The present invention relates to devices that can be used to load, brake or pull n sleeves of material (casings, netting and the like) on or off product chutes.
Certain types of commodity and/or industrial items can be packaged by placing the desired product(s) in a covering material, then applying a closure clip or clips to end portions of the covering material to secure the product(s) therein. For non-flowable piece goods, the piece goods can be held individually in a respective clipped package, or as a group of goods in a single package. The covering material can be any suitable material, typically a casing and/or netting material.
A clip attachment apparatus or “clippers” are well known to those of skill in the art and include those available from Tipper Tie, Inc., of Apex, N.C., including product numbers Z3214, Z3202, and Z3200. The clippers can be configured as double clippers that can concurrently apply two clips to the covering proximate a gathered leading or trailing end portion of the package. One clip defines the first end portion of the next package and the other defines the trailing or second end portion of the package then being closed. A cutting mechanism, typically incorporated in the clipper, sever the two packages before the enclosed package is removed from the clipper. U.S. Pat. No. 4,766,713 describes a double clipper apparatus used to apply two clips to a casing covering. U.S. Pat. No. 5,495,701 proposes a clipper configured to selectively fasten a single clip or two clips simultaneously. The contents of each of these patents are hereby incorporated by reference as if recited in full herein.
To place a sleeve of a selected covering on a chute prior to placement of the chute and covering on a packaging machine, an automated or semi-automated rucker may be employed. This type of process is often described by those of skill in the art as “shirring” or “rucking”. Examples of ruckers are described in U.S. Pat. Nos. 4,924,552; 5,273,481, and 7,775,859, the contents of which are hereby incorporated by reference as if recited in full herein.
As is known to those of skill in the art, deruckers are used to pull lengths of the sleeve off of the chute during operation while reruckers are used to pull lengths of the sleeve upstream or away from the clipper. U.S. Pat. No. 8,371,909 describes exemplary reruckers that may cooperate with deruckers or perform both functions and optionally also act as a brake or cooperate with another component as the brake (e.g., a so-called “skin brake”), the contents of which are hereby incorporated by reference as if recited in full herein.
Embodiments of the present invention provide a new gripper configuration with one or more gripper layers having a semi-circular inward facing profile with teeth.
Embodiments of the invention are directed to a rucker, rerucker, derucker or skin break gripper that includes at least one planar gripper layer with a perimeter having a front facing semi-circular side with a plurality of spaced apart teeth.
The at least one planar gripper layer can be a plurality of planar semi-rigid gripper layers stacked together with the teeth facing inward. Each layer can be configured so that the front facing semi-circular side has valleys, with a respective valley separating at least some adjacent teeth.
The teeth can be round teeth.
The at least one layer can have a thickness that is between about 0.125 inches to about 0.5 inches.
The semi-circular side can be sized to correspond to a semi-circular outer wall of a chute or horn having a diameter between about 3 inches and about 8 inches.
The at least one planar gripper layer can be a set of between 2-10 cooperating stacked planar gripper layers.
The at least one planar gripper layer can be a plurality of abutting planar gripper layers. Neighboring gripper layers can be arranged so that at least some teeth in a first neighboring gripper layer are misaligned to be offset from underlying or overlying or underlying and overlying teeth in a second neighboring gripper layer.
The stacked layers can be arranged so that teeth and valleys serially repeat over the semi-circular side and so that teeth in one layer are misaligned with teeth in at least one abutting layer.
The gripper layer can have a monolithic polymeric and/or elastomeric body. The gripper layer can be semi-rigid and have a thickness between about 0.125 inches to about 0.5 inches with between about 10-20 teeth.
Still other embodiments are directed to gripper assemblies. The gripper assemblies include a stacked set of cooperating gripper layers having a perimeter with a forward facing semi-circular profile with a plurality of teeth.
The gripper assemblies can include a housing holding the stacked set of gripper layers and a bracket attached to the housing configured to attach to an actuation cylinder.
The housing can include at least one laterally extending channel that is configured to cooperate with a rail to allow the gripper assembly to controllably reciprocate in response to actuation of the actuation cylinder.
The gripper assemblies can include a housing holding the stacked set of gripper layers. The housing can have a curved forward facing side and a primary surface with a recess having a perimeter shape sized and configured to receive the stacked set of gripper layers.
The stacked set of gripper layers can include planar semi-rigid gripper layers stacked together with respective teeth facing inward. Each layer can be configured so that a respective front facing semi-circular profile comprises valleys, with a respective valley separating at least some adjacent teeth.
The teeth can be round teeth. The semi-circular profile can be sized to correspond to a semi-circular outer wall of a chute or horn having a diameter between about 3 inches and about 8 inches.
The stacked set of cooperating gripper layers can be arranged as a plurality of abutting planar gripper layers. Neighboring gripper layers can be arranged so that at least some teeth in a first neighboring gripper layer are misaligned to be offset from teeth in a second neighboring gripper layer.
