Row unit for agricultural implement

Information

  • Patent Grant
  • 10477752
  • Patent Number
    10,477,752
  • Date Filed
    Thursday, July 27, 2017
    7 years ago
  • Date Issued
    Tuesday, November 19, 2019
    5 years ago
Abstract
An agricultural row unit for use with a towing frame hitched to a tractor includes an attachment frame adapted to be rigidly connected to the towing frame, a linkage pivotably coupled to the attachment frame, and a row unit frame having a leading end pivotably coupled to the linkage to permit vertical pivoting movement of the row unit frame relative to the attachment frame. A hydraulic cylinder coupled to the attachment frame and the linkage, for urging the row unit frame downwardly toward the soil, includes a movable ram extending into the cylinder, and a hydraulic-fluid cavity within the cylinder for receiving pressurized hydraulic fluid for advancing the ram in a direction that pivots the linkage and the row unit frame downwardly toward the soil. An accumulator positioned adjacent to the hydraulic cylinder has a fluid chamber containing a diaphragm, with the portion of the chamber on one side of the diaphragm being connected to the hydraulic-fluid cavity in the hydraulic cylinder, and the portion of the chamber on the other side of the diaphragm containing a pressurized gas.
Description
TECHNICAL FIELD

The present disclosure relates generally to agricultural implements and, more particularly, to an agricultural row unit for use with agricultural implements such as planting row units.


BACKGROUND

As an agricultural planter row unit travels across fields with variable soil types, soil moisture, residue levels and topography, it is difficult to maintain constant seed depth and other parameters due to changing conditions which would ideally require varying the row unit down force pressure. For example, farming with higher residue levels also requires higher row unit down force levels as row cleaners, coulters and other attachments require applied force to keep them in the ground and at consistent depths.


At the same time, in many locations there are immoveable rocks or other obstructions at or below the soil surface which require the planter row unit to be able to quickly and freely (without undue increase in the row unit down force) rise up and over the obstruction freely and then quickly move back down, leaving a minimum amount of the row unplanted. All this must be accomplished at ground speeds of 6 mph or more. Today's planters typically include many individual row units, at times up to 120 ft wide, each of which may be encountering rocks etc. or have a need to float up or down independently.


Traditionally springs have been used to urge row units downward. Recently air bag systems have been used to overcome some of the drawbacks to air spring systems. Air systems provide a more uniform down force through the vertical range of travel, compared to springs, and are somewhat easier to adjust than springs. However due to the compressibility of air and the relatively large volumes required, changes in air pressure are very cumbersome and not adaptable to very fast change and response to in-cab controls on the go. Air bag systems typically have a very large cross-sectional area in relation to the hose feeding the air spring with pressure, which can provide a large multiplication of force and allow for relatively good isolation of one row unit relative to another. However, air bag systems typically do not allow for rapid change of the force being applied, because of the large volume of the air spring in relation to the cross section of the hose supplying the air.


Prior attempts to use devices such as combination spring/hydraulic shock absorbers do not provide ready adjustment on the go and tend to increase in force when rapidly striking a foreign object such as a rock requiring the row unit to quickly rise and come back down to resume planting. This increase in force levels can cause damage to the planter row unit components.


Some previous down-force systems use a spring and a hydraulic cylinder in series. In these systems the hydraulic cylinder does not directly control row unit down force, but rather is used to vary the amount of spring pressure applied to each unit.


Other systems use hydraulics with a central accumulator. However, with the accumulator separated from the force creating cylinder, pressure spikes can develop when hitting obstructions such as a rock at high speed since oil must be forced through hoses or tubes to the remotely located accumulator. This is especially problematic on planters having 50 or more row units.


As computers and GPS systems have allowed crop production to be managed in a location-specific way as an implement moves through the field, it has become necessary to achieve more rapid changes in the setting or adjustment of the implement. In the case of a planter row unit, it is also necessary to generate a large amount of force. Each individual planter row unit must be able to react to the soil it encounters independently of the other row units.


An air spring can allow for remote adjustment of the planter down pressure without stopping the forward motion of the implement, which is inefficient. Mechanical springs have historically required that the operator stop the implement, get out of the tractor, and make a manual adjustment. The slow rate at which an air spring system can be inflated or deflated means that even if a GPS system determines that a change needs to be made because of a programmed or sensed change in the local soil composition or conditions, by the time the pump can change the air pressure the implement has already moved too far forward of where the change needed to be made. This forces the average grid size in which active adjustments of the planter down pressure can be made to be quite large.


SUMMARY

In one embodiment, an agricultural row unit for use with a towing frame hitched to a tractor includes an attachment frame adapted to be rigidly connected to the towing frame, a linkage pivotably coupled to the attachment frame, and a row unit frame having a leading end pivotably coupled to the linkage to permit vertical pivoting movement of the row unit frame relative to the attachment frame. At least a furrow-forming device is mounted on the row unit frame. A hydraulic cylinder coupled to the attachment frame and the linkage, for urging the row unit frame downwardly toward the soil, includes a movable ram extending into the cylinder, and a hydraulic-fluid cavity within the cylinder for receiving pressurized hydraulic fluid for advancing the ram in a direction that pivots the linkage and the row unit frame downwardly toward the soil. An accumulator positioned adjacent to the hydraulic cylinder has a fluid chamber containing a diaphragm, with the portion of the chamber on one side of the diaphragm being connected to the hydraulic-fluid cavity in the hydraulic cylinder, and the portion of the chamber on the other side of the diaphragm containing a pressurized gas.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a perspective view of a planting row unit attached to a towing frame.



FIG. 2 is a partially sectioned side elevation of the planting row unit of FIG. 1 with the linkage that connects the row unit to the towing frame in a level position.



FIG. 3 is the same side elevation shown in FIG. 1 but with the linkage tilted upwardly to move the row unit to a raised position.



FIG. 4 is the same side elevation shown in FIG. 1 but with the linkage tilted downwardly to move the row unit to a lowered position.



FIG. 5 is a top plan view of the hydraulic cylinder and accumulator unit included in the row unit of FIGS. 1-4.



FIG. 6 is a vertical section taken along line 6-6 in FIG. 5.



