | A1 |
20110182290 | Perkins | Jul 2011 | A1 |
20110191445 | Dazzi | Aug 2011 | A1 |
20110191449 | Swildens et al. | Aug 2011 | A1 |
20110191459 | Joshi | Aug 2011 | A1 |
20110196892 | Xia | Aug 2011 | A1 |
20110208876 | Richardson et al. | Aug 2011 | A1 |
20110208958 | Stuedi et al. | Aug 2011 | A1 |
20110209064 | Jorgensen et al. | Aug 2011 | A1 |
20110219120 | Farber et al. | Sep 2011 | A1 |
20110219372 | Agarwal et al. | Sep 2011 | A1 |
20110238501 | Almeida | Sep 2011 | A1 |
20110238793 | Bedare et al. | Sep 2011 | A1 |
20110239215 | Sugai | Sep 2011 | A1 |
20110252142 | Richardson et al. | Oct 2011 | A1 |
20110252143 | Baumback et al. | Oct 2011 | A1 |
20110258049 | Ramer et al. | Oct 2011 | A1 |
20110258614 | Tamm | Oct 2011 | A1 |
20110270964 | Huang et al. | Nov 2011 | A1 |
20110276623 | Girbal | Nov 2011 | A1 |
20110296053 | Medved et al. | Dec 2011 | A1 |
20110302304 | Baumback et al. | Dec 2011 | A1 |
20110320522 | Endres et al. | Dec 2011 | A1 |
20110320559 | Foti | Dec 2011 | A1 |
20120011190 | Driesen et al. | Jan 2012 | A1 |
20120023090 | Holloway et al. | Jan 2012 | A1 |
20120036238 | Sundaram et al. | Feb 2012 | A1 |
20120066360 | Ghosh | Mar 2012 | A1 |
20120072600 | Richardson | Mar 2012 | A1 |
20120078998 | Son et al. | Mar 2012 | A1 |
20120079115 | Richardson et al. | Mar 2012 | A1 |
20120089972 | Scheidel et al. | Apr 2012 | A1 |
20120096065 | Suit et al. | Apr 2012 | A1 |
20120110515 | Abramoff et al. | May 2012 | A1 |
20120124184 | Sakata et al. | May 2012 | A1 |
20120131177 | Brandt et al. | May 2012 | A1 |
20120136697 | Peles et al. | May 2012 | A1 |
20120143688 | Alexander | Jun 2012 | A1 |
20120159476 | Ramteke et al. | Jun 2012 | A1 |
20120166516 | Simmons et al. | Jun 2012 | A1 |
20120169646 | Berkes et al. | Jul 2012 | A1 |
20120173677 | Richardson et al. | Jul 2012 | A1 |
20120173760 | Jog et al. | Jul 2012 | A1 |
20120179796 | Nagaraj et al. | Jul 2012 | A1 |
20120179817 | Bade et al. | Jul 2012 | A1 |
20120179839 | Raciborski et al. | Jul 2012 | A1 |
20120198043 | Hesketh et al. | Aug 2012 | A1 |
20120198071 | Black et al. | Aug 2012 | A1 |
20120224516 | Stojanovski et al. | Sep 2012 | A1 |
20120226649 | Kovacs et al. | Sep 2012 | A1 |
20120233329 | Dickinson et al. | Sep 2012 | A1 |
20120233522 | Barton et al. | Sep 2012 | A1 |
20120233668 | Leafe et al. | Sep 2012 | A1 |
20120246129 | Rothschild et al. | Sep 2012 | A1 |
20120254961 | Kim et al. | Oct 2012 | A1 |
20120257628 | Bu et al. | Oct 2012 | A1 |
20120278831 | Van Coppenolle et al. | Nov 2012 | A1 |
20120303785 | Sivasubramanian et al. | Nov 2012 | A1 |
20120303804 | Sundaram et al. | Nov 2012 | A1 |
20120311648 | Swildens et al. | Dec 2012 | A1 |
20120324089 | Joshi | Dec 2012 | A1 |
20130003735 | Chao et al. | Jan 2013 | A1 |
20130007100 | Trahan et al. | Jan 2013 | A1 |
20130007101 | Trahan et al. | Jan 2013 | A1 |
20130007102 | Trahan et al. | Jan 2013 | A1 |
20130007241 | Trahan et al. | Jan 2013 | A1 |
20130007273 | Baumback et al. | Jan 2013 | A1 |
20130019311 | Swildens et al. | Jan 2013 | A1 |
20130034099 | Hikichi et al. | Feb 2013 | A1 |
20130041872 | Aizman et al. | Feb 2013 | A1 |
20130046869 | Jenkins et al. | Feb 2013 | A1 |
20130054675 | Jenkins et al. | Feb 2013 | A1 |
20130055374 | Kustarz et al. | Feb 2013 | A1 |
20130067530 | Spektor et al. | Mar 2013 | A1 |
20130080420 | Taylor et al. | Mar 2013 | A1 |
20130080421 | Taylor et al. | Mar 2013 | A1 |
20130080576 | Taylor et al. | Mar 2013 | A1 |
20130080577 | Taylor et al. | Mar 2013 | A1 |
20130080623 | Thireault | Mar 2013 | A1 |
20130080627 | Kukreja et al. | Mar 2013 | A1 |
