A portion of the disclosure of this patent document contains material to which a claim for copyright is made. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but reserves all other copyright rights whatsoever.
The present disclosure relates generally to the field of data processing systems. More particularly, the present disclosure relates to data processing systems that use rules/models to approve users of the data processing system. Even more particularly, embodiments relate to data processing systems that apply rules/models to user information enhanced by data from distributed sources.
In recent years, Internet-based systems and other computer systems that facilitate purchasing (buying or leasing) automobiles or other assets have become increasingly important tools for both consumers and sellers. For example, in the automotive industry, vehicle search services provided through the Internet have revolutionized the process of searching for a vehicle and dealer management systems (DMS) have transformed the management of finance, sales, parts, inventory and administration of other aspects of running a dealership. Despite the prevalence of these tools, the purchase process remains highly fractured.
The purchase process for an automobile, for example, typically involves several distinct steps including: i) vehicle search and selection, ii) a test drive, iii) price negotiation, iv) third party loan approval, v) selection of financing and insurance (F&I) options, vi) document generation and execution. In a typical scenario, a consumer looking to purchase a vehicle wanders dealer lots or uses disparate web sites provided by dealers and third parties to locate vehicles of interest. If the consumer chooses to finance the vehicle, the consumer may also go to a bank or use the bank's web site to apply for a loan. In addition or in the alternative, the consumer may choose to finance the vehicle through a loan process facilitated by the dealer's sales desk or F&I department, in which case the dealer will interact with one or more loan providers to submit loan applications for the consumer. In some cases, the consumer may have to wait days to hear back from a bank on a loan application or may be frustratingly stuck at the dealership for hours waiting for approval for a loan facilitated through the F&I department.
Conventional systems cannot approve a user for financing in the time expected by users to receive a result over the Internet. First, loan applicants must often provide copies of papers documents such as pay stubs or tax documents to verify income. This may require communicating with the loan provider through additional channels (e.g., regular mail, email). But, even if the user can upload the documents to the loan providers web site, this process is cumbersome, often requiring that consumer locate and scan paper documents. Moreover, such income verification documents are often manually reviewed by the loan provider.
Furthermore, loan providers use a loan-to-value ratio (LTV) (ratio of the loan to the value of the asset purchased) to approve loans for illiquid assets (or other assets that can act as security). Generally, the value of the asset must be sufficient to secure the entire loan even if the purchase includes items that cannot be secured (e.g., service contracts). As such, the loan approval process requires that a consumer know, prior to applying for financing, the value of the asset being purchased, its price, and their down payment or cap cost reduction. Consequently, financing often does not happen until a consumer and seller agree on a price and down payment/cap cost reduction for an asset (e.g., a consumer and dealer agree on a price for a specific car). Thus, even if a user applies online for financing prior to going to the dealership, the user must log back in or otherwise contact his/her financial institution to complete the loan once the user and dealer have agreed on a price. Conventional methods of online financing are thus inefficient, requiring multiple sessions.
Embodiments relate to a rules/model-based data processing system. More particularly, embodiments relate to a rules/model-based data processing system that approves applications by users of the data processing system based on data from distributed sources. In some embodiments, the system is configured to receive a request for approval, access rules/models that fit the goal of approving or denying the user application, obtain data from distributed sources, apply rules/models to generate processed data and determine if the obtained or processed data fits the rules to determine if the application is approved. The system may also apply the rules/models to the obtained or processed data to generate a score for the user that can be used in downstream processes.
One embodiment comprises a rules-based data processing system comprising. a mobile device processor and a mobile application executable to present a graphical user interface at the mobile device, the graphical user interface comprising series of application pages, receive a set of application data based on user interaction with the graphical user interface, send the set of application data to a server computer for processing, request approval of a user application comprising the set of application data. The system may further comprise a data store storing approval rules referencing a set of information provider data from a remote information provider system. The system may further comprise a server computer server computer coupled to the data store and comprising a server processor and a server data application executable to access the approval rules based on a request to approve the user application from the mobile application, connect to the remote information provider system to retrieve, using personally identifiable information from the user application, the set of information provider data referenced by the approval rules, analyze the set of information provider data to determine a debt obligation of the user, based on the debt obligation of the user, apply the approval rules to determine an affordability score for the user and send a decision response and the affordability score to the mobile application, wherein the mobile application is further executable to present an application page indicating approval of the user application and the affordability score in response to the decision response indicting approval of the user application. The server data application may be further executable to return the decision response to the mobile application in the same session in which the request to approve the user application was received.
The server computer may comprise a set of application program interfaces (APIs) specifically configured for a plurality of remote information provider systems. The server data application can select the API for the remote information provider system from the APIs and retrieve the set of information provider data using the selected API.
According to one embodiment, the system can comprise a maximum debt-to-income ratio (DTI) and maximum payment-to-income ratio (PTI) stored in the data store and the approval rules can comprise an affordability rule that references credit report data from a credit reporting service. The server data application can be executable to connect to the credit reporting service and retrieve a credit report for the user using personally identifiable information from the user application, the credit report comprising trade lines, analyze the trade lines in the credit report to determine the debt obligation, determine a current DTI for the user from a user income, such as a verified income and the debt obligation, determine the affordability score so that the affordability score does not exceed the maximum PTI and when added to a specified income for the user, does not exceed the maximum DTI, and enhance the set of application data with the affordability score. The rules-based data processing system may further comprise a maximum payment limit, wherein the affordability score is limited by the maximum payment limit. The server data application may be further executable to determine the verified income using at least two different income measures selected from a projected income determined based on financial transactions in a financial account of the user, a self-reported income and an estimated income.
The approval rules may further comprise an income verification rule to verify a user's income, the income verification rule referencing a self-reported income and an estimated income from an income estimation service. The server data application can be executable to connect to the income estimation service and retrieve the estimated income for the user from the income estimation service using personally identifiable information from the user application, determine the verified income from the estimated income and self-reported income based on the income verification rule. The self-reported income may be provided by the user to the mobile application.
The rules-based data processing system may further comprise an income prediction model stored in the data store, the income prediction model referencing an estimated income from an income estimation service and a projected income determined based on financial transactions in a financial account of the user. The approval rules may comprise an income verification rule that references a predicted income from the income prediction model. The server data application can be executable to connect to the income estimation service and retrieve the estimated income for the user from the income estimation service using personally identifiable information from the user application and retrieve the projected income for the user based on financial transactions in the financial account of the user, wherein the projected income is retrieved using credentials provided by the user to the mobile application. The server data application can determine the predicted income based on the income prediction model and using the projected income and the estimated income and determine the verified income according to the income verification rule using the predicted income determined from the income prediction model and a self-reported provided by the user to the mobile application.