FIG. 7 is a side elevation of the unit shown in FIGS. 5 and 6 connected to a pair of supporting elements, with the support structures and the connecting portions of the hydraulic cylinder shown in section.



FIGS. 8A and 8B are enlarged cross sectional views of the supporting structures shown in section in FIG. 7.



FIG. 9 is an enlarged perspective of the right-hand end portion of FIG. 1 with a portion of the four-bar linkage broken away to reveal the mounting of the hydraulic cylinder/accumulator unit.



FIG. 10 is a schematic diagram of a first hydraulic control system for use with the row unit of FIGS. 1-9.



FIG. 11 is a schematic diagram of a second hydraulic control system for use with the row unit of FIGS. 1-9.



FIG. 12 is a diagram illustrating one application of the hydraulic control system of FIG. 11.





DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS

Although the invention will be described in connection with certain preferred embodiments, it will be understood that the invention is not limited to those particular embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalent arrangements as may be included within the spirit and scope of the invention as defined by the appended claims.


Turning now to the drawings, a planting row unit 10 includes a furrow-opening device for the purpose of planting seed or injecting fertilizer into the soil. In the illustrated embodiment, the furrow-opening device is a V-opener 11 formed by a pair of conventional tilted discs depending from the leading end of a row unit frame 12. It will be understood that other furrow-opening devices may be used. A conventional elongated hollow towing frame 13 (typically hitched to a tractor by a draw bar) is rigidly attached to the front frame 14 of a conventional four-bar linkage assembly 15 that is part of the row unit 10. The four-bar (sometimes referred to as “parallel-bar”) linkage assembly 15 is a conventional and well known linkage used in agricultural implements to permit the raising and lowering of tools attached thereto.


As the planting row unit 10 is advanced by the tractor, the V-opener 11 penetrates the soil to form a furrow or seed slot. Other portions of the row unit 10 then deposit seed in the seed slot and fertilizer adjacent to the seed slot, and close the seed slot by distributing loosened soil into the seed slot with a pair of closing wheels 16. A gauge wheel 17 determines the planting depth for the seed and the height of introduction of fertilizer, etc. Bins 18a and 18b on the row unit carry the chemicals and seed which are directed into the soil. The planting row unit 10 is urged downwardly against the soil by its own weight, and, in addition, a hydraulic cylinder 19 is coupled between the front frame 14 (also referred to herein as “front bracket”) and the linkage assembly 15 to urge the row unit 11 downwardly with a controllable force that can be adjusted for different soil conditions. The hydraulic cylinder 19 may also be used to lift the row unit off the ground for transport by a heavier, stronger, fixed-height frame that is also used to transport large quantities of fertilizer for application via multiple row units.


The hydraulic cylinder 19 is shown in more detail in FIGS. 5 and 6. Pressurized hydraulic fluid from the tractor is supplied by a hose 20 to a port 21 that leads into a matching port 22 of a housing 23 that forms a cavity 24 of a hydraulic cylinder containing a ram 25. The housing 23 also forms a side port 26a that leads into cavity 26b that contains a gas-charged hydraulic accumulator 27. The lower end of the cavity 24 is formed by the top end surface of the ram 25, so that the hydraulic pressure exerted by the hydraulic fluid on the end surface of the ram 25 urges the ram downwardly (as viewed in FIG. 6), with a force determined by the pressure of the hydraulic fluid and the area of the exposed end surface of the ram 25. The hydraulic fluid thus urges the ram 25 in an advancing direction (see FIG. 4).


As can be seen most clearly in FIG. 9, the hydraulic cylinder 19 and the accumulator 27 are mounted as a single unit on the front frame 14, with the lower end of the ram 25 connected to a crossbar 30 that is joined at one end to a vertical link 31. The upper and lower ends of the link 31 are pivotably attached to upper and lower links 15a and 15b, respectively, on one side of the four-bar linkage 15. The other end of the crossbar 30 is angled upwardly and pivotably attached to the upper link 15c on the opposite side of the four-bar linkage 15. With this mounting arrangement, retracting movement of the ram 25 into the cavity 24 tilts the linkage assembly 15 upwardly, as depicted in FIG. 3, thereby raising the row unit. Conversely, advancing movement of the ram 25 tilts the linkage assembly 15 downwardly, as depicted in FIG. 4, thereby lowering the row unit.


The accumulator 27 includes a diaphragm 28 that divides the interior of the accumulator into a hydraulic-fluid chamber 29a and a gas-filled chamber 29b, e.g., filled with pressurized nitrogen. FIG. 2 shows the ram 25 in a position where the diaphragm 28 is not deflected in either direction, indicating that the pressures exerted on opposite sides of the diaphragm are substantially equal. In FIG. 3, the ram 25 has been retracted by upward movement of the row unit, and the diaphragm 28 is deflected downwardly by the hydraulic fluid forced into the accumulator 27 by the retracting movement of the ram 25. In FIG. 4, the ram 25 has been moved to its most advanced position, and the diaphragm 28 is deflected upwardly by the air pressure as hydraulic fluid flows from the accumulator into the cavity 24. The use of this compact hydraulic down-force unit with an integral accumulator on each row unit provides the advantages of quick response and remote adjustability of a hydraulic down-force control system. If an obstruction requires quick movement, oil can flow quickly and freely between the force cylinder and the adjacent accumulator.


As can be seen in FIG. 4, advancing movement of the ram 25 is limited by engagement of stops 41, 42 on the lower links of the four-bar linkage 15, with the row unit frame 12. This prevents any further advancement of the ram 25. Advancing movement of the ram 25 expands the size of the cavity 24 (see FIG. 4), which causes the diaphragm 28 in the accumulator 27 to deflect to the position illustrated in FIG. 4 and reduce the amount of hydraulic fluid in the accumulator 27. When the ram 25 is in this advanced position, the row unit is in its lowermost position.


In FIG. 3, the ram 25 has been withdrawn to its most retracted position, which can occur when the row unit encounters a rock or other obstruction, for example. When the ram 25 is in this retracted position, the row unit is in its uppermost position. As can be seen in FIG. 3, retracting movement of the ram 25 is limited by engagement of stops 41, on the lower links of the four-bar linkage 15, with the row unit frame 12.