20130080636 | Friedman et al. | Mar 2013 | A1 |
20130086001 | Bhogal et al. | Apr 2013 | A1 |
20130117282 | Mugali, Jr. et al. | May 2013 | A1 |
20130117849 | Golshan et al. | May 2013 | A1 |
20130130221 | Kortemeyer et al. | May 2013 | A1 |
20130133057 | Yoon et al. | May 2013 | A1 |
20130151646 | Chidambaram et al. | Jun 2013 | A1 |
20130191499 | Ludin et al. | Jul 2013 | A1 |
20130198341 | Kim | Aug 2013 | A1 |
20130212300 | Eggleston et al. | Aug 2013 | A1 |
20130227165 | Liu | Aug 2013 | A1 |
20130246567 | Green et al. | Sep 2013 | A1 |
20130254269 | Sivasubramanian et al. | Sep 2013 | A1 |
20130263256 | Dickinson et al. | Oct 2013 | A1 |
20130268616 | Sakata et al. | Oct 2013 | A1 |
20130279335 | Ahmadi | Oct 2013 | A1 |
20130305046 | Mankovski et al. | Nov 2013 | A1 |
20130311583 | Humphreys et al. | Nov 2013 | A1 |
20130311605 | Richardson et al. | Nov 2013 | A1 |
20130311989 | Ota et al. | Nov 2013 | A1 |
20130318153 | Sivasubramanian et al. | Nov 2013 | A1 |
20130339429 | Richardson et al. | Dec 2013 | A1 |
20130346567 | Richardson et al. | Dec 2013 | A1 |
20140006577 | Joe et al. | Jan 2014 | A1 |
20140007239 | Sharpe et al. | Jan 2014 | A1 |
20140019605 | Boberg | Jan 2014 | A1 |
20140022951 | Lemieux | Jan 2014 | A1 |
20140036675 | Wang et al. | Feb 2014 | A1 |
20140040478 | Hsu et al. | Feb 2014 | A1 |
20140053022 | Forgette et al. | Feb 2014 | A1 |
20140059120 | Richardson et al. | Feb 2014 | A1 |
20140059198 | Richardson et al. | Feb 2014 | A1 |
20140059379 | Ren et al. | Feb 2014 | A1 |
20140075109 | Richardson et al. | Mar 2014 | A1 |
20140082165 | Marr et al. | Mar 2014 | A1 |
20140082614 | Klein et al. | Mar 2014 | A1 |
20140089917 | Attalla et al. | Mar 2014 | A1 |
20140108672 | Ou et al. | Apr 2014 | A1 |
20140122698 | Batrouni et al. | May 2014 | A1 |
20140122725 | Batrouni et al. | May 2014 | A1 |
20140137111 | Dees, Jr. et al. | May 2014 | A1 |
20140143320 | Sivasubramanian et al. | May 2014 | A1 |
20140149601 | Carney et al. | May 2014 | A1 |
20140164817 | Bartholomy et al. | Jun 2014 | A1 |
20140165061 | Greene et al. | Jun 2014 | A1 |
20140215019 | Ahrens | Jul 2014 | A1 |
20140257891 | Richardson et al. | Sep 2014 | A1 |
20140280679 | Dey et al. | Sep 2014 | A1 |
20140297870 | Eggleston et al. | Oct 2014 | A1 |
20140310402 | Giaretta et al. | Oct 2014 | A1 |
20140310811 | Hentunen | Oct 2014 | A1 |
20140325155 | Marshall et al. | Oct 2014 | A1 |
20140331328 | Wang et al. | Nov 2014 | A1 |
20140337472 | Newton et al. | Nov 2014 | A1 |
20140365666 | Richardson et al. | Dec 2014 | A1 |
20150006615 | Wainner et al. | Jan 2015 | A1 |
20150019686 | Backholm | Jan 2015 | A1 |
20150026407 | Mclellan et al. | Jan 2015 | A1 |
20150067171 | Yum | Mar 2015 | A1 |
20150074228 | Drake | Mar 2015 | A1 |
20150081842 | Richardson et al. | Mar 2015 | A1 |
20150088972 | Brand et al. | Mar 2015 | A1 |
20150089621 | Khalid | Mar 2015 | A1 |
20150154051 | Kruglick | Jun 2015 | A1 |
20150156279 | Vaswani et al. | Jun 2015 | A1 |
20150172379 | Richardson et al. | Jun 2015 | A1 |
20150172407 | MacCarthaigh et al. | Jun 2015 | A1 |
20150172414 | Richardson et al. | Jun 2015 | A1 |
20150172415 | Richardson et al. | Jun 2015 | A1 |
20150180988 | Sivasubramanian et al. | Jun 2015 | A1 |
20150188734 | Petrov | Jul 2015 | A1 |
20150188994 | Marshall et al. | Jul 2015 | A1 |
20150189042 | Sun et al. | Jul 2015 | A1 |
20150195244 | Richardson et al. | Jul 2015 | A1 |
20150207733 | Richardson et al. | Jul 2015 | A1 |
20150215270 | Sivasubramanian et al. | Jul 2015 | A1 |
20150215656 | Pulung et al. | Jul 2015 | A1 |