The stacked set of cooperating gripper layers can be arranged as a plurality of abutting planar gripper layers. Neighboring gripper layers can be arranged so that at least some teeth in a first neighboring gripper layer are misaligned to be offset from teeth in a second neighboring gripper layer so that one row of the layers is configured with teeth and valley in alternating layers.
The stacked layers can be arranged so that teeth and valleys serially repeat over the semi-circular profile. Teeth in one layer are misaligned with teeth in at least one abutting layer. The gripper layers can have a respective monolithic polymeric and/or elastomeric semi-rigid body with a thickness between about 0.125 inches to about 0.5 inches. At least some of the gripper layers have between about 10-20 teeth.
Yet other embodiments are directed to a set of cooperating gripper assemblies. The set includes first and second cooperating gripper assemblies, each gripper assembly including a stacked set of cooperating gripper layers having a perimeter with a forward facing semi-circular profile with a plurality of teeth. The first gripper assembly is oriented so that the forward facing semi-circular profile faces the second gripper assembly forward facing profile to form a circle when the gripper assemblies are in a closed configuration residing adjacent each other, wherein the first and second cooperating gripper assemblies are configured to close against an outer wall of a horn or chute to contact covering material held thereon.
The teeth can be round teeth. The semi-circular profile can be sized to correspond to a semi-circular outer wall of the chute or horn having a diameter between about 3 inches and about 8 inches. The stacked set of cooperating gripper layers can be arranged as a plurality of abutting planar gripper layers. The stacked layers can be arranged so that teeth and valleys serially repeat over the semi-circular profile. Teeth in one layer can be misaligned with teeth in at least one abutting layer.
Still other embodiments are directed to an apparatus for rucking, derucking, rerucking and/or braking covering material from or onto a chute body. The apparatus includes a frame and a gripper assembly. The gripper assembly includes first and second cooperating gripper subassemblies, each having a perimeter with one side having a semi-circular shape. The side having the semi-circular shape comprises a set of stacked planar gripper layers, at least some of the layers having spaced apart teeth. The apparatus also includes an actuator attached to the gripper assembly and in communication with a controller. The first and second gripper subassemblies can have an automated stroke cycle whereby each is configured to travel inwardly a distance sufficient to snugly abut an outer surface of a chute or horn body and remain in contact with the chute or horn body to pull covering material or brake the covering material.
The gripper subassemblies can each include a housing that includes at least one laterally extending channel that is configured to cooperate with a rail to allow the gripper assembly to controllably reciprocate in response to extension and retraction of the actuator. The housing can have a curved forward facing side and a primary surface with a recess having a perimeter shape sized and configured to receive the stacked set of gripper layers.
It is noted that any one or more aspects or features described with respect to one embodiment may be incorporated in a different embodiment although not specifically described relative thereto. That is, all embodiments and/or features of any embodiment can be combined in any way and/or combination. Applicant reserves the right to change any originally filed claim or file any new claim accordingly, including the right to be able to amend any originally filed claim to depend from and/or incorporate any feature of any other claim although not originally claimed in that manner. These and other objects and/or aspects of the present invention are explained in detail in the specification set forth below.
These and other objects and/or aspects of the present invention are explained in detail in the specification set forth below.
The present invention will now be described more fully hereinafter with reference to the accompanying figures, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout. In the figures, certain layers, components or features may be exaggerated for clarity, and broken lines illustrate optional features or operations, unless specified otherwise. In addition, the sequence of operations (or steps) is not limited to the order presented in the claims unless specifically indicated otherwise. Where used, the terms “attached”, “connected”, “contacting”, “coupling” and the like, can mean either directly or indirectly, unless stated otherwise. The term “concurrently” means that the operations are carried out substantially simultaneously.
In the description of the present invention that follows, certain terms are employed to refer to the positional relationship of certain structures relative to other structures. As used herein, the term “front” or “forward” and derivatives thereof refer to the general or primary direction that the sleeve or material is loaded onto the chute body; this term is intended to be synonymous with the term “downstream,” which is often used in manufacturing or material flow environments to indicate that certain material traveling or being acted upon is farther along in that process than other material. Conversely, the terms “rearward” and “upstream” and derivatives thereof refer to the directions opposite, respectively, the forward and downstream directions.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. As used herein, phrases such as “between X and Y” and “between about X and Y” should be interpreted to include X and Y. As used herein, phrases such as “between about X and Y” mean “between about X and about Y.” As used herein, phrases such as “from about X to Y” mean “from about X to about Y.”
The term “about” when used with a number means that the value can vary between +/−20%.
The term “semi-rigid” means that the member can retain a three-dimensional self-supported shape but can flex when sufficient force is applied.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein. Well-known functions or constructions may not be described in detail for brevity and/or clarity.