The rules-based data processing system may include an income prediction model stored in the data store, the income prediction model referencing an estimated income from an income estimation service and a projected income determined based on financial transactions in a financial account of the user. The approval rules may comprise an income verification rule that references a predicted income from the income prediction model, the estimated income and a self-reported income. The server data application can be further executable to connect to the income estimation service and retrieve the estimated income for the user from the income estimation service using personally identifiable information from the user application and retrieve the projected income for the user based on financial transactions in the financial account of the user, wherein the projected income is retrieved using credentials provided by the user to the mobile application. The server data application can determine the predicted income based on the income prediction model and using the projected income and the estimated income and determine a verified income according to the income verification rule using the predicted income determined from the income prediction model, the self-reported income, the self-reported income provided by the user to the mobile application.
The drawings accompanying and forming part of this specification are included to depict certain aspects of the invention. A clearer impression of the invention, and of the components and operation of systems provided with the invention, will become more readily apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in the drawings, wherein identical reference numerals designate the same components. Note that the features illustrated in the drawings are not necessarily drawn to scale.
The invention and various features and advantageous details thereof are explained more fully with reference to the exemplary, and therefore non-limiting, embodiments illustrated in the accompanying drawings and detailed in the following description and appendices. It should be understood, however, that the detailed description and the specific examples, while indicating the preferred embodiments, are given by way of illustration only and not by way of limitation. Descriptions of known programming techniques, computer software, hardware, operating platforms and protocols may be omitted so as not to unnecessarily obscure the disclosure in detail. Various substitutions, modifications, additions and/or rearrangements within the spirit and/or scope of the underlying inventive concept will become apparent to those skilled in the art from this disclosure.
The present disclosure relates in general to a rules/model-based data processing system. More particularly, embodiments relate to a rules/model-based data processing system that approves applications by users of the data processing system based on data from distributed sources. In some embodiments, the system is configured to receive a request for approval, access rules/models that fit the goal of approving or denying the user application, obtain data from distributed sources, apply rules/models to generate processed data and determine if the obtained or processed data fits the rules to determine if the application is approved. The system may also apply the rules/models to the obtained or processed data to generate a score for the user that can be used in downstream processes. The system can thus leverage a variety of distributed data systems to enhance the consumer information and apply rules specific to the data obtained from the data systems and processed data generated from the obtained data to approve an application with a high degree of certainty, very quickly (e.g., within five minutes, in some cases in less than a minute and, even more preferably, in less than ten seconds from a request to approve an application). The process approving a user application can be achieved using a simple operator interface on a mobile device and, in some embodiments, in a single client session in real-time. In some cases, if a user fails a step in the approval process, the system may request additional information from the user. Thus, the complexity of the interface may depend on the user or quality of information provided by the user.
According to one aspect of the present disclosure, the computer system may facilitate efficient financing approval by approving financing based on the consumer's ability to afford a periodic obligation (e.g., monthly payment) rather than on loan-to-value ratio (LTV). The computer system can apply rules or a model to the consumer's financial data to determine an affordability score that determines a periodic payment that an intermediary (financing provider) will approve for a consumer. The financing may be used, in some implementations, to purchase a mixture of illiquid assets (or other assets that can be used as collateral) and items that cannot be secured. Therefore, the assets may only partially provide security for the financing. The computer system's application of rules/models can facilitate a novel securitization, referred to herein as “partial-asset securitization,” in which the debt obligations of consumers are partially backed by illiquid assets (or other assets that can be used as security).
As discussed above, the rules/models based data processing system may apply approval rules/models to approve a user application and determine an affordability score for the user. The affordability score can be used in a search process to identify inventory items that the user is eligible purchase. Furthermore, the application process can collect information about the user which can be combined with inventory item information to create an order. The rules/model-based data processing system can eliminate many of the complications and delays of previous solutions by providing an interoperable system that approves financing, searches inventory and tracks orders.
Embodiments of the systems and methods of the present invention may be better explained with reference to
In accordance with one aspect of the present disclosure, data system 100 may be a data processing system that provides, for example, a computer system for automating and facilitating financing. Data system 100 may be provided, for example, by or on behalf of an intermediary that finances the purchase of vehicles or other assets by a consumer.
Data processing system 100 may comprise one or more computer systems with central processing units executing instructions embodied on one or more computer readable media where the instructions are configured to perform at least some of the functionality associated with embodiments of the present invention. These applications may include a data application 150 comprising one or more applications (instructions embodied on a computer readable media) configured to implement one or more interfaces 160 utilized by the data processing system 100 to gather data from or provide data to client computing devices 110 and information provider systems 120.
Data processing system 100 utilizes interfaces 160 configured to, for example, receive and respond to queries from users at client computing devices 110 and interface with information provider systems 120, obtain data from or provide data obtained, or determined by data processing system 100 to any of client computing devices 110 and information provider systems 120. It will be understood that the particular interface 160 utilized in a given context may depend on the functionality being implemented by data processing system 100, the type of network 105 utilized to communicate with any particular entity, the type of data to be obtained or presented, the time interval at which data is obtained from the entities, the types of systems utilized at the various entities, etc. Thus, these interfaces may include, for example, web pages, web services, a data entry or database application to which data can be entered or otherwise accessed by an operator, APIs, libraries or other type of interface which it is desired to utilize in a particular context.
Data application 150 can comprise a set of processing modules to process obtained data or processed data to generate further processed data. Different combinations of hardware, software, and/or firmware may be provided to enable interconnection between different modules of the system to provide for the obtaining of input information, processing of information and generating outputs.
In the embodiment of
A decision engine 175 applies approval rules 140 to user application data provided by user application module 166 to approve or deny the application. Examples of approval rules 140 include, but are not limited to, fraud detection rules, identity verification rules, credit check rules, income verification rules and affordability rules. If an application is not approved, decision engine 175 may return the reason that the application was not approved. A failure to pass the approval rules may result in any configured action, such as withholding further information or services from the consumer, requesting the consumer re-enter information or provide additional information, and/or alerting an authority that of the failed check.
The application of approval rules 140 or other processes may leverage predictions. Prediction module 180 can apply prediction models 142 to data associated with the user application to generate prediction scores that may be used in processing the approval rules 140 or to enhance an application. By way of example, but not limitation, data processing system 100 may apply an income prediction model to generate a prediction of a user's income that can be used by an affordability rule to determine an affordability score for the user. As another example, data processing system 100 may apply a credit risk prediction model to generate a credit risk score for a consumer.
Approval rules 140 and prediction models 142 may require obtaining information from a number of third party distributed systems. As an example, application of an identity verification rule may require gathering information from an identity verification service provided by an information provider system 120. As another example, an income prediction model may require interacting with the computer systems of the user's bank to verify the consumer's current and recent income, as well as other relevant banking data.