20150229710 | Sivasubramanian et al. | Aug 2015 | A1 |
20150244580 | Saavedra | Aug 2015 | A1 |
20150249579 | Ellsworth et al. | Sep 2015 | A1 |
20150256647 | Richardson et al. | Sep 2015 | A1 |
20150288647 | Chhabra et al. | Oct 2015 | A1 |
20150319194 | Richardson et al. | Nov 2015 | A1 |
20150319260 | Watson | Nov 2015 | A1 |
20150334082 | Richardson et al. | Nov 2015 | A1 |
20160006672 | Saavedra | Jan 2016 | A1 |
20160021197 | Pogrebinsky et al. | Jan 2016 | A1 |
20160026568 | Marshall et al. | Jan 2016 | A1 |
20160028644 | Richardson et al. | Jan 2016 | A1 |
20160028755 | Vasseur et al. | Jan 2016 | A1 |
20160036857 | Foxhoven et al. | Feb 2016 | A1 |
20160041910 | Richardson et al. | Feb 2016 | A1 |
20160065665 | Richardson et al. | Mar 2016 | A1 |
20160072669 | Saavedra | Mar 2016 | A1 |
20160072720 | Richardson et al. | Mar 2016 | A1 |
20160088118 | Sivasubramanian et al. | Mar 2016 | A1 |
20160132600 | Woodhead et al. | May 2016 | A1 |
20160134492 | Ellsworth et al. | May 2016 | A1 |
20160142367 | Richardson et al. | May 2016 | A1 |
20160182454 | Phonsa et al. | Jun 2016 | A1 |
20160182542 | Staniford | Jun 2016 | A1 |
20160205062 | Mosert | Jul 2016 | A1 |
20160241637 | Marr et al. | Aug 2016 | A1 |
20160241639 | Brookins et al. | Aug 2016 | A1 |
20160241651 | Sivasubramanian et al. | Aug 2016 | A1 |
20160294678 | Khakpour et al. | Oct 2016 | A1 |
20160308959 | Richardson et al. | Oct 2016 | A1 |
20170041428 | Katsev | Feb 2017 | A1 |
20170085495 | Richardson et al. | Mar 2017 | A1 |
20170126557 | Richardson et al. | May 2017 | A1 |
20170126796 | Hollis et al. | May 2017 | A1 |
20170142062 | Richardson et al. | May 2017 | A1 |
20170153980 | Araújo et al. | Jun 2017 | A1 |
20170155678 | Araújo et al. | Jun 2017 | A1 |
20170180217 | Puchala et al. | Jun 2017 | A1 |
20170180267 | Puchala et al. | Jun 2017 | A1 |
20170214755 | Sivasubramanian et al. | Jul 2017 | A1 |
20170250821 | Richardson et al. | Aug 2017 | A1 |
20170257340 | Richardson et al. | Sep 2017 | A1 |
20170353395 | Richardson et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2741 895 | May 2010 | CA |
1422468 | Jun 2003 | CN |
1511399 | Jul 2004 | CN |
1605182 | Apr 2005 | CN |
101189598 | May 2008 | CN |
101460907 | Jun 2009 | CN |
103731481 | Apr 2014 | CN |
1603307 | Dec 2005 | EP |
1351141 | Oct 2007 | EP |
2008167 | Dec 2008 | EP |
3156911 | Apr 2017 | EP |
07-141305 | Jun 1995 | JP |
2001-0506093 | May 2001 | JP |
2001-249907 | Sep 2001 | JP |
2002-024192 | Jan 2002 | JP |
2002-044137 | Feb 2002 | JP |
2002-323986 | Nov 2002 | JP |
2003-167810 | Jun 2003 | JP |
2003-167813 | Jun 2003 | JP |
2003-522358 | Jul 2003 | JP |
2003188901 | Jul 2003 | JP |
2004-070935 | Mar 2004 | JP |
2004-532471 | Oct 2004 | JP |
2004-533738 | Nov 2004 | JP |
2005-537687 | Dec 2005 | JP |
2007-133896 | May 2007 | JP |
2007-207225 | Aug 2007 | JP |
2008-515106 | May 2008 | JP |
2009-071538 | Apr 2009 | JP |
2012-509623 | Apr 2012 | JP |
2012-209623 | Oct 2012 | JP |
WO 2002069608 | Sep 2002 | WO |
WO 2005071560 | Aug 2005 | WO |
WO 2007007960 | Jan 2007 | WO |
WO 2007126837 | Nov 2007 | WO |
WO 2009124006 | Oct 2009 | WO |
WO 2010002603 | Jan 2010 | WO |
WO 2012044587 | Apr 2012 | WO |
WO 2012065641 | May 2012 | WO |
WO 2014047073 | Mar 2014 | WO |
WO 2017106455 | Jun 2017 | WO |
Entry |
---|
Kenshi, P., “Help File Library: Iptables Basics,” Justlinux, retrieved Dec. 1, 2005, from http://www.justlinux.com/nhf/Security/Iptables_Basics.html, 4 pages. |
Office Action in Japanese Application No. 2014-225580 dated Oct. 26, 2015. |
Second Office Action in Chinese Application No. 201180046104.0 dated Sep. 29, 2015. |