The term “automated” and “automatic” refers to operations that are carried out without requiring manual assistance and are typically carried out using electronic controls and programmatic (computer) direction. The terms also contemplate the use of manual activation of the automatic operations. The term “frame” means a generally skeletal structure used to support one or more assemblies, modules and/or components. The term “modular” means that a subassembly is designed with standardized dimensions, mounting features and/or configurations for interchangeable use with replacement modules of the same or similar type and/or other selected different modules.
The present invention is particularly suitable for cooperating with chutes and covering materials that may employ closure clips to enclose discrete objects in the covering material. The covering material may be natural or synthetic and may be a casing material that can be sealed about a product or may be netting. The casing can be any suitable casing (edible or inedible, natural or synthetic) such as, but not limited to, collagen, cellulose, plastic, elastomeric or polymeric casing. The term “netting” refers to any open mesh material formed by any means including, for example, knotted, braided, extruded, stamped, knitted, woven or otherwise. Typically, the netting is configured so as to be stretchable in both axial and lateral directions, but fixed diameter netting or covering may also be used. In some embodiments, the covering material is a fixed diameter or compression netting material (known as “fixed diameter net”) comprising cotton, available from Jif Pak (Vista, Calif.) and PCM (Greenville, S.C.).
In some embodiments, the covering material is substantially non-elastic or frangible when laterally stretched more than 10%, and typically cannot be stretched, without unacceptable degradation, more than 5% beyond the bounds of the underlying target chute. In some embodiments, the covering can be a generally closed weave delicate and/or relatively inelastic material (at least in the non-axial dimension).
Netting or other covering material may be used to package discrete meat products such as loaves of meat, boned ham, spiral sliced ham, deboned ham, turkey, turkey loaves held in molds, or other meat or items, directly or with the items held in subcontainers and/or wraps such as molds, trays, boxes, bags, absorbent or protective sheets, sealant, cans and the like. Other embodiments of the present invention may be directed to package other types of food such as cheese, bread, fruit, vegetables, and the like. Examples of non-food items that may be packaged using embodiments of the present invention include living items such as flora, trees, and the like, as well as inanimate objects. Additional examples of products include discrete, semi-solid or solid non-flowable objects such as firewood, pet food (typically held in a container if the wet type), recreational objects (such as toy or game balls), or other solid or semi-solid objects. The product may be packaged for any suitable industry including horticulture, aquaculture, agriculture, or other food industry, environmental, chemical, explosive, or other application. Netting may be particularly useful to package ham or turkeys, manufactured hardware such as automotive parts, firewood, explosives, molded products, and other industrial, consumable, and/or commodity items.
Embodiments of the present invention may be particularly suitable for operating with relatively delicate, substantially inelastic (at least in the radial direction) netting, such as cotton fiber fixed diameter coverings that may be configured to hold large meat products, such as meat products weighing over 20 pounds, typically about 35-40 pounds.
In some embodiments, the sleeves of covering placed on the product chute can be greater than or equal to about 120 feet in length and sufficient to enclose between about 50-80 discrete objects, e.g., compressed whole muscle or hams, and typically about 60 discrete packages of meat objects.
Referring now to
The teeth 11 of the gripper layer 10 can comprise a urethane material or coating. In other embodiments, the outer surface of the teeth 11 may be surface treated to provide increased frictional areas relative to the rear of the layer 12b, e.g., be coated, embossed, etc.
The semi-circular teeth shape can have an outer radius measured from a line L to an outermost front end of the teeth (R2) and an inner radius R1 measured at the valley 14 between adjacent teeth 11. The outer radius R2 can correspond to a radius of a chute or horn 50 (
The teeth 11 can have a radius of curvature R3 measured from a centerline location internal to the respective tooth (see, the line in
The teeth 11 can be round, typically semi-circular as shown, but other shapes may be used to provide a suitable point of contact shape. The teeth 11 can have the same shapes and sizes, different sizes, different shapes or different shapes and sizes. The teeth 11 can have a continuous outer edge or a discontinuous outer edge.
The outermost edges of the teeth 11 can all reside at a common radius distance (shown as R2) from a line “L” drawn between outermost upper and lower edges 12u, 12l bounding the semi-circular perimeter shape and can be separated by valleys 14 residing at a greater distance from the line L, shown as distance R1 such that R1>R2. The line L can reside adjacent to a centerline C/L of two cooperating sets of grippers 125 in a closed configuration (
Typically, the gripper layer 10 is used in a cooperating set of stacked layers 10s as shown in
The number of teeth 11 for a layer 10 can vary but is typically between about 10-50, more typically between about 10-20, shown as 12 “full size” teeth or 13 teeth with one tooth smaller than the others, for both larger and smaller sized gripper layers (
As shown in
The gripper layers 10s can be configured to cooperate with another set of gripper layers to operate with different size horns or chutes 50. The different sets 10s can be configured to cooperate with chutes or horns 50 having respective different diameters of between about 3 inches to about 8 inches, such as 3 inches, 3.5 inches, 4 inches, 4.5 inches, 5 inches 5.5 inches, 6 inches, 6.5 inches, 7 inches, 7.5 inches and 8 inches.