Based at least in part on some of the user application data, a data vendor module 182 may perform interaction with one or more third party sources to obtain various types of information used in applying approval rules 140 and prediction models 142. For example, data vendor module 182 may interact, via appropriate APIs, with information provider systems 120 to collect fraud detection data, identity verification data, credit reports, income estimation data, income projection data and other data.
Inventory module 164 manages inventory data for inventory items (e.g., goods and services assets) that can purchased via data processing system 100. Inventory module 164 may further search inventory records 136 in response to search criteria received from client application 114 or other modules and return responsive results. Order module 168 is configured to interact with consumer users accessing system 100 via client applications 114. Order module 168 is configured to obtain appropriate input information from the users, e.g., via one or more interactive GUIs, other modules or third party systems, to populate order profiles and orders that contain data for purchase decisions. Order module 168 can manage the user orders 134 through an order lifecycle. Orders 134 may be persisted as records in data store 130.
Furthermore, data processing system 100 may include data store 130 operable to store obtained data, processed data determined during operation and rules/models that may be applied to obtained data or processed data to generate further processed data. In one embodiment, data processing system 100 maintains user applications, orders and inventory objects. Further, in the embodiment illustrated, data store 130 is configured to store rules/models used to analyze application data, order data and inventory data, such as application approval rules 140 and prediction models 142. Data store 130 may further store inventory records 136 and orders 134. Data store 130 may comprise one or more databases, file systems or other data stores, including distributed data stores managed by data processing system 100.
Client computing devices 110 may comprise one or more computer systems with central processing units executing instructions embodied on one or more computer readable media where the instructions are configured to interface with data processing system 100. A client computing device 110 may comprise, for example, a desktop, laptop, smart phone or other device. According to one embodiment, a client computing device 110 is a mobile device that has a touchscreen display and relies on a virtual keyboard for user data input. Client application client application may be a mobile application (“mobile app”) that runs in a mobile operating system (e.g., Android OS, iOS), and is specifically configured to interface with data processing system 100 to generate application pages for display to a user. In another embodiment, the client application 114 may be a web browser on a desktop computer or mobile device. In accordance with one embodiment, a user can apply for a user account with the system 100 and apply to qualify for financing.
Turning to the various other entities in the topology of
In accordance with one embodiment, a user can utilize client application 114 to register with data processing system 100, apply for financing, and perform other functions. Client application 114 can be configured with an interface module 115 to communicate data to/from data processing system 100 and generate a user interface for inputting one or more pieces of information or displaying information received from data processing system 100. In some embodiments, the application 114 may comprise a set of application pages through which application 114 collects information from the user or which client application 114 populates with data provided via an interface 160.
As discussed above, a user may apply for financing via client application 114. To this end, client application 114 may be configured with a series of application pages configured to collect user application data and display user application data. The data may be maintained at the client device 110 in a local representation of a user application 118 (a data structure configured to hold user application data). The local representation 118 may include application data to be sent to data processing system 100 or data received from data processing system 100.
The approval process relies on personally identifiable (PII) information provided by the consumer to data system 100. Client application 114 is configured to provide a low friction interface that contains few, if any, form fields for the explicit input of PII. In a low friction implementation, additional PII (or other information) used in the approval process can be determined from the limited information provided by the user. In other words, client application 110 can provide an interface that asks the consumer a set of thin questions, which can be used to build a robust profile on the user.
Client application 114 can be configured to request a minimum amount of user identification information and financial information from a consumer to allow data processing system 100 to make a determination of whether the user is approved to purchase an inventory item and the inventory items for which the user is approved. Preferably the mobile application pages are configured to minimize the number of fields that the user must populate for an approval determination to be made. The user supplied user identification information can be used to obtain additional consumer information from a variety of information provider systems 120.
In accordance with one embodiment, information provided by the user is correlated with information from various databases (e.g., credit reporting agencies, financial institutions) to build profile of customer. Client application 114 or data application 150 can, for example, receive a first, limited set of user record information from a first source (e.g., from the user), correlate the user record information with additional PII and accounting information from additional sources and use the additional PII and accounting information to enhance the user record (e.g., to produce an enhanced user record). The system may use the information from the (enhanced) user record to approve financing.
To make the experience convenient for the consumer, the system can gather a large portion, if not all, necessary information for the initial financial approval from an image scan of the consumer's government issued identification taken directly on the phone or other mobile device. The consumer has the ability to then confirm data. In one embodiment, an application page of mobile application 114 is configured to allow a user to input an image of an identification document for the user. Client application 114 may access a mobile device's picture roll or include an imaging module 116 that can access a camera of the client computing device 110 (for example, a smart phone camera) to take an image of a user identification document (for example, a scan or photograph of a driver's license, passport or other user identification document). The image of the user identification document is used to obtain PII for the user using an internal library or a remote information provider system 120. Data processing system 100 may use the PII input directly by the user, obtained using the user identification document image, or otherwise obtained to obtained additional consumer information, including financial information, associated with the consumer from information provider systems 120.
According to one embodiment, various modules discussed above can be implemented as a set of services at one or more servers.
The services may utilize various data stores operable to store obtained data, processed data determined during operation, rules/models that may be applied to obtained data or processed data to generate further processed data and other information used by the services. In the embodiment illustrated user application service 210 stores user application records in user application service store 212, decision service 250 stores data in data store 259, order service 220 stores order data in order service data store 222 and inventory service 230 stores inventory records in inventory service data store 232. The various services may utilize independent data stores such the data store of each service is not accessible by the other services. For example, each of user application service 210, decision service 250, order service 220, inventory service 230 may have its own associated database.
Secure network services 202 include interfaces to interface with client computing devices 110 and information provider systems 120. The interfaces can be configured to, for example, receive and respond to queries from users at client computing devices, interface with information provider systems 120, obtain data from or provide data obtained, or determined by architecture 200 to client computing devices or information provider systems 120. It will be understood that the particular interface utilized in a given context may depend on the functionality being implemented, the type of network utilized to communicate with any particular entity, the type of data to be obtained or presented, the time interval at which data is obtained from the entities, the types of systems utilized at the various entities, etc. Thus, these interfaces may include, for example, web pages, web services, a data entry or database application to which data can be entered or otherwise accessed by an operator, APIs, libraries or other type of interface which it is desired to utilize in a particular context. Secure network services 202 provide a walled off segment of the system the system. Certain unencrypted information, such as PII, is not available to other components of the software architecture outside of secure network services 202.
