Not applicable.
Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates generally to an adhesive gasketing product, and more particularly to an innovative one which is designed into a rubber pad capable of repeated washing and peeling.
2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98.
The adhesive gasketing products are widely applied to many articles in the people's everyday life for the purpose of gluing, resistance to falling and skidding, shakeproofing and anti-counterfeiting, etc.
In view of the shortcomings of traditional gluing products such as difficulty in cleaning up the residue, an adhesive pad capable of repeated peeling without residue has been developed into a variety of models with continuous R&D and competitive improvements. However, some problems and shortcomings are still observed in the actual applications.
Hereunder are some examples associated with the prior arts, such as: ROC patent No.: M302979: “a pad structure with adhesion effect”, which discloses a self-adhesive pad structure without degumming and colloid residue after peeling off; according to the characteristics of “thermoplastic rubber” and “recyclable residual wastes” defined in the prior art, despite of the difference of adhesive strength between the first and second sheets of said pad, this pad structure is made of TPR so as to generate the effects for repeated peeling off without residue. Yet, the following shortcomings are observed during actual applications:
Insufficient adhesive capacity: given that the sheets of the prior art are made of TPR, these two sheets of different adhesion degrees can be peeled off under weak adhesion states. When such structure is used for double-side glue, the glued objects must withstand the load (e.g.: hook), but the load cannot conform to the requirements due to poorer adhesive capacity.
Poorer temperature resistance: given that the TPR structure of the prior art is not resistant to high temperature, e.g.: softening, deformation and air bubbling may occur in an environment over 40° C., such structure used as a placing pad in the vehicles will cause high temperature in the parked vehicles and deformation of the placing pad; once upon deformation of the placing pad, oil stain will be overspilled from the colloid, leading to unsatisfactory visual effect and affecting greatly the orderly arrangement and stability of objects.
Lower dustproofing and difficulty in cleaning: given that hair and cotton chips (especially fine dust), etc, are adhered easily onto the surface of the TPR structure of the prior art, the porous structure containing oil substance makes it difficult for washing; and after several times of washing, the surface adhesive force will be weakened, thus affecting the durability and service life of the product.
Weak anti-skidding and absorbing capacity: given that the TPR structure of the prior art contains oil substance, oil stain will be overspilled or leaked from the colloid after a period of placement or solar radiation, leading to inability of withstanding load and resisting skidding.
Thus, to overcome the aforementioned problems of the prior art, it would be an advancement if the art to provide an improved structure that can significantly improve the efficacy.
Therefore, the inventor has provided the present invention of practicability after deliberate design and evaluation based on years of experience in the production, development and design of related products.
The enhanced efficacy of the present invention is as follows:
Based upon the unique construction of the present invention wherein “the improved rubber pad capable of repeated washing & peeling” mainly comprises a substrate, inertia adhesive layer, adhesion layer and debonding layer, the present invention allows to, via the technical characteristics of the inertia adhesive layer, use it extensively with repeated peeling-off but without mixing foreign matters and affecting its adhesive capacity after repeated cleaning. Moreover, its temperature resistance range can be expanded greatly, so it can be used in high-/low-temperature operating environments to meet high-load service conditions without deformation. To sum up, the present invention could enhance substantially the dust-proofing, heat resistance and moisture-proofing effects, improve anti-skidding, absorbing capacity and adhesive capacity, so as to augment its durability and extend the service life in a broader range of applications.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Said rubber pad A comprises a substrate 10, made of a sheet of certain thickness and area and defined into a first side surface 11 and a second side surface 12. The substrate 10 of the rubber pad A is made of either of TPU, PET, PE, PVC, PEVA, PP, PU, rubber film or cloth.
An inertia adhesive layer 20 is incorporated onto the first side surface 11 of the substrate 10, made of TPU or PU to form an inertia bonding surface 21. The inertia bonding surface 21 can be repeatedly peeled-off without residual colloid, and the temperature resistance range is between −20° C. and 120° C. Of which, if the inertia adhesive layer 20 is made of TPU or PU, making it more satisfactorily resisting to high temperature, abrasion and deformation and also preventing the pollution from foreign matters and dust as compared with TPR material. So, its adhesive capacity is not affected after repeated washing. Of which, TPU or PU material is categorized into injection, extrusion and film blowing grades, the higher grade means stronger resistance to temperature and abrasion.
An adhesion layer 30 is incorporated onto the second side surface 12 of the substrate 10, made of glue of high adhesive capacity to form an adhesion surface 31. The adhesion surface 31 is adhered securely at one time without repeated peeling-off. Of which the adhesion layer 30 of the rubber pad A is preferably made of PSA adhesion agent. Of which, the adhesion layer 30 and inertia adhesive layer 20 are separately set at both sides of the rubber pad A, enabling the users to select the adhesion surface 31 of the adhesion layer 30 if it is intended for permanent adhesion; or select the inertia bonding surface 21 of the inertia adhesive layer 20 for repeated peeling-off so as to meet the changing user demands.
At least a debonding layer 40 is attached onto at least the adhesion surface 31 or inertia bonding surface 21 in a peeling-off state.
Referring to
Referring to
Referring also to
Referring to
Referring to