Office Action in Canadian Application No. 2816612 dated Nov. 3, 2015. |
Office Action in Japanese Application No. 2011-502139 dated Aug. 17, 2015. |
Third Office Action in Chinese Application No. 201180046104.0 dated Apr. 14, 2016. |
Office Action in Japanese Application No. 2015-533132 dated Apr. 25, 2016. |
Office Action in Canadian Application No. 2884796 dated Apr. 28, 2016. |
Office Action in Japanese Application No. 2015-075644 dated Apr. 5, 2016 in 8 pages. |
Sharif et al, “Secure In-VM Monitoring Using Hardware Virtualization”, Microsoft, Oct. 2009 http://research.microsoft.com/pubs/153179/sim-ccs09.pdf; 11 pages. |
Second Office Action in Chinese Application No. 201180053405.6 dated Dec. 4, 2015. |
Office Action in European Application No. 07754164.7 dated Dec. 14, 2015. |
Canonical Name (CNAME) DNS Records, domainavenue.com, Feb. 1, 2001, XP055153783, Retrieved from the Internet: URL:http://www.domainavenue.com/cname.htm [retrieved on Nov. 18, 2014]. |
“Content delivery network”, Wikipedia, the free encyclopedia, Retrieved from the Internet: URL:http://en.wikipedia.org/w/index.php?title=Contentdelivery network&oldid=601009970, XP055153445, Mar. 24, 2008. |
“Global Server Load Balancing with ServerIron,” Foundry Networks, retrieved Aug. 30, 2007, from http://www.foundrynet.com/pdf/an-global-server-load-bal.pdf, 7 pages. |
“Grid Computing Solutions,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/software/grid, 3 pages. |
“Grid Offerings,” Java.net, retrieved May 3, 2006, from http://wiki.java.net/bin/view/Sungrid/OtherGridOfferings, 8 pages. |
“Recent Advances Boost System Virtualization,” eWeek.com, retrieved from May 3, 2006, http://www.eWeek.com/article2/0,1895,1772626,00.asp, 5 pages. |
“Scaleable Trust of Next Generation Management (STRONGMAN),” retrieved May 17, 2006, from http://www.cis.upenn.edu/˜dsl/STRONGMAN/, 4 pages. |
“Sun EDA Compute Ranch,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://sun.com/processors/ranch/brochure.pdf, 2 pages. |
“Sun Microsystems Accelerates UltraSP ARC Processor Design Program With New Burlington, Mass. Compute Ranch,” Nov. 6, 2002, Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/smi/Press/sunflash/2002-11/sunflash.20021106.3.xml, 2 pages. |
“Sun N1 Grid Engine 6,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/software/gridware/index.xml, 3 pages. |
“Sun Opens New Processor Design Compute Ranch,” Nov. 30, 2001, Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/smi/Press/sunflash/2001-11/sunflash.20011130.1.xml, 3 pages. |
“The Softricity Desktop,” Softricity, Inc., retrieved May 3, 2006, from http://www.softricity.com/products/, 3 pages. |
“Xen—The Xen virtual Machine Monitor,” University of Cambridge Computer Laboratory, retrieved Nov. 8, 2005, from http://www.cl.cam.ac.uk/Research/SRG/netos/xen/, 2 pages. |
“XenFaq,” retrieved Nov. 8, 2005, from http://wiki.xensource.com/xenwiki/XenFaq?action=print, 9 pages. |
Abi et al., “A Business Driven Management Framework for Utility Computing Environments,” Oct. 12, 2004, HP Laboratories Bristol, HPL-2004-171, retrieved Aug. 30, 2007, from http://www.hpl.hp.com/techreports/2004/HPL-2004-171.pdf 14 pages. |
American Bar Association; Digital Signature Guidelines Tutorial [online]; Feb. 10, 2002 [retrieved on Mar. 2, 2010]; American Bar Association Section of Science and Technology Information Security Committee; Retrieved from the internet: (URL: http://web.archive.org/web/20020210124615/www.abanet.org/scitech/ec/isc/dsg-tutorial.html; pp. 1-8. |
Baglioni et al., “Preprocessing and Mining Web Log Data for Web Personalization”, LNAI 2829, 2003, pp. 237-249. |