In the embodiment illustrated, secure network services 202 include an interface proxy service 204 that receives calls and data from client applications (e.g., client application 114 or web browser accessing a dealer portal) or services of architecture 200, routes calls and data to the services of architecture 200 and routes responses to the client application or calling service as appropriate. Interface proxy service 204 can provide authentication services, assigning unique user ids to new users, authenticating users when they log back in to data processing system 100 and providing other functionality. Once a user has authenticated, interface proxy service 204 can provide context (such as a user id) that can be passed with requests to other services.
Secure network services may also include data vendor service 270 configured to communicate with information provider systems 120 to request information from the information provider systems 120. For example, data vendor service 270 may include APIs for services at information provider systems 120, such as 3rd party services, that provide data incorporated in decisions. Data vendor service 270 may include APIs dedicated to each information provider system 120.
Encryption services 208 are provided to internally encrypt/decrypt sensitive information, such as personally identifiable information (PII), and other information received via data vendor service 270 and interface proxy service 204.
At least some data communicated between data processing system 100 and a client computing device may be encrypted beyond encryption generally used to encrypt communications (such as HTTPs). For example, PII provided by a client application (e.g., mobile application 114) may be encrypted according to a first encryption protocol. Interface proxy service 204 may forward the encrypted PII for use by other services, such as user application service 210, which cannot decrypt the information.
Information provider systems 120 may require PII to return information about a consumer (e.g., the API for a credit reporting agency information provider systems 120 may require inputting a name, address, social security number or other PII to receive a credit report). When data vendor service 270 receives encrypted PII from another service to send to an information provider system 120, data vendor service 270 can call encryption service 208 to decrypt the PII from the internal format and then data vendor service 270 can then encrypt the PII in the encryption format used for the API call to information provider system 120. Similarly if PII is received from information provider system 120 via data vendor service 270, data vendor service 270 can decrypt the PII according to the encryption/decryption used by the particular data vendor, call encryption services 208 to encrypt the PII according to the internal format and forward the encrypted PII to another service. Thus, PII is highly secure because, in some embodiments, it is only ever decrypted at secure network services 202 to be re-encrypted for forwarding to other services.
Interface proxy service 204 and data vendor service 270 may thus be configured with rules regarding which PII is to be encrypted by encryption service 208. Examples of information that can be considered PII based on the rules includes, but is not limited to: first name, last name, middle name, date of birth, email address, government id numbers (social security numbers, driver's license number), address, driver's license bar code scan, driver's license image, phone numbers, signature, insurance card information, bank account number, bank account name, bank account balance, employment information or other information. In some embodiments, the rules will specify which fields of data in an input from a client application or response from an information provider system 120 are to be internally encrypted according to the internal encryption format.
User application service 210 is configured to receive user requests to register with the data processing system, manage user applications and communicate with client applications regarding user applications for approval. In particular, user application service 210 can receive requests to apply for financing along with associated consumer data. According to one embodiment, a request to initiate an application along with registration information (e.g., an email address) is received via an API call to interface proxy service 204 from client application 114. Interface proxy service 204 route the call and consumer data (for example, including the encrypted PII) to user application service 210. User application service 210 creates a user application having a unique application id for the user. User application service 210 returns the application id to client application 114 (via interface proxy service 204) for use in future communication regarding the application.
The user application may be managed as an object that proceeds through multiple states. The user application may be persisted in user application service data store 212 as a user application record, which may be one example of a user record 132. User application service 210 can further receive additional consumer information from client application 114 and enhance the user application record.
In an exemplary embodiment, user application service 210 is configured to receive an API request routed by interface proxy service 204 for an approval decision for a user application. User application service 210 generates a decision request to decision service 250 requesting an approval decision and provides the decision input attributes required for a decision. User application service 210 is configured to receive a decision result from decision service 250 and generate a response to client application 114. User application service 210 may also take other specified actions based on the decision result. When a user application is approved, user application 210 may pass context information to other services, such as e-commerce services that can use the approval to permit purchasing assets. Such context information may include, for example, consumer PII, user id, application id, an affordability score, a credit risk score or other information used by the downstream services. According to one embodiment, for example, user application 210 may pass context information to order service 220.
As consumers search and view inventory items, order service 220 maintains order profiles for the users containing order context information. An order profile can contain information about a consumer (consumer context data received from user application service 210) and inventory item (data about assets viewed or selected for purchase). Order service 220 can receive requests to search or view inventory items, add consumer context to the request and forward the request to inventory service 230 to search inventory records. When a user selects to view an inventory item, order service 220 can maintain a record of the item viewed. Order service 220 may provide functionality to allow a user to purchase an inventory item via data processing system 100.
Order service may manage order profiles that hold information about consumers and any items the consumer has selected view. According to one embodiment, when a user application is approved, order service 220 receives consumer context information from user application service 210 and creates an order profile. Further, when a user selects particular items to view, order service 220 receives the item information from inventory service 230. When a user indicates that he/she wishes to finalize a purchase, inventory service 230 can create an order, which may be managed as an object that proceeds through multiple states and may be persisted in order service data store 222, and initiate any other processes to complete the order (generating documents, initiating delivery of items or taking other actions).
Inventory service 230 manages inventory records for inventory items. The inventory items may be associated with payment schedules (e.g., initial and periodic payments). Inventory service 230 can search inventory records responsive to queries and return records that meet the search criteria.
Decision controller 252, according to one embodiment, is the main application layer of decision service 250 that routes calls between services and is responsible for logging actions. Decision controller 252 is configured to receive requests for decisions from other services and return decision results. Decision controller may assign a decision request a unique decision identification and return the decision identification to the requesting service. Decision controller 252 may pass a request for a decision along with relevant input data to decision engine 254 and pass the decision result to a requesting service.
Decision engine 254 is a rules-based software system that provides a service that executes decisions on decision inputs in a runtime production environment to generate a decision output. Executing a decision can include applying a set of decision rules to the data to approve/disapprove the action and/or take some responsive action, such as generate an output.
A decision input defines the set of data for which a decision will be made. In data processing system 100, the decision input may be some minimum set of information needed to approve a user and/or a particular transaction, such as the user's name, address, social security number, driver's license number or other information used in the decision process. These values may be encrypted and/or tokenized when passed to decision controller 252. At least a portion of the data to be included in a decision output may be specified by the decision executed.
A decision may have an associated “kind” that indicates the type of decision being implemented. The decision “kind” can be used by other services (e.g., user application service 210) to request a decision or other decisions to reference that decision (to create a tree of decisions). Decision base 256 specifies, for each decision type, rules on how to interpret data to approve/disapprove users or transactions, determine products to offer or make other decisions consistent with regulations, business policy or other constraints. For example, the decision base 256 may specify the approval rules 140 to be applied.