The gripper assembly 25 can include a back plate 40 that attaches to the housing 30 and holds the gripper layers 10s between the back plate 40 and housing 30. The housing 30 and back plate 40 can each have a curved inwardly facing portion 30c, 40c, respectively. The curved portions 30c, 40c can have a common shape (e.g., the same shape) with a common radius of curvature (e.g., the same radius of curvature) sized to allow the contact teeth 11 to rise above the respective outer boundary of the wall of the curved portions 30c, 40c. In other embodiments, the curved segments are not required or may have a different shape.
Attachment members 35 can extend through the housing 30, the layers 10s and the back plate 40. The attachment members 35 can have any appropriate configuration. As shown, the attachment members 35 comprise threaded bolts.
The gripper assembly 25 can include a cylinder block 45 that attaches to the housing 30. The cylinder block 45 can attach to an actuation cylinder 75 (
The gripper assembly 25 can be used in cooperating pairs 125 as shown in
The housing 30 can include upper and lower channels 33, 34 that cooperate with rails 200 to allow the gripper assemblies 25 to controllably translate in a fixed direction (
The actuation cylinders 75 can be electric, air or hydraulic.
Where different diameter size gripper assemblies 25 are used, some of the components may be common among the different assemblies 25, such as the cylinder block 45 and attachment members 35, 45, while the other components may have similar form factors but vary in size to accommodate the larger size gripper layers 10 (e.g.,
To be clear, the gripper assemblies 25 can be used in different orientations, depending on the end use and configuration of the associated system, e.g., skin brake, rucker, derucker or rerucker.
The rucker 100 can include a chute platform that can remain fixed (substantially stationary in at least the axial direction) or may move vertically during the rucking or shirring operation. The gripper assemblies 25 can be mounted to the laterally extending rail 200. The gripper assemblies 25 may optionally also be mounted to vertical rails so as to be able to move up and down about a primary (wheel) movement axis. In other embodiments, the chute or horn resides on a platform that travels up or down for the shirring or rucking operation. The rail can be in communication with a drive system. Suitable drive systems are well known to those of skill in the art.
By configuring the chute or horn 50 to be stationary, a lower profile apparatus can be used as the chute or horn 50 does not need to move relative to the apparatus 100. This may be particularly useful for longer chute lengths.
The chute or horn 50 may reside on a stationary support platform in the rucker 100. The rucker apparatus can be adapted to accept chutes or horns having different lengths and/or shapes, typically lengths between about 2-10 feet (with the longer chutes or horns being between about 6-10 feet).
The stroke length of translation for the side to side or vertical stroke of movement along a respective axis of movement can be adjustable so as to accommodate different size chutes and gripper assemblies and/or to distribute lengths of the covering over a desired length of a target chute, which may vary by chute and/or covering type.
The apparatus 100 can be configured to accommodate different size and/or shape chutes 50 with minimal set-up time. The controller 110 can be configured (typically at an OEM site, but can be field upgraded) with different running program modules (which may vary speed, stroke distance, gripping pressure, timing and the like) depending on the running configuration of the chute, gripper assembly 25 size and/or covering material.
The gripper assemblies 25 can translate axially or may be axially stationary (e.g., the latter an option for skin brake where the gripper assemblies 25 apply a slip brake force onto the covering 60). The cooperating sets 125 of gripper assemblies 25 can be used for one or more of derucking, rerucking or braking.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. In the claims, means-plus-function clauses, where used, are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the appended claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/869,828, filed Aug. 26, 2013, the contents of which are hereby incorporated by reference as if recited in full herein.