Retracting movement of the ram 25 reduces the volume of the cavity 24 (see FIG. 3), which causes a portion of the fixed volume of hydraulic fluid in the cylinder 19 to flow into the chamber 29a of the accumulator 27, causing the diaphragm 28 to deflect to the position illustrated in FIG. 3. This deflection of the diaphragm 28 into the chamber 29b compresses the gas in that chamber. To enter the chamber 29a, the hydraulic fluid must flow through a port 32 in the top of the accumulator 27, which limits the rate at which the hydraulic fluid flows into the accumulator. This controlled rate of flow of the hydraulic fluid has a damping effect on the rate at which the ram 25 retracts or advances, thereby avoiding sudden large movements of the moving parts of the row unit, including the V-opener 11.


When the external obstruction causing the row unit 10 to rise is cleared, the combined effects of the pressurized gas in the accumulator 27 on the diaphragm 28 and the pressure of the hydraulic fluid return the ram 25 to a lower position. This downward force on the V-opener 11 holds it in the soil and prevents uncontrolled bouncing of the V-opener 11 over irregular terrain. The downward force applied to the V-opener 11 can be adjusted by changing the pressure of the hydraulic fluid supplied to the cylinder 19.


As can be seen in FIGS. 5 and 6, the single unitary housing 23 forms both the cavity 26b that contains the accumulator 27 and the cavity 24 of the hydraulic cylinder 19 and the fluid passageway 24 that connects the cavity 24 of the hydraulic cylinder 19 to the cavity 27 of the accumulator. By integrating the hydraulic cylinder 19 and the accumulator 27 in a single housing, there is no relative motion possible between the cylinder 19 and the accumulator 27, with minimal possibility for fluid passageways to act like orifices. The cylinder 19 and the accumulator 27 remain in fixed positions relative to each other regardless of the movements of the planter row unit via the linkage assembly 15. In this way the upward motion of the ram 25 that occurs when the planter row unit rolls over an obstruction is directly converted into compression of the gas in the accumulator 27 without restriction. It also allows the accumulator 27, which is by definition an energy storage device, to be mounted in a fully enclosed and safe housing. The accumulator 27 can be securely mounted to avoid puncture or rapid discharge (if it comes loose), or damage from hitting another part of the implement or a foreign object. The integrated cylinder and accumulator is also a convenient single package for installation and replacement and minimizes the number of hydraulic hoses and adapters (potential leakage points).



FIGS. 7, 8A and 8B illustrate in more detail how the illustrative hydraulic cylinder/accumulator unit is attached to the front frame 14 and the linkage assembly 15. The top of the unitary housing 23 forms a stem 41 that projects upwardly through a hole 51 in a bracket 50 (also referred to herein as “support bracket”) attached to the front frame 14. The outer surface of the stem 41 is threaded to receive a nut 52 that connects the housing 23 to the bracket 50. The hole 51 is oversized and a rubber washer 52a is installed on the stem 41 between the nut 52 and the bracket 50 to allow a limited amount of tilting movement of the housing relative to the bracket 50. At the base of the stem 41, beneath the bracket 50, the housing 23 forms a shoulder 42 that engages a curved bearing ring 53 that also engages a mating lower surface of a washer 54. Thus, the housing 23 can be tilted relative to the axis of the hole 51, with the shoulder 42 sliding over the lower surface of the bearing ring 53.


A similar arrangement is provided at the lower end of the ram 25, where a stem 60 extends downwardly through a hole 61 in the crossbar 30 that is pivotably attached to the linkage assembly 15. A nut 62 is threaded onto the stem 60 to connect the ram to the crossbar 30. The hole 61 is oversized and a rubber washer 62a is installed on the stem 60 between the nut 62 and the crossbar 30 to allow a limited amount of tilting movement of the ram 25 relative to the crossbar 30. Above the crossbar 30, a flange 63 on the ram 25 forms a curved conical surface 64 that engages a mating surface of a curved bearing ring 65 that also engages a mating upper surface of a washer 66. Thus, the ram 25 can be tilted relative to the axis of the hole 61, with the flange 63 sliding over the upper surface of the bearing ring 65.


The use of a hydraulic system permits on-the-go adjustments to be made very rapidly because the hydraulic fluid is incompressible and therefore acts more directly than an air system. In addition, hydraulic fluids typically operate at higher pressures, which allows for greater changes in applied forces. The accumulator 27 allows the fluid system to flex and float with the changing terrain and soil conditions. The accumulator 27 is preferably centrally mounted so that when any single row unit moves over an obstruction, the down-pressure cylinder 19 moves to displace the hydraulic fluid along a common set of lines connecting all row units. The gas in the accumulator is compressed at the same time, allowing for isolation among the row units so that upward movement of one row unit does not cause downward movement of other row units. Although the illustrative hydraulic ram is single-acting, it is also possible to use a double-acting ram, or a single-acting ram in combination with a return spring.


Another advantage of the compact hydraulic cylinder/accumulator unit is that it can conveniently mounted to the same brackets that are provided in many row units for mounting an air bag, to control the down pressure on the row unit. For example, in FIG. 9, the brackets 50 and 51 on which the hydraulic cylinder/accumulator is mounted are the brackets that are often connected to an air bag, and thus the same row unit can be used interchangeably with either an air bag or the hydraulic cylinder/accumulator to control the down pressure on the row unit.



FIG. 10 is a schematic of a hydraulic control system for supplying pressurized hydraulic fluid to the cylinders 19 of multiple row units. A source 100 of pressurized hydraulic fluid, typically located on a tractor, supplies hydraulic fluid under pressure to a valve 101 via supply line 102 and receives returned fluid through a return line 103. The valve 101 can be set by an electrical control signal Si on line 104 to deliver hydraulic fluid to an output line 105 at a desired constant pressure. The output line is connected to a manifold 106 that in turn delivers the pressurized hydraulic fluid to individual feed lines 107 connected to the ports 71 of the respective hydraulic cylinders 19 of the individual row units. With this control system, the valve 101 is turned off, preferably by a manually controlled on/off valve V, after all the cylinders 19 have been filled with pressurized hydraulic fluid, to maintain a fixed volume of fluid in each cylinder.