In general, decision engine 254 executes a decision to determine if a set of data meets conditions specified in the decision rules for the decision type and generates an output based on the application of conditions to the data. The data to which the conditions are applied may or may not include the decision inputs. Decisions may reference data sources defined by decision service 250, predictions from data modeling services and prediction services 260 and sub-decisions and contain rules that are applied to data obtained from information provider systems 120, prediction scores from prediction and modeling service 260, sub-decisions, decision inputs or other data.
If a decision references a prediction, decision engine 254 can generate a prediction request to prediction and modeling service 260. Prediction and modeling service 260 can apply a prediction model to a set of prediction inputs to return a prediction score. A prediction model may be a set of user defined prediction rules or a machine learning model.
According to one embodiment, prediction and modeling service 260 comprises a model controller 262 that receives prediction requests and delegates the request to the correct prediction model 264 based on rules or to a specific model if the specific model is specified with the prediction request. For example, model controller 262 can be configured to delegate a request for an income prediction to a currently active income prediction model if the income prediction request does not specify a particular income prediction model. In this case, prediction and modeling service 260 can process the request using the currently active income prediction model. Modeling service configuration data 266 specifies what models are used and what models are active.
Decisions and prediction models may require data from information provider systems 120. Data vendor service 270 can be used to collect data from information provider systems 120. According to one embodiment, decision service 250 can define and manage data sources, data source versions, data source arguments, and data source records. A data source specifies a set of data from one or more information provider systems 120 (e.g., 3rd party services provided by information provider systems 120) that can be passed to other services. For example, a data source may be a report containing data gathered from one or more information sources 120. The decision service 250 can maintain a definition of the arguments needed to collect the data for an instance of a data source version, receive argument values from other services, collect the data via data vendor service 270 and pass the data source instance to the requesting service or use the data source in executing a decision. Decision service 250 may further cache data source instances for faster retrieval in response to a subsequent request for the data source instance.
According to one embodiment, when decision controller 252 receives a request for a decision, decision engine 254 confirms what data is required to retrieve a data source instance from an information provider system 120 to execute the decision prior to executing an API call to data vendor service 270. For example, if decision engine 254 requires “Report A version 1” data source when processing a request to qualify a user, and a social security number is required to fetch that report, decision engine 254 can cross reference the required arguments for fetching said data source with the arguments provided to decision service 250 for the generating the decision and assess whether the dependencies have been met, resulting in a fetching of the data source report, or not, resulting in decision service 250 responding to the user application service 210 with what further arguments are needed. In response to a complete set of arguments, i) decision engine 252 passes the arguments (which may be encrypted or tokenized) to data vendor service 270, ii) data vendor service 270 collects the Report A version 1 instance from an information provider system 120 via the API for system (which may use encryption service 208 to decrypt/encrypt PII) and iii) data vendor service 270 provides the Report A version 1 instance to decision engine 254. Furthermore, decision service 250 may cache the report instance so that it can respond to requests for the report within a specified time window with cached data rather than fetching the data again from the information provider system. In some cases, the decision may specify a ‘force’ fetch of a data source, such that decision service 250 fetches a fresh report from data vendor service 270 (e.g., from the third party vendor) rather than using a cached report instance.
Similarly, according to one embodiment, the decision engine 254 may not know, when the decision engine 254 receives a request for a decision, what data is required to make a prediction required by the decision. The decision engine can call over to the prediction and modeling service 260 and prediction and modeling service 260 informs the decision engine 254 of the data needed for the prediction. For example, if decision engine 254 makes a call to prediction service 260 for an “Income Prediction version 1”, the prediction service can inform decision engine 254 of the data sources or other data needed to make the prediction. In response, i) decision engine 254 communicates with data vendor service 270 to collect the data sources as described above; ii) passes the data source instances or other data to the prediction service 260; iii) receives the results of the requested prediction from the prediction service 260.
Any data sources required and the data from the data sources used by particular rules in decision making can be specified in the decision rules in decision base 256 or prediction models 262 stored in modeling service configuration data 262 rather than the decision engine code. From the perspective of decision engine 254, gathering data sources and receiving the results of predictions is simplified as decision engine 254, in some embodiments, need only be able to request a data source instance from and pass arguments to data vendor service 270 to receive a data source instance and request a prediction from and pass arguments to prediction service 260 to receive prediction results from service 260.
Thus, based on the decision type and decision input attributes for the decision that decision engine 254 is being requested to make, decision engine 254 can access the appropriate rules (e.g., from decision base 256), retrieve the required data sources and/or prediction scores, process the decision rules to generate a decision result and return the decision result to the requesting service. The decision result may include the id of the decision and metadata about the decision including, for example, an indication of whether the decision result was a pass or a fail, prediction scores generated when making the decision, decline codes indicating why the decision failed or other decision metadata.
Decision controller 252 returns the decision result to the calling service (e.g., user application service 210). Decision controller 252 may also store data associated with the decision in decision service data store 259 (such as, but not limited to, decision type, decision inputs, model identifier, prediction inputs, prediction scores, data source instances, decision result metadata).
User application service 210 is configured to update the appropriate user application record with the decision result data to update the state of the user application. User application service 210 further includes rules to map decision results to actions. According to one embodiment, if the decision result indicates a pass, user application service 210 can generate a response to the preapproval requesting from client application 114 including data, such as the affordability score, and send the response to the client application 114 via interface proxy service 204. Client application client application 114 can be configured to proceed to a next stage in a purchase process by, for example, displaying an application page corresponding to the next stage on the client computing device 110.
User application service 210 can categorize decline codes as soft and hard declines. Soft decline codes may be mapped to responses to request additional information or provide instructions to the user to take some action, such as call a customer service representative. Based on the soft decline code, user application service 210 can generate the appropriate response and send the response to the client application 114 via interface proxy service 204. Based on the decline response, client application 114 can display the appropriate application page to allow the user to input additional information or provide instructions to the user on how to continue the application stage. In response to receiving the requested additional information from the user, user application service 210 can request that the preapproval decision be reevaluated by decision service 250.
A hard decline, on the other hand, terminates the application stage. User application service 210 may send a hard decline response to client application 114 and client application 114 can display an application page indicating that the user application has been denied and the reasons for the denial. In some cases, user application service 210, responsive to a hard decline code, may send the user application record data to a service configured to report the decline to a credit reporting agency, generate a letters to report the hard decline or take other actions.
Subscription service 290 may receive a payment schedules and financial information from orders, store subscriptions (e.g., in subscription service data store 294) containing the payment schedule and financial information necessary to interact with a consumer's financial institution and interact with financial institutions to execute the payment schedule.