Number | Name | Date | Kind |
---|---|---|---|
1069253 | Henebergh | Aug 1913 | A |
1450104 | Merli et al. | Mar 1923 | A |
1611268 | Colby | Dec 1926 | A |
1913828 | Brennan | Jun 1933 | A |
2198913 | Grounds et al. | Apr 1940 | A |
2413522 | Russell | Dec 1946 | A |
1165223 | Butz | Dec 1951 | A |
2622778 | Poland | Dec 1952 | A |
2712824 | Steiner | Jul 1955 | A |
2713449 | Carmichael | Jul 1955 | A |
2720055 | Morris | Oct 1955 | A |
2737108 | Galick | Mar 1956 | A |
2812628 | Russel et al. | Nov 1957 | A |
2859574 | Olivette | Nov 1958 | A |
2880419 | Tipper | Apr 1959 | A |
2885850 | Smith | May 1959 | A |
2933037 | Russell | Apr 1960 | A |
2946166 | Baxter | Jul 1960 | A |
2977732 | Leonard et al. | Apr 1961 | A |
3065586 | Ghiringhelli | Nov 1962 | A |
3197938 | Lasoff | Aug 1965 | A |
3211193 | Anderson | Oct 1965 | A |
3214883 | Omori | Nov 1965 | A |
3290841 | Sartore | Dec 1966 | A |
3342017 | Yerkey | Sep 1967 | A |
3344467 | Barbu | Oct 1967 | A |
3358418 | Manetta | Dec 1967 | A |
3379123 | Weltner | Apr 1968 | A |
3383228 | Rekate | May 1968 | A |
3383754 | Klenz | May 1968 | A |
3384007 | Boje et al. | May 1968 | A |
3389533 | Tipper et al. | Jun 1968 | A |
3400433 | Klenz | Sep 1968 | A |
3499259 | Tipper et al. | Mar 1970 | A |
3521675 | Dussich | Jul 1970 | A |
3543378 | Klenz | Dec 1970 | A |
3553924 | Bonami | Jan 1971 | A |
3555775 | McMillan | Jan 1971 | A |
3580166 | Longo | May 1971 | A |
3587204 | George | Jun 1971 | A |
3593484 | Dussich | Jul 1971 | A |
3621775 | Dedio et al. | Nov 1971 | A |
3624982 | Marietta, Jr. | Dec 1971 | A |
3643401 | Wickersheim | Feb 1972 | A |
3662514 | Goss | May 1972 | A |
3687063 | Clar | Aug 1972 | A |
3719022 | Cherio | Mar 1973 | A |
3732113 | Walters | May 1973 | A |
3732662 | Paxton | May 1973 | A |
3745610 | Urbutis | Jul 1973 | A |
3745868 | Prentice | Jul 1973 | A |
3748717 | Leffler et al. | Jul 1973 | A |
3763621 | Klein et al. | Oct 1973 | A |
3763769 | Bysouth et al. | Oct 1973 | A |
3793688 | Keating et al. | Feb 1974 | A |
3795085 | Andre et al. | Mar 1974 | A |
3797199 | Seifert | Mar 1974 | A |
3802337 | Hiliare | Apr 1974 | A |
3805480 | Cherio et al. | Apr 1974 | A |
3807130 | Pedersen | Apr 1974 | A |
3815323 | Longo | Jun 1974 | A |
3815649 | Delmar | Jun 1974 | A |
3827210 | Smalley et al. | Aug 1974 | A |
3827213 | Matzinger | Aug 1974 | A |
3838551 | Arikawa et al. | Oct 1974 | A |
3848397 | Allen | Nov 1974 | A |
3863779 | Stockman | Feb 1975 | A |
3872785 | Elliott | Mar 1975 | A |
3877589 | Stockman | Apr 1975 | A |
3903790 | Gladwin | Sep 1975 | A |
3938300 | Lovqvist | Feb 1976 | A |
3940906 | Leckband et al. | Mar 1976 | A |
3945171 | Marietta, Jr. et al. | Mar 1976 | A |
3971191 | Hoyland | Jul 1976 | A |
3975795 | Kupcikevicius et al. | Aug 1976 | A |
D243158 | Bolwell | Jan 1977 | S |
4001926 | Velarde | Jan 1977 | A |
4018031 | Smaw | Jan 1977 | A |
4023238 | Phares | May 1977 | A |
RE29278 | Vogel | Jun 1977 | E |
4028775 | Tysver | Jun 1977 | A |
4036124 | Seiler et al. | Jul 1977 | A |
4044425 | Nausedas | Aug 1977 | A |
4044426 | Kupcikevicius et al. | Aug 1977 | A |
4044450 | Raudys et al. | Aug 1977 | A |
4074389 | Blair et al. | Feb 1978 | A |
4091595 | Pelster et al. | May 1978 | A |
4096799 | Zupancic | Jun 1978 | A |
4098180 | Tea et al. | Jul 1978 | A |
4107903 | Wickerheim | Aug 1978 | A |
4109363 | Velarde | Aug 1978 | A |
4133164 | Mintz | Jan 1979 | A |
4147012 | van Mil | Apr 1979 | A |
4152035 | Fox | May 1979 | A |
4155212 | Marchese | May 1979 | A |