FIG. 11 is a schematic of a modified hydraulic control system that permits individual control of the supply of hydraulic fluid to the cylinder 19 of each separate row unit via feed lines 107 connected to the ports 71 of the respective cylinders 19. Portions of this system that are common to those of the system of FIG. 10 are identified by the same reference numbers. The difference in this system is that each separate feed line 107 leading to one of the row units is provided with a separate control valve 110 that receives its own separate control signal on a line 111 from a controller 112. This arrangement permits the supply of pressurized hydraulic fluid to each row unit to be turned off and on at different times by the separate valve 110 for each unit, with the times being controlled by the separate control signals supplied to the valves 110 by the controller 112. The individual valves 110 receive pressurized hydraulic fluid via the manifold 106, and return hydraulic fluid to a sump on the tractor via separate return line 113 connected to a return manifold 114 connected back to the hydraulic system 100 of the tractor.



FIG. 12 illustrates on application for the controllable hydraulic control system of FIG. 11. Modern agricultural equipment often includes GPS systems that enable the user to know precisely where a tractor is located in real time. Thus, when a gang of planting row units 120 towed by a tractor 121 begins to cross a headland 122 in which the rows 123 are not orthogonal to the main rows 124 of a field, each planting row unit 120 can be turned off just as it enters the headland 122, to avoid double-planting while the tractor 121 makes a turn through the headland. With the control system of FIG. 11, the hydraulic cylinder 19 of each row unit can also be separately controlled to turn off the supply of pressurized hydraulic fluid at a different time for each row unit, so that each row unit is raised just as it enters the headland, to avoid disrupting the rows already planted in the headland.


One benefit of the system of FIG. 11 is that as agricultural planters, seeders, fertilizer applicators, tillage equipment and the like become wider with more row units on each frame, often 36 30-inch rows or 54 20-inch rows on a single 90-foot wide toolbar, each row unit can float vertically independently of every other row unit. Yet the following row units still have the down force remotely adjustable from the cab of the tractor or other selected location. This permits very efficient operation of a wide planter or other agricultural machine in varying terrain without having to stop to make manual adjustment to a large number of row units, resulting in a reduction in the number of acres planted in a given time period. One of the most important factors in obtaining a maximum crop yield is timely planting. By permitting remote down force adjustment of each row unit (or group of units), including the ability to quickly release all down force and let the row cleaner quickly rise, e.g., when approaching a wet spot in the field, one can significantly increase the planter productivity or acres planted per day, thereby improving yields and reducing costs of production.


On wide planters or other equipment, at times 90 feet wide or more and planting at 6 mph or more forward speeds, one row unit must often rise or fall quickly to clear a rock or plant into an abrupt soil depression. Any resistance to quick movement results in gouging of the soil or an uncleared portion of the field and, thus, reduced yield. With the row unit having its own hydraulic accumulator, the hydraulic cylinder can move quickly and with a nearly constant down force. Oil displaced by or required by quick movement of the ram is quickly moved into or out of the closely mounted accumulator which is an integral part of each row unit. The accumulator diaphragm or piston supplies or accepts fluid as required at a relatively constant pressure and down force as selected manually or automatically by the hydraulic control system. By following the soil profile closely and leaving a more uniform surface, the toolbar-frame-mounted row unit permits the planter row unit following independently behind to use less down force for its function, resulting in more uniform seed depth control and more uniform seedling emergence. More uniform seedling stands usually result in higher yields than less uniform seedling stands produced by planters with less accurate row cleaner ground following.


The term row unit refers to a unit that is attached to a towing frame in a way that permits the unit to move vertically relative to the towing frame and other units attached to that same towing frame. Most row units are equipped to form, plant and close a single seed furrow, but row units are also made to form, plant and close two or more adjacent seed furrows.


It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiments and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims
  • 1. A downforce control system for a planter row unit, comprising: a downforce actuator associated with the planter row unit to urge the row unit downwardly with a controllable force that can be adjusted,said planter row unit producing a gauge wheel downforce during planting operations,said downforce actuator disposed to change said gauge wheel downforce when actuated;a control module for defining a desired gauge wheel downforce;a valve in fluid communication with said downforce actuator for adjusting the fluid pressure supplied to said actuator, said valve associated with the planter row unit; anda controller for adjusting the gauge wheel downforce produced by said downforce actuator.
  • 2. The downforce control system of claim 1, wherein said row unit is one of a plurality of row units each generating a gauge wheel downforce during planting operations and wherein said downforce actuator and said valve are each one of a plurality of downforce actuators and valves, each of which is associated with one of said plurality of row units.
  • 3. The downforce control system of claim 2, wherein each of said plurality of valves adjusts a pressure in one of said plurality of downforce actuators in order to adjust said gauge wheel downforce.
  • 4. The downforce control system of claim 3, further including a load sensor associated with one of said plurality of row units, said load sensor disposed to measure said gauge wheel downforce, said load sensor in electrical communication with said controller.
  • 5. The downforce control system of claim 3, wherein said valve adjusts a pressure in said downforce actuator.
  • 6. The downforce control system of claim 1, further including a transport position detector, whereby when said transport position detector detects that said planter row unit is in a transport position, said downforce actuator is prevented from actuating.
  • 7. The downforce control system of claim 6, wherein said closed-loop feedback circuit includes a control module for inputting said desired gauge wheel downforce Fd.
CROSS-REFERENCE AND CLAIM OR PRIORITY TO RELATED APPLICATION