Barbir et al., “Known Content Network (CN) Request-Routing Mechanisms”, Request for Comments 3568, [online], IETF, Jul. 2003, [retrieved on Feb. 26, 2013], Retrieved from the Internet: (URL: http://tools.ietf.org/rfc/rfc3568.txt). |
Bellovin “Distributed Firewalls,”;login;:37-39, Nov. 1999, http://www.cs.columbia.edu/-smb/papers/distfw. html, 10 pages, retrieved Nov. 11, 2005. |
Blaze “Using the KeyNote Trust Management System,” Mar. 1, 2001, from http://www.crypto.com/trustmgt/kn.html, 4 pages, retrieved May 17, 2006. |
Brenton “What is Egress Filtering and How Can I Implement It?—Egress Filtering v 0.2,” Feb. 29, 2000, SANS Institute, http://www.sans.org/infosecFAQ/firewall/egress.htm, 6 pages. |
Byun et al., “A Dynamic Grid Services Deployment Mechanism for On-Demand Resource Provisioning”, IEEE International Symposium on Cluster Computing and the Grid:863-870, 2005. |
Chipara et al, “Realtime Power-Aware Routing in Sensor Network”, IEEE, 2006, 10 pages. |
Clark “Live Migration of Virtual Machines,” May 2005, NSDI '05: 2nd Symposium on Networked Systems Design and Implementation, Boston, MA, May 2-4, 2005, retrieved from http://www.usenix.org/events/nsdi05/tech/full_papers/clark/clark.pdf, 14 pages. |
Coulson “Network Security Iptables,” Apr. 2003, Linuxpro, Part 2, retrieved from http://davidcoulson.net/writing/Ixf/38/iptables.pdf, 4 pages. |
Coulson “Network Security Iptables,” Mar. 2003, Linuxpro, Part 1, retrieved from http://davidcoulson.net/writing/Ixf/39/iptables.pdf, 4 pages. |
Decision of Refusal in Japanese Application No. 2011-516466 dated Jan. 16, 2015. |
Decision of Rejection in Application No. 2011-502139 dated Jun. 30, 2014. |
Deleuze et al., A DNS Based Mapping Peering System for Peering CDNs, draft-deleuze-cdnp-dnsmap-peer-00.txt, Nov. 20, 2000, 20 pages. |
Demers “Epidemic Algorithms for Replicated Database Maintenance,” 1987, Proceedings of the sixth annual ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia, Canada, Aug. 10-12, 1987, 12 pages. |
Examination Report in Singapore Application No. 201006874-0 dated May 16, 2012. |
Examination Report in Singapore Application No. 201103333-9 dated Aug. 13, 2013. |
Examination Report in Singapore Application No. 201301573-0 dated Dec. 22, 2014. |
First Office Action in Canadian Application No. 2741895 dated Feb. 25, 2013. |
First Office Action in Chinese Application No. 200980111422.3 dated Apr. 13, 2012. |
First Office Action in Chinese Application No. 200980111426.1 dated Feb. 16, 2013. |
First Office Action in Chinese Application No. 200980119993.1 dated Jul. 4, 2012. |
First Office Action in Chinese Application No. 200980119995.0 dated Jul. 6, 2012. |
First Office Action in Chinese Application No. 200980145872.4 dated Nov. 29, 2012. |
First Office Action in Chinese Application No. 201180046104.0 dated Nov. 3, 2014. |
First Office Action in Japanese Application No. 2011-502138 dated Feb. 1, 2013. |
First Office Action in Japanese Application No. 2011-502139 dated Nov. 5, 2013. |
First Office Action in Japanese Application No. 2011-502140 dated Dec. 7, 2012. |
First Office Action in Japanese Application No. 2011-503091 dated Nov. 18, 2013. |
First Office Action in Japanese Application No. 2011-516466 dated Mar. 6, 2013. |
First Office Action in Japanese Application No. 2013-529454 dated Feb. 3, 2014 in 6 pages. |
First Office Action in Korean Application No. 10-2011-7002461 dated May 29, 2013. |
First Office Action is Chinese Application No. 200980125551.8 dated Jul. 4, 2012. |
First Office Action issued in Australian Application No. 2011307319 dated Mar. 6, 2014 in 5 pages. |