4157003 | Kamphaus | Jun 1979 | A |
4165593 | Niedecker | Aug 1979 | A |
4175690 | Bova et al. | Nov 1979 | A |
4183192 | Lucke | Jan 1980 | A |
4203269 | Petersen | May 1980 | A |
4211051 | Tucker | Jul 1980 | A |
4213387 | McCaney et al. | Jul 1980 | A |
RE30390 | Kupcikevicius et al. | Sep 1980 | E |
4218861 | Marz | Sep 1980 | A |
4223508 | Wells | Sep 1980 | A |
4223511 | Black | Sep 1980 | A |
4247005 | Buxton | Jan 1981 | A |
4261399 | Hawkins et al. | Apr 1981 | A |
4269115 | Gattyan | May 1981 | A |
4352263 | Andrews | Oct 1982 | A |
4377929 | Altenpohl et al. | Mar 1983 | A |
4430772 | Michel et al. | Feb 1984 | A |
4432188 | Andrews | Feb 1984 | A |
4464882 | Van Ginkel et al. | Aug 1984 | A |
4494364 | Meyn | Jan 1985 | A |
4505003 | Becker et al. | Mar 1985 | A |
4516387 | Kupcikevicius | May 1985 | A |
4525898 | Gallion et al. | Jul 1985 | A |
4537006 | Pieri | Aug 1985 | A |
4557018 | Martinek | Dec 1985 | A |
4563792 | Niedecker | Jan 1986 | A |
4570301 | Beckman et al. | Feb 1986 | A |
4577370 | Kollross | Mar 1986 | A |
4580316 | Gunter | Apr 1986 | A |
4590748 | Harrison et al. | May 1986 | A |
4590749 | Temple et al. | May 1986 | A |
4599764 | Knepshield | Jul 1986 | A |
4599941 | Johnson et al. | Jul 1986 | A |
4649601 | Kollross | Mar 1987 | A |
4651498 | Piereder | Mar 1987 | A |
4675945 | Evans et al. | Jun 1987 | A |
4683700 | Evans et al. | Aug 1987 | A |
4703611 | Young | Nov 1987 | A |
4709450 | Stanley et al. | Dec 1987 | A |
4750239 | Niedecker | Jun 1988 | A |
4766713 | Evans | Aug 1988 | A |
4771510 | Kawai | Sep 1988 | A |
4773128 | Stanley et al. | Sep 1988 | A |
4809484 | Lovik | Mar 1989 | A |
4847953 | Evans et al. | Jul 1989 | A |
4885821 | Farkonas | Dec 1989 | A |
4924552 | Sullivan | May 1990 | A |
4939891 | Podini | Jul 1990 | A |
4944172 | Evans | Jul 1990 | A |
4951452 | Lundahl et al. | Aug 1990 | A |
4958477 | Winkler | Sep 1990 | A |
4969233 | Stanley | Nov 1990 | A |
5016424 | Stirling | May 1991 | A |
5017175 | Klusmire | May 1991 | A |
5024041 | Urban et al. | Jun 1991 | A |
5042234 | Evans et al. | Aug 1991 | A |
5044144 | Foote et al. | Sep 1991 | A |
5045020 | Neeff et al. | Sep 1991 | A |
5056293 | Richards et al. | Oct 1991 | A |
5067313 | Evans | Nov 1991 | A |
5074386 | Evans | Dec 1991 | A |
5077955 | Evans | Jan 1992 | A |
5078059 | Recker | Jan 1992 | A |
5085036 | Evans et al. | Feb 1992 | A |
5101719 | Recker | Apr 1992 | A |
5107666 | Rahtican | Apr 1992 | A |
5109648 | Evans | May 1992 | A |
5135770 | Underwood | Aug 1992 | A |
5161347 | May et al. | Nov 1992 | A |
5165216 | May et al. | Nov 1992 | A |
5167567 | Evans | Dec 1992 | A |
5181302 | Evans | Jan 1993 | A |
5195303 | Tomanovits | Mar 1993 | A |
5203760 | Chen et al. | Apr 1993 | A |
5209041 | Evans | May 1993 | A |
5211599 | Stanley | May 1993 | A |
D340467 | Pollak et al. | Oct 1993 | S |
5269054 | Poteat et al. | Dec 1993 | A |
5273481 | Sullivan | Dec 1993 | A |
5277745 | Williams | Jan 1994 | A |
5385089 | Newsom | Jan 1995 | A |
5402625 | Halstead | Apr 1995 | A |
5408810 | Cullen | Apr 1995 | A |
5421142 | Cullen | Jun 1995 | A |
5426910 | Cullen | Jun 1995 | A |
5435114 | Moehlenbrock et al. | Jul 1995 | A |
5451084 | Jansch | Sep 1995 | A |
5468179 | Stanley et al. | Nov 1995 | A |
5476673 | Sombrio | Dec 1995 | A |
5483784 | Owensby et al. | Jan 1996 | A |
5495701 | Poteat et al. | Mar 1996 | A |
5514029 | Schutz | May 1996 | A |
5540143 | Stromer et al. | Jul 1996 | A |
5570561 | May et al. | Nov 1996 | A |