This application is a continuation of and claims priority to U.S. patent application Ser. No. 14/824,480, filed Aug. 12, 2015, now allowed, which is a continuation of and claims priority to U.S. patent application Ser. No. 13/772,053, filed Feb. 20, 2013, now U.S. Pat. No. 9,192,089, which is a continuation of U.S. patent application Ser. No. 12/882,627, filed Sep. 15, 2010, now U.S. Pat. No. 8,544,397, each of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (453)
Number Name Date Kind
114002 Godfrey Apr 1871 A
123966 Wing Feb 1872 A
321906 McCormick Jul 1885 A
353491 Wells Feb 1886 A
523508 Bauer Jul 1894 A
736369 Dynes Aug 1903 A
803088 Barker Oct 1905 A
1069264 Keller Aug 1913 A
1134462 Kendrick Apr 1915 A
1158023 Beaver Oct 1915 A
1247744 Trimble Nov 1917 A
1260752 Casaday Mar 1918 A
1321040 Hoffman Nov 1919 A
1391593 Sweeting Sep 1921 A
1398668 Bordsen Nov 1921 A
1481981 Boye Jan 1924 A
1791462 Bermel Feb 1931 A
1844255 Kaupke Feb 1932 A
1901299 Johnson Mar 1933 A
1901778 Schlag Mar 1933 A
1938132 Broemmelsick Dec 1933 A
2014334 Johnson Sep 1935 A
2058539 Welty Oct 1936 A
2249637 Rietz Jul 1941 A
2269051 Cahoy Jan 1942 A
2285932 Leavitt Jun 1942 A
2298539 Mott Oct 1942 A
2341143 Herr Feb 1944 A
2505276 Boroski Apr 1950 A
2561763 Waters Jul 1951 A
2593176 Patterson Apr 1952 A
2596527 Bushong May 1952 A
2611306 Strehlow Sep 1952 A
2612827 Baggette Oct 1952 A
2664040 Beard Dec 1953 A
2691353 Secondo Oct 1954 A
2692544 Jessup Oct 1954 A
2715286 Saveson Aug 1955 A
2754622 Rohnert Jul 1956 A
2771044 Putifer Nov 1956 A
2773343 Oppel Dec 1956 A
2777373 Pursche Jan 1957 A
2799234 Chancey Jul 1957 A
2805574 Jackson, Jr. Sep 1957 A
2925872 Darnell Feb 1960 A
2960358 Christison Nov 1960 A
3010744 Hollis Nov 1961 A
3014547 Van der Lely Dec 1961 A
3038424 Johnson Jun 1962 A
3042121 Broetzman Jul 1962 A
3057092 Curlett Oct 1962 A
3058243 McGee Oct 1962 A
3065879 Jennings Nov 1962 A
3080004 McNair Mar 1963 A
3103993 Gies Sep 1963 A
3110973 Reynolds Nov 1963 A
3122901 Thompson Mar 1964 A
3123152 Biskis Mar 1964 A
3188989 Johnston Jun 1965 A
3213514 Evans Oct 1965 A
3250109 Spyridakis May 1966 A
3256942 Van Sickle Jun 1966 A
3314278 Bergman Apr 1967 A
3319589 Moran May 1967 A
3351139 Schmitz Nov 1967 A
3355930 Fedorov Dec 1967 A
3368788 Padula Feb 1968 A
3368789 Martin Feb 1968 A
3370450 Scheucher Feb 1968 A
3397933 Hatcher Aug 1968 A
3420273 Greer Jan 1969 A
3433474 Piret Mar 1969 A
3447495 Miller Jun 1969 A
3500937 Erickson Mar 1970 A
3507233 Greig Apr 1970 A
3539020 Andersson Nov 1970 A
3543603 Gley Dec 1970 A
3561541 Woelfel Feb 1971 A
3576098 Brewer Apr 1971 A
3581685 Taylor Jun 1971 A
3593720 Botterill Jul 1971 A
D221461 Hagenstad Aug 1971 S
3606745 Girodat Sep 1971 A
3635495 Orendorff Jan 1972 A
3650334 Hagenstad Mar 1972 A
3653446 Kalmon Apr 1972 A
3701327 Krumholz Oct 1972 A
3708019 Ryan Jan 1973 A
3711974 Webb Jan 1973 A
3718191 Williams Feb 1973 A
3749035 Cayton Jul 1973 A
3753341 Berg, Jr. Aug 1973 A
3766988 Whitesides Oct 1973 A
3774446 Diehl Nov 1973 A
3795291 Naito Mar 1974 A
3906814 Magnussen Sep 1975 A
3939846 Drozhzhin Feb 1976 A
3945532 Marks Mar 1976 A
3975890 Rodger Aug 1976 A
3986464 Uppiano Oct 1976 A
4009668 Brass Mar 1977 A
4018101 Mihalic Apr 1977 A
4044697 Swanson Aug 1977 A
4055126 Brown Oct 1977 A
4058171 Van der Lely Nov 1977 A
4063597 Day Dec 1977 A
4069029 Hudson Jan 1978 A
4096730 Martin Jun 1978 A
4099576 Jilani Jul 1978 A
4122715 Yokoyama Oct 1978 A
4129082 Betulius Dec 1978 A
4141200 Johnson Feb 1979 A
4141302 Morrison, Jr. Feb 1979 A
4141676 Jannen Feb 1979 A
4142589 Schlagenhauf Mar 1979 A
4147305 Hunt Apr 1979 A
4149475 Bailey Apr 1979 A
4157661 Schindel Jun 1979 A
4161090 Watts, Jr. Jul 1979 A
4173259 Heckenkamp Nov 1979 A
4182099 Davis Jan 1980 A
4187916 Harden Feb 1980 A
4191262 Sylvester Mar 1980 A
4194575 Whalen Mar 1980 A
4196567 Davis Apr 1980 A
4196917 Oakes Apr 1980 A
4206817 Bowerman Jun 1980 A
4208974 Dreyer Jun 1980 A
4213408 West Jul 1980 A
4225191 Knoski Sep 1980 A
4233803 Davis Nov 1980 A
4241674 Mellinger Dec 1980 A
4249613 Scribner Feb 1981 A
4280419 Fischer Jul 1981 A
4295532 Williams Oct 1981 A
4301870 Carre Nov 1981 A
4307674 Jennings Dec 1981 A
4311104 Steilen Jan 1982 A
