This invention concerns an improvement to a method or apparatus for rule processing preferably utilizing zero-suppressed binary decision diagrams (ZDDs) to express and manipulate a business rule, but more specifically, to a method or an apparatus to generate valid combinations of features or components of a product or service for selection by a user based on an arbitrary set of input specifications.
Specialized rule processing or artificial intelligence (AI) applications are often employed to produce valid combinations of compatible product components, features, or operational characteristics. These applications typically display a table of alternatives product selections on a computer monitor given an arbitrary set of search criteria supplied by an end user, such as a customer engaged in on-line shopping. It becomes a challenge to generate compatible product or service configurations when subparts or components of the product or service become numerous thereby exponentially multiplying the number of possible valid or invalid combinations.
For customer service applications, it is also desirable to provide search results instantaneously, e.g., within a couple of seconds or less. For many complex products, such a constraint is difficult to meet with prior systems.
A rule processing system described in the above-mentioned, incorporated U.S. patent application Ser. Nos. 10/101,151 and 10/101,154 utilizes a form a binary decision diagrams (or directed acylic graphs) to provide a user with conflict and selection advice based on a given set of input parameters, therein called attributes and enumerations thereof. To extend the utility of that invention, the present invention also utilizes a form of binary decision diagrams (or directed acylic graph), preferably zero-suppressed binary decision diagrams, to provide an end user or customer with a number of valid choices of product or service configurations based on a given arbitrary set of input parameters, e.g., product specifications.
The present invention takes advantage of the rule processing procedures of the prior related inventions to provide a user with valid selections of a product or service based on a set of specified inputs or search criteria.
According to an aspect of the present invention, a computer-implemented method of providing a list of product choices from a universe of product specifications whose compatibility is characterized by a ZDD rule model having one or more Include or Exclude rules, where the list of product choices is provided in response to user-selected attributes and/or enumerations. An exemplary method comprises selecting attributes and enumerations from a list of attributes and enumerations associated with the products, creating a ZDD sub-tree by scanning the Include ZDD of the rule model and keeping paths having user-selected enumerations set, determining paths through the ZDD sub-tree terminating at a “one” node to produce potentially valid combinations, checking the potentially valid combinations against the Exclude ZDD of the rule model to determine valid combinations, excluding combinations that are excluded under the Exclude ZDD, and providing the valid combinations to a user as an indication of products having valid or compliant specifications. Typically, the providing step includes displaying valid product choices on a display monitor. In a specific embodiment, the scanning includes examining nodes of the Include ZDD against an Index value of selected enumerations to create a node in the ZDD sub-tree. Alternatively, the scanning may include examining nodes of the ZDD sub-tree against an Index value of selected enumerations to recursively create a node in the ZDD sub-tree. Potentially valid combinations of the determining step comprise nodes of paths terminating at a “one” node of the ZDD sub-tree. Another aspect of the invention comprises a corresponding apparatus that implements the aforementioned method or a computer-readable medium including program instructions to effect operation of the method in a computer.
According to another aspect of the present invention, an apparatus to provide a user with a list of product choices from products whose compatibility is characterized by a ZDD rule model having one or more Include and Exclude rules comprises an input device to enable selection of attributes and enumerations from a list of attributes and enumerations associated with the products; a processor including routines to effect creation of a ZDD sub-tree by recursively scanning the Include ZDD of the rule model and keeping paths having user-selected enumerations, to determine paths through the ZDD sub-tree terminating at a “one” node to produce potentially valid combinations, and to check potentially valid combinations against an Exclude ZDD of the rule model to find valid combinations, and an output device that outputs the valid combinations as an indication of products having valid specifications.
In addition, another aspect of the present invention includes a computer-readable medium to effect operation of a computer to provide a list of product choices from products whose compatibility is characterized by a ZDD rule model having one or more Include or Exclude rules where the list of product choices is provided in response to user-selected attributes and/or enumerations. The computer-readable medium includes program instructions to effect selection of attributes and enumerations thereof from a list of attributes and enumerations associated with the products, creation of a ZDD sub-tree by recursively scanning an Include ZDD of the rule model and keeping paths having user-selected enumerations set, determination of paths through the ZDD sub-tree terminating at a “one” node to produce potentially valid combinations, checking potentially valid combinations against an Exclude ZDD of the rule model to determine valid combinations and excluding said combinations that are excluded under the Exclude ZDD, and provision to a user a choice of products (or services) having valid combinations of specified features.
Other aspects and features of the invention will become apparent upon review of the following description. The invention, though, is pointed out with particularity by the appended claims.