First Singapore Written Opinion in Application No. 201006836-9, dated Oct. 12, 2011 in 12 pages. |
Fourth Office Action in Chinese Application No. 200980111426.1 dated Jan. 15, 2015. |
Gruener “A Vision of Togetherness,” May 24, 2004, NetworkWorld, retrieved May 3, 2006, from, http://www.networkworld.com/supp/2004/ndc3/0524virt.html, 9 pages. |
Gunther et al, “Measuring Round Trip Times to determine the Distance between WLAN Nodes”,May 2005, In Proc. of Networking 2005, all pages. |
Gunther et al, “Measuring Round Trip Times to determine the Distance between WLAN Nodes”, Dec. 18, 2004, Technical University Berlin, all pages. |
International Preliminary Report on Patentability in PCT/US2007/007601 dated Sep. 30, 2008 in 8 pages. |
International Preliminary Report on Patentability in PCT/US2011/053302 dated Apr. 2, 2013. |
International Preliminary Report on Patentability in PCT/US2011/061486 dated May 22, 2013. |
International Search Report and Written Opinion in PCT/US07/07601 dated Jul. 18, 2008 in 11 pages. |
International Search Report and Written Opinion in PCT/US2011/053302 dated Nov. 28, 2011 in 11 pages. |
International Search Report and Written Opinion in PCT/US2011/061486 dated Mar. 30, 2012 in 11 pages. |
Ioannidis et al., “Implementing a Distributed Firewall,” Nov. 2000, (ACM) Proceedings of the ACM Computer and Communications Security (CCS) 2000, Athens, Greece, pp. 190-199, retrieved from http://www.cis.upenn.edu/˜dls/STRONGMAN/Papers/df.pdf, 10 pages. |
Joseph, et al., “Introduction to Grid Computing,” Apr. 16, 2004, retrieved Aug. 30, 2007, from http://www.informit.com/articles/printerfriendly.aspx?p=169508, 19 pages. |
Kalafut et al., Understanding Implications of DNS Zone Provisioning., Proceeding IMC '08 Proceedings of the 8th AMC SIGCOMM conference on Internet measurement., pp. 211-216., ACM New York, NY, USA., 2008. |
Liu et al., “Combined mining of Web server logs and web contents for classifying user navigation patterns and predicting users' future requests,” Data & Knowledge Engineering 61 (2007) pp. 304-330. |
Maesono et al., “A Local Scheduling Method considering Data Transfer in Data Grid,” Technical Report of IEICE, vol. 104, No. 692, pp. 435-440, The Institute of Electronics, Information and Communication Engineers, Japan, Feb. 2005. |
Office Action in Canadian Application No. 2726915 dated May 13, 2013. |
Office Action in Chinese Application No. 200780020255.2 dated Mar. 4, 2013. |
Office Action in Indian Application No. 3742/KOLNP/2008 dated Nov. 22, 2013. |
Office Action in Japanese Application No. 2012-052264 dated Dec. 11, 2012 in 26 pages. |
Office Action in Japanese Application No. 2013-123086 dated Apr. 15, 2014 in 3 pages. |
Office Action in Japanese Application No. 2013-123086 dated Dec. 2, 2014 in 2 pages. |
Office Action in Japanese Application No. 2013-529454 dated Mar. 9, 2015 in 8 pages. |
Office Action in Japanese Application No. 2013-540982 dated Jun. 2, 2014. |
Search Report and Written Opinion in Singapore Application No. 201103333-9 dated Nov. 19, 2012. |
Search Report and Written Opinion in Singapore Application No. 201301573-0 dated Jul. 1, 2014. |
Search Report and Written Opinion issued in Singapore Application No. 201006873-2 dated Oct. 12, 2011. |
Second Office Action in Canadian Application No. 2741895 dated Oct. 21, 2013. |
Second Office Action in Chinese Application No. 200980111426.1 dated Dec. 25, 2013. |
Second Office Action in Chinese Application No. 200980119993.1 dated Mar. 12, 2013. |
Second Office Action in Chinese Application No. 200980119995.0 dated Apr. 15, 2013. |