With reference to
A user may download the application and register for an account on data processing system 100 and provide personally identifiable information (PII) to data processing system 100. To this end, client application 114 can be configured with an interface module 115 to generate a user interface for inputting one or more pieces of PII and financial information, which can be temporarily stored in representation of the user application 118. At various points in the application process, client application 114 can forward information from representation of the user application 118 to data processing system 100.
PII collected may include, but is not limited to, the user's full name, driver's license number, home address, date of birth, social security number, email address, telephone number, driver's license expiration date, license plate number, bank account numbers or other PII. Accounting information may include information such as weekly, monthly, or annual income, debts owed by the user and other financial information that can be verified against information from other sources of financial information.
According to one embodiment, the user only supplies a small amount of PII and the system enhances the user record with additional information from distributed sources. For example, in one embodiment, client application 114 prompts the user to provide only a limited number of inputs, such as a portion of the following:
Client application 114 may also prompt the user to log into his or her bank account so that data processing system 100 may access the consumer's financial information.
At step 302, client application 114 presents a page to collect an initial set of user information used to initiate the user application process. As illustrated in
Furthermore, an image (a scan or digital photograph) of the user's government identification can be used to enhance PII without requiring explicit field inputs for each piece of information. To this end, client application 114 can receive an image of a government identification (step 304). For example, client application 114 can be configured to access a mobile device's picture roll to allow a user to select images of the user's government id already present on the camera roll. In another embodiment, client application 114 can include an imaging module 116 that can access a camera of the client computing device 110 (for example, a smart phone camera) to take an image of a user identification document (for example, a scan or photograph of a driver's license, passport or other user identification document). As illustrated in
Additional PII can be obtained from the images of the government id through OCR recognition and machine symbol recognition techniques. For example, a variety of information may be extracted from a driver's license barcode including, but not limited to, the user's full name, home address, date of birth, driver's license number and driver's license expiration date. Thus, at step 306, additional PII can be extracted from the image of the government identification. In some embodiments, client application 114 or data application 150 may include code to OCR the government identification or read symbols (e.g., driver's license barcode) to extract the encoded information. In another embodiment, client application 114 or data application 150, at step 306, may leverage third-party services to extract information from the images of the government identification. For example, a number of data vendors including, but not limited to, Confirm Inc. of Boston, Mass., and Mitek of San Diego, Calif., provide Internet-based services that allow an application to submit an image of a driver's license and return extracted information. Client application 114 or data application 150 may therefore include an interface (e.g., API, library) to provide the image of the government identification to an information provider system 120 that extracts information from images of government identifications (e.g., services that read encoded information from driver's license barcodes) and receive the extracted information in return. Whether the information is extracted by client application 114, data application 150 or a third-party service, the user application record can be enhanced to include PII determined from the information explicitly provided by the user.
At step 308 the authenticity of the government identification may be checked. Client application 114 or data application 150 may include code to verify the authenticity of the identification or may leverage third party identification verification services. According to one embodiment, client application 114 or data application 150 may, for example, include an interface (e.g., API, library) to provide the image of the driver's license to an identification verification service. For example, Confirm Inc. of Boston, Mass. (https://www.confirm.io/confirm-id) and Mitek of San Diego, Calif., and a number of other data vendors provide services that extract data from an images of a driver's license, analyze the scanned identification and return identification verification signals indicating if a scanned identification is authentic (pass) or fraudulent (fail). Thus, for example, client application 114 may include an interface for an identification verification service and be configured to send the images input at step 304 to the identification verification service.
Client application 114 (or data application 150) may therefore receive an identification verification signal in response to sending the scan of the consumer's driver's license to the identification verification service (step 310). In some cases, the identification verification signal and the extracted data are requested from the same service and are received in the same response. A failure for the identification to verify may result in any configured action, such as withholding further information or services from the consumer, requesting the consumer re-enter information or requesting that the consumer provide additional information. For example, if the identification verification service indicates that the identification fails, client application 114 or data application 150 can terminate the application process.
Client application 114 can pre-fill a number of fields in an application for the consumer based on the extracted government identification information (step 312) and give the consumer the option to confirm/update information that may have changed since the identification document issued (e.g., the user may update the residence address if the user has moved, but not yet updated his or her driver's license). At step 314, client application can receive confirmed user information that may include the same values that were pre-populated in the fields of the application page or updated (edited) values. Client application 114 can upload the confirmed user information to data processing system 100. For example,
Client application 114 may also receive financial information used in the application process (step 316).
At step 318, client application 114 collects a set of device information, such as GPS location of the mobile device, operating system, mobile device ID or other information of the device on which client application 114 is executing. Client application 114 can send the device information to data processing system 100 to update the user application record. In the example of
In response to an input signal based on user interaction in the GUI (e.g., in response to the user tapping the “Next” virtual button in
In response to a request for an approval decision, client application 114 receives a decision response. The decision response may include an indication of whether the decision result was a pass or a fail, prediction scores generated when making the decision, decline codes indicating why the decision failed or other decision metadata. If the decision response indicates a “fail” (i.e., the application was not approved), the application may display a page associated with the decline code to the user (step 322). For example, if the decline code indicates that the user's income could not be verified, as discussed below, client application 114 may display a series of pages indicating the reason the application was declined and a page requesting that the user provide bank account information so that the user's self-reported income can be verified against the user's financial transactions. For example,
If the decline code indicates a hard decline, client application 114 may display an application page indicating that the user application has been declined and terminate the process. If the decline code indicates a pass, client application 114 displays a page associated with the approved status (step 324). For example, client application 114 may display a page that indicates an amount for which the user has been approved (an affordability score).
In the example of
Data application 150 can apply rules 140 using a variety of data retrieved from distributed sources. According to one embodiment, data application applies rules to fraud detection data, identity verification data, credit reports, credit risk scores, income verification data 554, predicted income 556, affordability data 564 and other data. Depending on the results at various steps of the registration and approval process, client application 114 may prompt the user to supply additional information. For example, the user may be prompted to supply additional bank account login information if the user's identity and income level cannot be verified against information provided by a credit bureau or if the user's income is below a threshold based on available bureau information. Thus, the approval interface may have different degrees of friction for different consumers, depending on the results of applying rules 140.
The approval rules may incorporate one or more predictions. For example, income verification rules 553 may reference a predicted income 556 provided by an income predication model. The prediction models and approval rules may reference data from information provider systems 120 to which the rules/predictions apply. For example, approval rules or predictions may reference a data source defined by decision service 250. Data processing system 100 can obtain an instance of the data source from the appropriate information provider system 120 an API. Data processing system 100 can determine the data from an information provider system 120 required to execute a rule and obtain the specified information corresponding to the application 502 from the appropriate information provider system 120 (or cache).