5573454 | Fox et al. | Nov 1996 | A |
5586424 | Chen et al. | Dec 1996 | A |
5644896 | Evans et al. | Jul 1997 | A |
5657527 | Houck et al. | Aug 1997 | A |
5701723 | Simpson | Dec 1997 | A |
5715656 | Pearce | Feb 1998 | A |
5752374 | Allworden et al. | May 1998 | A |
5755022 | Whittlesey | May 1998 | A |
5782056 | May et al. | Jul 1998 | A |
5782067 | Fuss et al. | Jul 1998 | A |
5855107 | Haffield | Jan 1999 | A |
5884346 | Hengl | Mar 1999 | A |
5980374 | Mercuri | Nov 1999 | A |
6052972 | Rea et al. | Apr 2000 | A |
6131367 | Fukuda et al. | Oct 2000 | A |
6216425 | Hanten | Apr 2001 | B1 |
6302027 | Compton et al. | Oct 2001 | B1 |
6401885 | Whittlesey | Jun 2002 | B1 |
6439990 | Kasai et al. | Aug 2002 | B1 |
6537406 | Jensen et al. | Mar 2003 | B1 |
6588173 | Moore et al. | Jul 2003 | B1 |
6604338 | May et al. | Aug 2003 | B1 |
6637075 | Gorman et al. | Oct 2003 | B1 |
6666759 | Narcuso | Dec 2003 | B2 |
6669545 | Hergott et al. | Dec 2003 | B1 |
6694711 | Cullen | Feb 2004 | B1 |
6695364 | Bierlin | Feb 2004 | B2 |
6708742 | Weathers et al. | Mar 2004 | B2 |
6719194 | Richards | Apr 2004 | B2 |
6729102 | Ailey et al. | May 2004 | B2 |
6739370 | Melheim | May 2004 | B2 |
6745547 | Bussey et al. | Jun 2004 | B2 |
6883297 | Kirk et al. | Apr 2005 | B2 |
6932688 | Stanley et al. | Aug 2005 | B2 |
6945171 | Coull | Sep 2005 | B1 |
6971283 | Belik | Dec 2005 | B2 |
6976346 | May et al. | Dec 2005 | B2 |
7021026 | Griggs et al. | Apr 2006 | B2 |
7051415 | Pinto et al. | May 2006 | B2 |
7063610 | Mysker | Jun 2006 | B2 |
7140288 | Twerdok | Nov 2006 | B2 |
7143566 | May et al. | Dec 2006 | B2 |
7222469 | Griggs | May 2007 | B2 |
7231984 | Jaensch | Jun 2007 | B2 |
7234287 | Griggs et al. | Jun 2007 | B2 |
7237369 | Griggs | Jul 2007 | B2 |
7306511 | Whittlesey | Dec 2007 | B2 |
7313896 | Griggs et al. | Jan 2008 | B2 |
7322163 | Griggs | Jan 2008 | B2 |
7356977 | Griggs et al. | Apr 2008 | B2 |
7386966 | Griggs et al. | Jun 2008 | B2 |
7404758 | Mysker | Jul 2008 | B2 |
7430839 | Griggs | Oct 2008 | B2 |
7441386 | Pinto et al. | Oct 2008 | B2 |
7441389 | Scholtis et al. | Oct 2008 | B2 |
7478515 | Griggs et al. | Jan 2009 | B2 |
7488243 | Wince et al. | Feb 2009 | B2 |
7507150 | Stall et al. | Mar 2009 | B2 |
7526905 | Griggs et al. | May 2009 | B2 |
7536838 | Whittlesey et al. | May 2009 | B2 |
7537514 | Lopez | May 2009 | B2 |
7604531 | Hanten | Oct 2009 | B2 |
7641542 | Haschke et al. | Jan 2010 | B2 |
7647749 | Pinto et al. | Jan 2010 | B2 |
7665278 | Griggs et al. | Feb 2010 | B2 |
7704129 | May et al. | Apr 2010 | B2 |
7739855 | Griggs et al. | Jun 2010 | B2 |
7762874 | Schlieber et al. | Jul 2010 | B2 |
7775859 | May et al. | Aug 2010 | B2 |
7775860 | Wince et al. | Aug 2010 | B2 |
D637880 | Kenny et al. | May 2011 | S |
7955164 | Wince et al. | Jun 2011 | B2 |
7955165 | May et al. | Jun 2011 | B2 |
7972201 | May et al. | Jul 2011 | B2 |
8047900 | May et al. | Nov 2011 | B2 |
D653523 | Wackwitz et al. | Feb 2012 | S |
8142264 | May et al. | Mar 2012 | B2 |
8152604 | Kamakura et al. | Apr 2012 | B2 |
8371909 | Lowder | Feb 2013 | B2 |
D682652 | McRoberts et al. | May 2013 | S |
8439729 | May et al. | May 2013 | B2 |
20010027632 | Whitby et al. | Oct 2001 | A1 |
20030131564 | Ailey et al. | Jul 2003 | A1 |
20040068964 | Kirk et al. | Apr 2004 | A1 |
20040094008 | Tada | May 2004 | A1 |
20040144067 | Cullen | Jul 2004 | A1 |
20040250512 | May et al. | Dec 2004 | A1 |
20050034426 | Griggs et al. | Feb 2005 | A1 |
20050039419 | Griggs et al. | Feb 2005 | A1 |