Second Office Action in Japanese Application No. 2011-516466 dated Mar. 17, 2014. |
Shankland “Sun to buy start-up to bolster N1 ,” Jul. 30, 2003, CNet News.com, retrieved May 3, 2006, http://news.zdnet.com/2100-3513_22-5057752.html, 8 pages. |
Singapore Examination Report in Application No. 201006837-7 dated Mar. 16, 2012. |
Singapore Written Opinion in Application No. 201006836-9, dated Apr. 30, 2012 in 10 pages. |
Singapore Written Opinion in Application No. 201006837-7, dated Oct. 12, 2011 in 11 pages. |
Singapore Written Opinion in Application No. 201006874-0, dated Oct. 12, 2011 in 10 pages. |
Strand “Adaptive distributed firewall using intrusion detection,” Nov. 1, 2004, University of Oslo Department of Informatics, retrieved Mar. 8, 2006, from http://gnist.org/˜lars/studies/master/StrandLars-master.pdf, 158 pages. |
Supplementary European Search Report in Application No. 07754164.7 dated Dec. 20, 2010 in 7 pages. |
Supplementary European Search Report in Application No. 09727694.3 dated Jan. 30, 2012 in 6 pages. |
Supplementary European Search Report in Application No. 09728756.9 dated Jan. 8, 2013. |
Supplementary European Search Report in Application No. 09729072.0 2266064 dated Dec. 10, 2014. |
Takizawa et al., “Scalable MultiReplication Framework on The Grid,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2004, No. 81, pp. 247-252, Japan, Aug. 1, 2004. |
Tan et al., “Classification: Basic Concepts, Decision Tree, and Model Evaluation”, Introduction in Data Mining; http://www-users.cs.umn.edu/˜kumar/dmbook/ch4.pdf, 2005, pp. 245-205. |
Third Office Action in Chinese Application No. 200980111426.1 dated Jul. 7, 2014. |
Third Office Action in Chinese Application No. 200980119993.1 dated Oct. 21, 2013. |
Van Renesse, “Astrolabe: A Robust and Scalable Technology for Distributed System Monitoring, Management, and Data Mining,” May 2003, ACM Transactions on Computer Systems (TOCS), 21 (2): 164-206, 43 pages. |
Vijayan “Terraspring Gives Sun's N1 a Boost,” Nov. 25, 2002, Computerworld, retrieved May 3, 2006, from http://www.computerworld.com/printthis/2002/0,4814,76159,00.html, 3 pages. |
Virtual Iron Software Home, Virtual Iron, retrieved May 3, 2006, from http://www.virtualiron.com/, 1 page. |
Waldspurger, “Spawn: A Distributed Computational Economy,” Feb. 1992, IEEE Transactions on Software Engineering, 18(2): 103-117, 15 pages. |
Watanabe, et al., “Remote Program Shipping System for GridRPC Systems,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2003, No. 102, pp. 73-78, Japan, Oct. 16, 2003. |
Written Opinion in Singapore Application No. 201303521-7 dated May 20, 2014. |
Xu et al., “Decision tree regression for soft classification of remote sensing data”, Remote Sensing of Environment 97 (2005) pp. 322-336. |
Yamagata, et al., “A virtual-machine based fast deployment tool for Grid execution environment, ” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2006, No. 20, pp. 127-132, Japan, Feb. 28, 2006. |
Zhu et al., “Utility-Driven Workload Management Using Nested Control Design,” Mar. 29, 2006, HP Laboratories Palo Alto, HPL-2005-193(R.1), retrieved Aug. 30, 2007, from http://www.hpl.hp.com/techreports/2005/HPL-2005-193R1.pdf, 9 pages. |
“Non-Final Office Action dated Jan. 3, 2012,” U.S. Appl. No. 12/652,541; dated Jan. 3, 2012; 35 pages. |
“Final Office Action dated Sep. 5, 2012,” U.S. Appl. No. 12/652,541; dated Sep. 5, 2012; 40 pages. |
“Notice of Allowance dated Jan. 4, 2013,” U.S. Appl. No. 12/652,541; dated Jan. 4, 2013; 11 pages. |