At step 512, data application 150 applies a series of rules 512 to prevent further processing if it is known that a user will not be approved for financing and to reduce or prevent fraud. When processing approval rules to evaluate a particular application, can include checks applied prior to data application 150 obtaining information from information provider systems 120 referenced by subsequent approval rules. For example, data application 150 may be configured with minimum self-reported income limits (e.g., self-reported monthly gross income >‘x’), a minimum age (e.g., DOB before ‘y’), only be available to users in certain jurisdictions. For example, if the self-reported income collected at step 316 is less than a threshold, say $3000 or other threshold set in the rules, the application 502 may not pass rules 512. While $3000 is used as the example, the threshold may be set based on rules. In some embodiments, a machine learning model may be used to set the threshold minimum income. Rules 512 may further include online fraud detection rules to determine if the application data indicates online fraud (e.g., based on the device attributes collected at step 318) and identity verification rules executable to determine if the user identification information from application 502 can be verified against other sources of data or if any of the user information is indicative of fraud. Data application 150 may further apply credit check rules to determine if the user meets minimum credit requirements and, in some embodiments, to categorize the user into a credit risk band or provide another credit risk score. A variety of other rules may also be applied.
If an application fails to pass rules 512, data application 150 can generate a decision result 538 indicating the reason that the application was not approved. Further, data application 150 may send a decision response to client application 114 indicating that the application was not approved and the reason the application was not approved. Client application 114 can display one or more pages indicating why the application was not approved and, in some cases, request additional information. Failure to pass rules 512 may result in any configured action, such as withholding further information or services from the consumer, requesting the consumer re-enter information or requesting that the consumer provide additional information.
At step 552, data application 150 determines a verified income for the consumer based on application 502 and leveraging information from distributed sources. Data application 150 can interact with one or more financial institutions, credit reporting agencies, income estimation services (which can be examples of information provider systems 120) or other information to collect information about a user's income and debts to verify income and determine affordability. Data processing system 100 may perform one or more income tests to ensure that a consumer meets minimum income qualifications. As noted above, some of these tests may be performed as part of rules 512. Data application 150 may further apply income verification rules 553 to determine a verified income (represented in the below examples as verified_monthly_income) for the user.
Income verification rules 553, according to one embodiment, may reference an income prediction model that generates a predicted income 556. In accordance with one embodiment, data application 150 collects self-reported income from a consumer, predicts the consumer's income based on information provided by information provider systems 120 and applies rules/models to the self-reported income and predicted income to determine a verified income.
If there is insufficient application data to determine a verified income, data application 150 may generate a decision result 558 indicating that the application was not approved. Furthermore, data application 150 may send a decision response to client application 114 indicating that the application was not approved and the reason the application was not approved. Client application 114 can display one or more pages indicating why the application was not approved and, in some cases, request additional information.
An income prediction model may use self-reported income, an estimated income, a projected income or other data to determine a predicted income (represented as model_income below). In particular, one embodiment of the income prediction model determines a predicted monthly income (model_income) based on:
In one embodiment, the income prediction model determines the predicted income as follows:
The high and low and high income estimations provided can be estimated incomes provided by an income estimation service scaled by a scaling factor (e.g., credit_vision_income_low=credit_vision_income_score*0.9 and credit_vision_income_high=credit_vision_income_score*1.1). The scaling factor may be set by rules, interpolated from the income estimation data (e.g., CreditVision data) or be otherwise determined. In one embodiment, for example, the scaling factors correspond to the standard deviation of CreditVision scores, e.g.:
According to another example embodiment, the income prediction model determines the predicted income based on the estimated income, projected income and an projected income confidence level determined based on financial transactions associated with the user's bank account specified in the application data 502. Using the example of a Plaid projected income and Plaid confidence level, the predicted income 556 can be determined as follows:
where projected_income_confidence is a confidence measure of the income projection. The confidence measure can be determined by data processing system 100 or by the income projection service. For example, Plaid provides not only a plaid_income, but also a plaid_confidence, which can be used as projected_income_confidence in one embodiment. ‘c’ is a confidence level threshold configured in data processing system 100. Preferably ‘c’ is >0.7 and more preferably 0.9 or greater.
The income prediction model may be configured to favor projected income over estimated income because the projected income is directly based on actual bank account records of the consumer. However, a substantial variation between the projected income and estimated income or a low confidence in the projected income may indicate that the consumer provided information for a non-primary bank account, the user's financial circumstances have changed (e.g., a raised or reduced income not reflected in the estimated income) or other event has occurred. Therefore, in accordance with one embodiment, the projected income is only used as the predicted income if the projected income is within a statistical range of the estimated income, say one standard deviation, or above a confidence threshold. The statistical range or confidence threshold may be selected based, for example, on business rules or a machine learning model.
While, in the above examples, the income prediction models comprise a limited set of rules, the income prediction models may be arbitrarily complex and rely on data from additional or alternative sources. The income predication model may comprise a machine learning model trained over sets of data and that becomes increasingly accurate with additional data or adjusts as data trends change.
An income prediction model may contextualize data analysis. For example, one piece of information (or combination thereof) may be analyzed differently depending on the results of analyzing another piece of information (or combination thereof). The data returned by one information provider system 120 may be analyzed differently based on the results of evaluating data from another information provider system 120.
With respect to
verified_monthly_income=min(monthly_self_reported_income,model_income)
data application 150 will fetch the data required by the prediction model to determine model_income. Using the above examples of rules-based income prediction models in which the estimated income is a CreditVision score and the projected income is provided by Plaid, data application 150 will determine that a Plaid report and a TransUnion credit report that includes a CreditVision score are required.
Data application 150 can provide PII (e.g., user name, user address, user phone number, user email address, date of birth, driver's license number or other PII, financial institution information, such as a Plaid token, or other information) from the application to one or more income projection services and income estimation services, receive responsive income verification data, and apply an income prediction model and income verification rules to income verification data to determine a verified income.
At step 804, data application 150 determines if the application includes the inputs required to fetch the projected income data from an information provider system 120 or cache (e.g., fetch a Plaid report for the user). If not, an error can be generated. Data application 150 may generate a decision response to client application 114 to cause client application 114 to request the additional information necessary to fetch the projected income data.
If data application 150 has the information necessary to fetch the projected income data, data application 150 can fetch the data from cache (if available and not stale) or use the API for the service providing the projected income data to submit user application data and fetch the projected income data (step 806). As one non-limiting example, data application 150 can supply a Plaid token to the Plaid service and request a Plaid report associated with the token. If the attempt to fetch the projected income data fails, data application 150 can generate an error. Data application 150 may generate a decision response to cause the client application to prompt the user to try again later or take another action.