4317355 Hatsuno Mar 1982 A
4359101 Gagnon Nov 1982 A
4375837 van der Lely Mar 1983 A
4377979 Peterson Mar 1983 A
4391335 Birkenbach Jul 1983 A
4398608 Boetto Aug 1983 A
4407371 Hohl Oct 1983 A
4407660 Nevens Oct 1983 A
4413685 Gremelspacher Nov 1983 A
4430952 Murray Feb 1984 A
4433568 Kondo Feb 1984 A
4438710 Paladino Mar 1984 A
4445445 Sterrett May 1984 A
4461355 Peterson Jul 1984 A
4481830 Smith Nov 1984 A
4499775 Lasoen Feb 1985 A
4506610 Neal Mar 1985 A
4508178 Cowell Apr 1985 A
4528920 Neumeyer Jul 1985 A
4530405 White Jul 1985 A
4537262 van der Lely Aug 1985 A
4538688 Szucs Sep 1985 A
4550122 David Oct 1985 A
4553607 Behn Nov 1985 A
4580506 Fleischer Apr 1986 A
4596200 Gafford Jun 1986 A
4598654 Robertson Jul 1986 A
4603746 Swales Aug 1986 A
4604906 Scarpa Aug 1986 A
4619329 Gorbett Oct 1986 A
4630773 Ortlip Dec 1986 A
4643043 Furuta Feb 1987 A
4646620 Buchl Mar 1987 A
4646850 Brown Mar 1987 A
4648466 Baker Mar 1987 A
4650005 Tebben Mar 1987 A
4669550 Sittre Jun 1987 A
4671193 States Jun 1987 A
4674578 Bexten Jun 1987 A
4682550 Joy Jul 1987 A
4703809 Van den Ende Nov 1987 A
4726304 Dreyer Feb 1988 A
RE32644 Brundage Apr 1988 E
4738461 Stephenson Apr 1988 A
4744316 Lienemann May 1988 A
4762075 Halford Aug 1988 A
4765190 Strubbe Aug 1988 A
4768387 Kemp Sep 1988 A
4776404 Rogers Oct 1988 A
4779684 Schultz Oct 1988 A
4785890 Martin Nov 1988 A
4825957 White May 1989 A
4825959 Wilhelm May 1989 A
4920901 Pounds May 1990 A
4926767 Thomas May 1990 A
4930431 Alexander Jun 1990 A
4986367 Kinzenbaw Jan 1991 A
4987841 Rawson Jan 1991 A
4998488 Hansson Mar 1991 A
5015997 Strubbe May 1991 A
5022333 McClure Jun 1991 A
5027525 Haukaas Jul 1991 A
5033397 Colburn, Jr. Jul 1991 A
5065632 Reuter Nov 1991 A
5074227 Schwitters Dec 1991 A
5076180 Schneider Dec 1991 A
5092255 Long Mar 1992 A
5113957 Tamai May 1992 A
5129282 Bassett Jul 1992 A
5136934 Darby, Jr. Aug 1992 A
5190112 Johnston Mar 1993 A
5224553 Heintzman Jul 1993 A
5234060 Carter Aug 1993 A
5240080 Bassett Aug 1993 A
5255617 Williams Oct 1993 A
5269237 Baker Dec 1993 A
5282389 Faivre Feb 1994 A
5285854 Thacker Feb 1994 A
5333694 Roggenbuck Aug 1994 A
5337832 Bassett Aug 1994 A
5341754 Winterton Aug 1994 A
5346019 Kinzenbaw Sep 1994 A
5346020 Bassett Sep 1994 A
5349911 Holst Sep 1994 A
5351635 Hulicsko Oct 1994 A
5379847 Snyder Jan 1995 A
5394946 Clifton Mar 1995 A
5398771 Hornung Mar 1995 A
5419402 Heintzman May 1995 A
5427192 Stephenson Jun 1995 A
5443023 Carroll Aug 1995 A
5443125 Clark Aug 1995 A
5461995 Winterton Oct 1995 A
5462124 Rawson Oct 1995 A
5473999 Rawson Dec 1995 A
5474135 Schlagel Dec 1995 A
5477682 Tobiasz Dec 1995 A
5477792 Bassett Dec 1995 A
5479868 Bassett Jan 1996 A
5479992 Bassett Jan 1996 A
5485796 Bassett Jan 1996 A
5485886 Bassett Jan 1996 A
5497717 Martin Mar 1996 A
5497837 Kehrney Mar 1996 A
5499042 Yanagawa Mar 1996 A
5499683 Bassett Mar 1996 A
5499685 Downing, Jr. Mar 1996 A
5517932 Ott May 1996 A
5524525 Nikkel Jun 1996 A
5531171 Whitesel Jul 1996 A
5542362 Bassett Aug 1996 A
5544709 Lowe Aug 1996 A
5562165 Janelle Oct 1996 A
5590611 Smith Jan 1997 A
5603269 Bassett Feb 1997 A
5623997 Rawson Apr 1997 A
5640914 Rawson Jun 1997 A
5657707 Dresher Aug 1997 A
5660126 Freed Aug 1997 A
5685245 Bassett Nov 1997 A
5704430 Smith Jan 1998 A
5709271 Bassett Jan 1998 A
5725057 Taylor Mar 1998 A
5727638 Wodrich Mar 1998 A
5730074 Peter Mar 1998 A
5809757 McLean Sep 1998 A
5852982 Peter Dec 1998 A
5868207 Langbakk Feb 1999 A
5878678 Stephens Mar 1999 A
RE36243 Rawson Jul 1999 E
5953895 Hobbs Sep 1999 A
5970891 Schlagel Oct 1999 A
5970892 Wendling Oct 1999 A
5988293 Brueggen Nov 1999 A
6067918 Kirby May 2000 A
6068061 Smith May 2000 A
6079340 Flamme Jun 2000 A
6082274 Peter Jul 2000 A
6085501 Walch Jul 2000 A
6091997 Flamme Jul 2000 A
6164385 Buchl Dec 2000 A
6176334 Lorenzen Jan 2001 B1
6223663 Wendling May 2001 B1
6223828 Paulson May 2001 B1
6237696 Mayerle May 2001 B1
6253692 Wendling Jul 2001 B1
6289829 Fish Sep 2001 B1
6295939 Emms Oct 2001 B1
6314897 Hagny Nov 2001 B1
6325156 Barry Dec 2001 B1
6330922 King Dec 2001 B1
6331142 Bischoff Dec 2001 B1
6343661 Thomspon Feb 2002 B1
6347594 Wendling Feb 2002 B1
6382326 Goins May 2002 B1
6389999 Duello May 2002 B1
6453832 Schaffert Sep 2002 B1