The present invention makes use of zero-suppressed binary decision diagrams (ZDDs), which are referenced above in the Cross-References To Related Patents and Patent Applications. A ZDD is made up of an Index that maps directly to enumerations (e.g., product features), a “Then” leg that points to a ZDD node, and an “Else” leg that points to another ZDD node. To obtain a list of choices according to the herein described illustrative embodiment as shown in
Include Processing:
To generate valid choices or combinations, the method or computer implementation thereof scans through an Include ZDD of a packaged ZDD rule model and keeps all paths in the Include ZDD that have enumerations set (e.g., asserted or selected). For every node traversed during the scan, one of the following steps occurs with respect to a node in the include ZDD:
The above rules describe a recursive procedure to create the ZDD. The resulting ZDD is a sub-tree of the original Include ZDD of the rule model characterizing the product or service in question, and is used to produce valid combinations or choices based on user-selected input criteria. The preferred method or apparatus then adds in nodes for all of the enumerations that are always valid. This modified ZDD is then stored as a SelectionCombos object described in the appendix, which is returned to the user or calling routine.
Traversing the SelectionCombos Tree Object:
Valid combinations are read from the SelectionCombos object using a GetFirstCombo routine, also described in the appendix, to move to the first valid combination. A first combination by finding a complete path through the ZDD that ends on the “one” node. Then the GetNextCombo routine is invoked to get the next valid combination. GetNextCombo walks the next path in the ZDD. It's important to note that the order of the combinations is the same as the index order from the Include ZDD.
Exclude Processing:
As each possible combination or choice is produced, it is checked against the Exclude ZDD of a packaged rule model characterizing the product or service. If the resulting combination is excluded, then another combination is produced. When a combination is found that isn't excluded, it is returned to the calling routine or end user by way of a display or other output as a valid choice or combination. Thus, combinations are excluded in real-time. Because combinations are excluded in real-time, one cannot obtain an accurate count of valid combinations until completion. One can, however, obtain an upper limit of the number of valid combinations by counting all paths in the resulting include ZDD.
Bookmarks:
As the SelectionCombos object is traversed, locations can be bookmarked. This allows the user to jump back to the bookmark and start getting combinations from that location. A MakeBookmark routine writes a new bookmark in memory for later recall. It creates a collection of the enumeration indexes on a current path and adds this collection to the end of an array in the SelectionCombos object. The routine returns the index of the new array entry. A GotoBookmark requires an integer. This routine will move to an existing bookmark in the array of bookmarks.
Preferable, the bookmarks are not ordered or sorted. They stay in the order that they are created. For example, if the following sequence of operations is performed:
The bookmarks will appear, as follows:
The bookmarks preferably remain for the entire life of the SelectionCombos object.
Based on the above teachings, the invention also embraces modifications not explicitly shown in the drawings or written description. In particular, the invention is preferably practiced utilizing zero-suppressed binary decision diagrams (ZDDs) but software emulations or other representations of ZDDs may be employed to achieve substantially the same results. Typically, a keyboard and pointing device (e.g., a mouse) is used to supply inputs to a GUI (graphical user interface). The GUI also is used to provide results to the user. A processor (desktop, handheld, or other portable computing device) typically implements the method. Access and transfer of data may occur locally or via a network, e.g. the Internet or a LAN. Also, the illustration was directed to a product configuration business rule, but may be extended to other scenarios to the same extent described in the incorporated and related patents and patent applications. Accordingly, the disclosure is not intended to limit the scope of the invention set forth by the appended claims.
Notations Used
The notation used for attributes in this document is “Attr” followed by a number. The first attribute in the examples is Attr1.
The notation for enumerations is “Enum” followed by two numbers. The first number is the attribute that it belongs to. The second number is its number within the attribute from 1 to 5.
The ellipses symbol “ . . . ” is used to show a range of enumerations.
For convenience and illustration, every attribute in the examples shown herein has five (5) enumerations.
The word “related” means that the attributes are in the same rule. The double arrow symbol “” also means that the attributes are related.
GetCombosForSelections Algorithm
Description: Given a set of selections (enumerations and attributes), returns all combinations of a second set of attributes.
Exemplary Code
This routine is only accessible through an API interface. The entry points are:
GetComboCount to determine the total number of combos.
This invention claims the benefit of Provisional Application Ser. No. 60/506,156 filed on Sep. 29, 2003 in the names of Huelsman, et al., entitled Improved Method and Apparatus for Rule Processing, which is incorporated herein. This invention is also related to U.S. patent application Ser. Nos. 10/101,151 and 10/101,154, each filed on Mar. 20, 2002 in the names of the same inventors hereof, which are incorporated herein.
Number | Date | Country | |
---|---|---|---|
60506156 | Sep 2003 | US |