“Non-Final Office Action dated Apr. 30, 2014,” U.S. Appl. No. 13/842,970; 20 pages. |
“Final Office Action dated Aug. 19, 2014,” U.S. Appl. No. 13/842,970; 13 pages. |
“Notice of Allowance dated Dec. 5, 2014,” U.S. Appl. No. 13/842,970; 6 pages. |
Armour et al.: “A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities”; Management Science, vol. 9, No. 2 (Jan. 1963); pp. 294-309. |
Hartung et al.; Digital rights management and watermarking of multimedia content for m-commerce applications; Published in: Communications Magazine, IEEE (vol. 38, Issue: 11 ); Date of Publication: Nov. 2000; pp. 78-84; IEEE Xplore. |
Kato, Yoshinobu , Server load balancer—Difference in distribution technique and supported protocol—Focus on function to meet the needs, Nikkei Communications, Japan, Nikkei Business Publications, Inc., Mar. 20, 2000, vol. 314, pp. 114 to 123. |
Meng et al., “Improving the Scalability of Data Center Networks with Traffic-Aware Virtual Machine Placement”; Proceedings of the 29th Conference on Information Communications, INFOCOM'10, pp. 1154-1162. Piscataway, NJ. IEEE Press, 2010. |
Mulligan et al.; How DRM-based content delivery systems disrupt expectations of “personal use”; Published in: Proceeding DRM '03 Proceedings of the 3rd ACM workshop on Digital rights management; 2003; pp. 77-89; ACM Digital Library. |
Search Report for European Application No. 09839809.2 dated May 11, 2015. |
First Office Action in Chinese Application No. 201180053405.6 dated May 3, 2015. |
Office Action in Japanese Application No. 2011-516466 dated May 30, 2016. |
Office Action in Russian Application No. 2015114568 dated May 16, 2016. |
Office Action in Chinese Application No. 201310537815.9 dated Jul. 5, 2016. |
Horvath et al., “Enhancing Energy Efficiency in Multi-tier Web Server Clusters via Prioritization,” in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International , vol., No., pp. 1-6, Mar. 26-30, 2007. |
Fifth Office Action in Chinese Application No. 200980111426.1 dated Aug. 14, 2015. |
Guo, F., Understanding Memory Resource Management in Vmware vSphere 5.0, Vmware, 2011, pp. 1-29. |
Hameed, CC, “Disk Fragmentation and System Performance”, Mar. 14, 2008, 3 pages. |
Liu, “The Ultimate Guide to Preventing DNS-based DDoS Attacks”, Retrieved from http://www.infoworld.com/article/2612835/security/the-ultimate-guide-to-preventing-dns-based-ddos-attacks.html, Published Oct. 30, 2013. |
Ragan, “Three Types of DNS Attacks and How to Deal with Them”, Retrieved from http://www.csoonline.com/article/2133916/malware-cybercrime/three-types-of-dns-attacks-and-how-to-deal-with-them.html, Published Aug. 28, 2013. |
Office Action in European Application No. 11767118.0 dated Feb. 3, 2017. |
Office Action in European Application No. 09839809.2 dated Dec. 8, 2016. |
Office Action in Japanese Application No. 2014-225580 dated Oct. 3, 2016. |
Partial Supplementary Search Report in European Application No. 09826977.2 dated Oct. 4, 2016. |
Office Action in Chinese Application No. 201310717573.1 dated Jul. 29, 2016. |
Decision of Rejection in Chinese Application No. 201180046104.0 dated Oct. 17, 2016. |
Office Action in Canadian Application No. 2816612 dated Oct. 7, 2016. |
Supplementary Examination Report in Singapore Application No. 11201501987U dated May 17, 2017. |
Office Action in Chinese Application No. 201310537815.9 dated Jun. 2, 2017. |
International Search Report and Written Opinion in PCT/US/2016/ 066848 dated May 1, 2017. |
International Search Report and Written Opinion in PCT/US2017/055156 dated Dec. 13, 2017. |
Office Action in Canadian Application No. 2816612 dated Aug. 8, 2017. |