6454019 Prairie Sep 2002 B1
6460623 Knussman Oct 2002 B1
6516595 Rhody Feb 2003 B2
6530334 Hagny Mar 2003 B2
6575104 Brummelhuis Jun 2003 B2
6622468 Lucand Sep 2003 B2
6644224 Bassett Nov 2003 B1
6681868 Kovach Jan 2004 B2
6701856 Zoke Mar 2004 B1
6701857 Jensen Mar 2004 B1
6715433 Friestad Apr 2004 B1
6763773 Schaffert Jul 2004 B2
6786130 Steinlage Sep 2004 B2
6827029 Wendte Dec 2004 B1
6834598 Jüptner Dec 2004 B2
6840853 Foth Jan 2005 B2
6886650 Bremmer May 2005 B2
6889943 Dinh May 2005 B2
6892656 Schneider May 2005 B2
6907833 Thompson Jun 2005 B2
6912963 Bassett Jul 2005 B2
6968907 Raper Nov 2005 B1
6986313 Halford Jan 2006 B2
6997400 Hanna Feb 2006 B1
7004090 Swanson Feb 2006 B2
7044070 Kaster May 2006 B2
7063167 Staszak Jun 2006 B1
7159523 Bourgault Jan 2007 B2
7163227 Burns Jan 2007 B1
7222575 Bassett May 2007 B2
7290491 Summach Nov 2007 B2
7325756 Giorgis Feb 2008 B1
7360494 Martin Apr 2008 B2
7360495 Martin Apr 2008 B1
7438006 Mariman Oct 2008 B2
7451712 Bassett Nov 2008 B2
7497174 Sauder Mar 2009 B2
7523709 Kiest Apr 2009 B1
7540333 Bettin Jun 2009 B2
7575066 Bauer Aug 2009 B2
7584707 Sauder Sep 2009 B2
7665539 Bassett Feb 2010 B2
7673570 Bassett Mar 2010 B1
7743718 Bassett Jun 2010 B2
7870827 Bassett Jan 2011 B2
7918285 Graham Apr 2011 B1
7938074 Liu May 2011 B2
7944210 Fischer May 2011 B2
7946231 Martin May 2011 B2
7975629 Martin Jul 2011 B1
8146519 Bassett Apr 2012 B2
8151717 Bassett Apr 2012 B2
8171707 Kitchel May 2012 B2
D663326 Allensworth Jul 2012 S
8327780 Bassett Dec 2012 B2
8359988 Bassett Jan 2013 B2
8380356 Zielke Feb 2013 B1
8386137 Sauder Feb 2013 B2
8393407 Freed Mar 2013 B2
8408149 Rylander Apr 2013 B2
8544397 Bassett Oct 2013 B2
8544398 Bassett Oct 2013 B2
8550020 Sauder Oct 2013 B2
8573319 Casper Nov 2013 B1
8634992 Sauder Jan 2014 B2
8636077 Bassett Jan 2014 B2
8649930 Reeve Feb 2014 B2
8746661 Runkel Jun 2014 B2
8763713 Bassett Jul 2014 B2
8770308 Bassett Jul 2014 B2
8776702 Bassett Jul 2014 B2
RE45091 Bassett Aug 2014 E
8863857 Bassett Oct 2014 B2
8910581 Bassett Dec 2014 B2
8939095 Freed Jan 2015 B2
8985232 Bassett Mar 2015 B2
9003982 Elizalde Apr 2015 B1
9003983 Roth Apr 2015 B2
9055712 Bassett Jun 2015 B2
9107337 Bassett Aug 2015 B2
9107338 Bassett Aug 2015 B2
9113589 Bassett Aug 2015 B2
9148989 Van Buskirk Oct 2015 B2
9167740 Bassett Oct 2015 B2
9192088 Bruce Nov 2015 B2
9192089 Bassett Nov 2015 B2
9192091 Bassett Nov 2015 B2
9215838 Bassett Dec 2015 B2
9215839 Bassett Dec 2015 B2
9232687 Bassett Jan 2016 B2
9241438 Bassett Jan 2016 B2
9271437 Martin Mar 2016 B2
9307690 Bassett Apr 2016 B2
9504195 Bassett Nov 2016 B2
9615497 Bassett Apr 2017 B2
9668398 Bassett Jun 2017 B2
9681601 Bassett Jun 2017 B2
9723778 Bassett Aug 2017 B2
9788472 Bassett Oct 2017 B2
9848522 Bassett Dec 2017 B2
9861022 Bassett Jan 2018 B2
20020162492 Juptner Nov 2002 A1
20030141086 Kovach Jul 2003 A1
20040005929 Piasecki Jan 2004 A1
20050045080 Halford Mar 2005 A1
20050199842 Parsons Sep 2005 A1
20060102058 Swanson May 2006 A1
20060191695 Walker et al. Aug 2006 A1
20060213566 Johnson Sep 2006 A1
20060237203 Miskin Oct 2006 A1
20070044694 Martin Mar 2007 A1
20070272134 Baker Nov 2007 A1
20080093093 Sheppard Apr 2008 A1
20080173220 Wuertz Jul 2008 A1
20080236461 Sauder Oct 2008 A1
20080256916 Vaske Oct 2008 A1
20090260902 Holman Oct 2009 A1
20100019471 Ruckle Jan 2010 A1
20100108336 Thomson May 2010 A1
20100180695 Sauder Jul 2010 A1
20100198529 Sauder Aug 2010 A1
20100282480 Breker Nov 2010 A1
20110147148 Ripa Jun 2011 A1
20110247537 Freed Oct 2011 A1
20110313575 Kowalchuk Dec 2011 A1
20120167809 Bassett Jul 2012 A1
20120186216 Vaske Jul 2012 A1
20120186503 Sauder Jul 2012 A1
20120216731 Schilling Aug 2012 A1
20120232691 Green Sep 2012 A1
20120255475 Mariman Oct 2012 A1
20130032363 Curry Feb 2013 A1
20130112121 Achen May 2013 A1
20130112124 Bergen May 2013 A1
20130325267 Adams Dec 2013 A1
20130333599 Bassett Dec 2013 A1
20140000448 Franklin, III Jan 2014 A1
20140026748 Stoller Jan 2014 A1
20140034339 Sauder Feb 2014 A1
20140034343 Sauder Feb 2014 A1
20140034344 Bassett Feb 2014 A1
20140165527 Oehler Jun 2014 A1
20140190712 Bassett Jul 2014 A1
20140197249 Roth Jul 2014 A1
20140224513 Van Buskirk Aug 2014 A1