20050053699 | Whittlesey | Mar 2005 | A1 |
20050060957 | Griggs et al. | Mar 2005 | A1 |
20050072119 | Griggs et al. | Apr 2005 | A1 |
20050086911 | Dutt et al. | Apr 2005 | A1 |
20050087075 | Mysker | Apr 2005 | A1 |
20050101240 | Mysker | May 2005 | A1 |
20050229541 | Griggs | Oct 2005 | A1 |
20050235608 | Griggs et al. | Oct 2005 | A1 |
20050247026 | Griggs | Nov 2005 | A1 |
20050274088 | Griggs | Dec 2005 | A1 |
20050284108 | Griggs | Dec 2005 | A1 |
20060075722 | Gupton | Apr 2006 | A1 |
20060105690 | Wince et al. | May 2006 | A1 |
20070028565 | Griggs et al. | Feb 2007 | A1 |
20080060916 | Whittlesey | Mar 2008 | A1 |
20080250755 | Griggs et al. | Oct 2008 | A1 |
20090100800 | Griggs et al. | Apr 2009 | A1 |
20100287883 | May | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
2452760 | May 1976 | DE |
4020391 | Jan 1992 | DE |
0 301 768 | Feb 1989 | EP |
1464581 | Apr 2004 | EP |
1491444 | Nov 1977 | GB |
1564397 | Apr 1980 | GB |
63281971 | Nov 1988 | JP |
2002-019735 | Jan 2002 | JP |
WO 2000020282 | Apr 2000 | WO |
WO 2004007298 | Jan 2004 | WO |
WO 2005032759 | Feb 2005 | WO |
WO 2005032759 | Apr 2005 | WO |
WO 2005044020 | May 2005 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/US2006/028204, dated Aug. 3, 2007, 9 pages. |
U.S. Appl. No. 11/262,600, filed Oct. 31, 2005, Wince. |
U.S. Appl. No. 11/256,809, filed Oct. 24, 2005, Gupton. |
U.S. Appl. No. 10/952,421, Griggs et al. |
Brochure TCM 2250 Pumpable for muscle pieces, 2 sheets, 1994 ©. |
International Search Report and the Written Opinion, corresponding to PCT application No. PCT/US2005/39293; dated Oct. 20, 2006 (9 pages). |
International Search Report and Written Opinion of the International Searching Authority for PCT application PCT/US2005/020006 dated Oct. 25, 2005. |
International Search Report and Written Opinion of the International Searching Authority for International Patent Application No. PCT/US2005/017252 dated Sep. 7, 2005. |
International Search Report and Written Opinion of the International Searching Authority for PCT application No. PCT/US2005/020019 dated Jan. 16, 2006. |
Invitation to Pay Additional Fees for PCT application No. PCT/US2005/020019 dated Oct. 28, 2005. |
Product Brochure, 1 sheet, “Tipper Clipper®—Signature Series SZ3214 Double Clipper for Netting,” © 2002. |
Product Brochure, 1 sheet, “Tipper Netter TN-3000 Automatic Netting-Packaging Machine,” © 2002. |
Product Brochure, 1 sheet, “Tipper Tie-Net, Safely and quickly package plugs before shipping,” © 1999. |
Product Brochure, 2 sheets, “Net-All Sleeved Plastic Netting System,” © 2000. |
Product Brochure, 2 sheets, “Tipper Net Z3200 Double Clipper and Plant Netting System,” © 2000. |
Product Brochure, 4 sheets, “Net-All® Netting Is the answer to All Your Horticultural Applications,” © 2001. |
Product Brochure, 6 sheets, “Tipper Net for Smoking, Hanging & Decoration, Net-All® Netting Is the Answer,” © 2000. |
Rigidized Metals Corporation, Corporate Profile, 1 page, <http://www.rigidized.com> accessed on Sep. 23, 2005, but for the purposes of examination, the reference is deemed to be before the priority filing date of the instant application. |
www.mcmaster.com, Compressed Air Flow Control Valves, 1 sheet, Date unknown but believed to be before Oct. 2004. |
www.tippertie.com/smoked/tcm2250.asp, 2 sheets, date believed to be before Nov. 1, 2004. |
Number | Date | Country | |
---|---|---|---|
20150052849 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61869828 | Aug 2013 | US |