20140224843 Rollenhagen Aug 2014 A1
20140278696 Anderson Sep 2014 A1
20150216108 Roth Aug 2015 A1
20160100517 Bassett Apr 2016 A1
20160270285 Hennes Sep 2016 A1
20160309641 Taunton Oct 2016 A1
20170034985 Martin Feb 2017 A1
20170164548 Bassett Jun 2017 A1
20170181373 Bassett Jun 2017 A1
20170300072 Bassett Jul 2017 A1
20170231145 Bassett Aug 2017 A1
20170318741 Bassett Nov 2017 A1
20170359940 Bassett Dec 2017 A1
Foreign Referenced Citations (25)
Number Date Country
551372 Oct 1956 BE
530673 Sep 1956 CA
335464 Sep 1921 DE
1108971 Jun 1961 DE
24 02 411 Jul 1975 DE
2 196 337 Jun 2010 EP
2 497 348 Sep 2012 EP
1 574 412 Sep 1980 GB
2 056 238 Oct 1982 GB
2 160 401 Dec 1985 GB
54-57726 May 1979 JP
392897 Aug 1973 SU
436778 Jul 1974 SU
611201 Jun 1978 SU
625648 Sep 1978 SU
1410884 Jul 1988 SU
1466674 Mar 1989 SU
WO 2009145381 Dec 2009 WO
WO 2011161140 Dec 2011 WO
WO 2012149367 Jan 2012 WO
WO 2012149415 Jan 2012 WO
WO 2012167244 Dec 2012 WO
WO 2013025898 Feb 2013 WO
WO 2016073964 May 2016 WO
WO 2016073966 May 2016 WO
Non-Patent Literature Citations (24)
Entry
Case Corporation Brochure, Planters 900 Series Units/Modules Product Information, Aug. 1986 (4 pages).
Buffalo Farm Equipment All Flex Cultivator Operator Manual, Apr. 1990 (7 pages).
Shivvers, Moisture Trac 3000 Brochure, Aug. 21, 1990 (5 pages).
The New Farm, “New Efficiencies in Nitrogen Application,” Feb. 1991, p. 6 (1 page).
Hiniker Company, Flow & Acreage Continuous Tracking System Monitor Demonstration Manuel, date estimated as early as Feb. 1991 (7 pages).
Russnogle, John, “Sky Spy: Gulf War Technology Pinpoints Field and Yields,” Top Producer, A Farm Journal Publication, Nov. 1991, pp. 12-14 (4 pages).
Borgelt, Steven C., “Sensor Technologies and Control Strategies for Managing Variability,” University of Missouri, Apr. 14-16, 1992 (15 pages).
Buffalo Farm Equipment Catalog on Models 4600, 4630, 4640, and 4620, date estimated as early as Feb. 1992 (4 pages).
Hiniker 5000 Cultivator Brochure, date estimated as early as Feb. 1992 (4 pages).
Hiniker Series 5000 Row Cultivator Rigid and Folding Toolbar Operator's Manual, date estimated as early as Feb. 1992 (5 pages).
Orthman Manufacturing, Inc., Rowcrop Cultivator Booklet, date estimated as early as Feb. 1992 (4 pages).
Yetter Catalog, date estimated as early as Feb. 1992 (4 pages).
Exner, Rick, “Sustainable Agriculture: Practical Farmers of Iowa Reducing Weed Pressure in Ridge-Till,” Iowa State University University Extension, http://www.extension.iastate.edu/Publications/SA2.pdf, Jul. 1992, Reviewed Jul. 2009, retrieved Nov. 2, 2012 (4 pages).
Finck, Charlene, “Listen to Your Soil,” Farm Journal Article, Jan. 1993, pp. 14-15 (2 pages).
Acu-Grain, “Combine Yield Monitor 99% Accurate? ‘You Bet Your Bushels!!’” date estimated as early as Feb. 1993 (2 pages).
John Deere, New 4435 Hydro Row-Crop and Small-Grain Combine, date estimated as early as Feb. 1993 (8 pages).
Vansichen, R. et al., “Continuous Wheat Yield Measurement on a Combine,” date estimated as early as Feb. 1993 (5 pages).
Yetter 2010 Product Catalog, date estimated as early as Jan. 2010 (2 pages).
Yetter Cut and Move Manual, Sep. 2010 (28 pages).
Yetter Screw Adjust Residue Manager Operator's Manual, labeled “2565-729_REV_D” and dated Sep. 2010 on p. 36, retrieved Mar. 10, 2014 from the internet, available online Jul. 13, 2011, at https://web.archive.org/web/20110713162510/http://www.yetterco.com/help/manuals/Screw_Adjust_ Residue_ Manager2.pdf.
John Deere, Seat Catalog, date estimated as early Sep. 2011 (19 pages).
Martin Industries, LLC Paired 13′ Spading Closing Wheels Brochure, date estimated as early as Jun. 6, 2012, pp. 18-25 (8 pages).
Vogt, Willie, “Revisiting Robotics,” http://m.farmindustrynews.com/farm-equipment/revisiting-robotics, Dec. 19, 2013 (3 pages).
John Deere, New Semi-Active Sea Suspension, http://www.deere.com/en_US/parts/agparts/semiactiveseat.html, date estimated as early as Jan. 2014, retrieved Feb. 6, 2014 (2 pages).
Related Publications (1)
Number Date Country
20180000001 A1 Jan 2018 US
Continuations (3)
Number Date Country
Parent 14824480 Aug 2015 US
Child 15661358 US
Parent 13772053 Feb 2013 US
Child 14824480 US
Parent 12882627 Sep 2010 US
Child 13772053 US