At step 808, data application 150 determines if the application includes the inputs required to fetch the income estimation data from an information provider system 120 or cache. If not, an error can be generated. Data application 150 may generate a decision response to client application 114 to cause client application 114 to request the additional information necessary to fetch the income estimation data.
If data application 150 has the information necessary to fetch the income estimation data corresponding to the application 502, data application 150 may fetch the data from cache (if available) or use the API for the service providing the income estimation data to submit application data from application 502 and fetch the income estimation data (step 810). As one non-limiting example, data application 150 can supply PII from application 502 to retrieve a TransUnion credit report containing a CreditVision score for the user. If the attempt to fetch the income estimation data fails, data application 150 can generate an error. Data application 150 may generate a decision response to cause the client application to prompt the user to try again later or take another action.
At step 812, data application 150 can apply an income prediction model to generate a predicted monthly income (model_income). If an error occurs, data application 150 may generate a decision response to client application 114 to cause client application 114 to request the additional information necessary to fetch the income estimation data. At step 814, data application 150 applies the income verification rules 553 to generate a verified income using one or more of the estimated income, projected income or predicted income.
The income verification rules 553 may further include conditions applied to the verified income. For example, rules may specify a threshold verified income, for example:
If the application passes the additional verified income checks, if any, the verified income can be added to application 502 and the approval process proceeds. If the application does not pass, data application 150 can deny the application. Data application 150 can update the application 502 with the reason for the denial and generate a decision response to client application 114 to cause client application 114 to request additional information or terminate the approval process.
With respect to
At step 904, data application 150 can select a first set of income verification rules that do not require an income prediction and determine the data from information provider systems 120 needed to execute the rules (step 904). As an example, a first set of income verification rules may be:
where ‘y’ can be configured in the rules. In this example, ‘y’ may be selected based on any number of considerations. According to one embodiment, ‘y’ may be from 1-3. For example, ‘y’ may be 1.5, 1.75, 2.0 or other factor. In any event, these example rules do not require determining a predicted income, but uses the self-reported income from application 502 and an estimated income from an income estimation service.
Continuing with step 904, data application 150 can determine that an estimated income is required. Using the example in which the estimated income is a CreditVision score, data application 150 can determine that a TransUnion credit report that includes a CreditVision score are required.
Data application 150 will fetch the data required by the income verification rules 553. Using the above examples, data application 150 can fetch an estimated income score from an information provider system 120 or cache (if available). Data application 150 can provide PII (e.g., user name, user address, user phone number, user email address, date of birth, driver's license number or other PII, financial institution information) to income estimation services, receive responsive income verification data, and apply the income verification rules to income verification data to determine a verified income.
At step 906, data application 150 determines if the application 502 includes the inputs required to fetch the income verification data from cache or an information provider system 120. If not, an error can be generated. Data application 150 may generate a decision response to client application 114 to cause client application 114 to request the additional information necessary to fetch the projected income data.
If data application 150 has the information necessary to fetch the income verification data, data application 150 fetch the data from cache (if available and not stale) or use the API for the service providing the income verification data to submit user application data and fetch the income verification data (step 908). As one non-limiting example, data application 150 can supply PII from application 502 to retrieve a TransUnion credit report containing a CreditVision score for the user. If the attempt to fetch the income verification data fails, data application 150 can generate an error. Data application 150 may generate a decision response to cause the client application to prompt the user to try again later or take another action.
At step 910, data application 150 applies the income verification rules 553 to generate a verified income using one or more of the estimated income, projected income or self-reported income. The verified income can be added to application 502.
If the application passes the additional verified income checks, if any, the verified income can be added to application and the approval process proceeds. If the application does not pass, data application 150 can deny the application. Data application 150 can update the application 502 with the reason for the denial and generate a decision response to client application 114 to cause client application 114 to request additional information or terminate the approval process.
Turning to
where ‘z’ is configured in the rules. In the foregoing example, ‘z’ may be selected based on any number of considerations. ‘z’, according to one embodiment, is 1-2 (e.g., 1.25, 1.5, 1.75, 2 or other number). From these rules, data application 150 can determine that a model_income is required. Using the above examples of rules-based income prediction models, the CreditVision score as the estimated_income and the plaid_income as the projected_income, data application 150 will determine that a Plaid report and a TransUnion credit report with a CreditVision score are required.
Data application 150 can provide PII (e.g., user name, user address, user phone number, user email address, date of birth, driver's license number or other PII, financial institution information, such as a Plaid token, or other information) from the application to one or more income projection services and income estimation services, receive responsive income verification data, and apply an income prediction model and income verification rules to income verification data to determine a verified income.
At step 954, data application 150 determines if the application 502 includes the inputs required to fetch the projected income data from cache or an information provider system 120 (e.g., fetch a Plaid report for the user). If not, an error can be generated. Data application 150 may generate a decision response to client application 114 to cause client application 114 to request the additional information necessary to fetch the projected income data.
If data application 150 has the information necessary to fetch the projected income data, data application 150 can fetch the data from cache (if available and not stale) or use the API for the service providing the projected income data to submit user application data and fetch the projected income data (step 956). As one non-limiting example, data application 150 can supply a Plaid token to the Plaid service and request a Plaid report associated with the token. If the attempt to fetch the projected income data fails, data application 150 can generate an error. Data application 150 may generate a decision response to cause the client application to prompt the user to try again later or take another action.
At step 958, data application 150 determines if the application includes the inputs required to fetch the income estimation data from cache or an information provider system 120. If not, an error can be generated. Data application 150 may generate a decision response to client application 114 to cause client application 114 to request the additional information necessary to fetch the income estimation data.
If data application 150 has the information necessary to fetch the income estimation data corresponding to the application 502, data application 150 may fetch the data from cache (if available and not stale) or use the API for the service providing the income estimation data to submit application data from application 502 and fetch the income estimation data (step 960). As one non-limiting example, data application 150 can supply PII from application 502 to retrieve a TransUnion credit report containing a CreditVision score for the user. If the attempt to fetch the income estimation data fails, data application 150 can generate an error. Data application 150 may generate a decision response to cause the client application to prompt the user to try again later or take another action.
At step 962, data application 150 can apply an income prediction model to generate a predicted monthly income (model_income). If an error occurs, data application 150 may generate a decision response to client application 114 to cause client application 114 to request the additional information necessary to fetch the income estimation data. At step 964, data application 150 applies the income verification rules 553 to generate a verified income using one or more of the estimated income, projected income or predicted income.
If the application passes the additional verified income checks, if any, the verified income can be added to application and the approval process proceeds. If the application does not pass, data application 150 can deny the application. Data application 150 can update the application 502 with the reason for the denial and generate a decision response to client application 114 to cause client application 114 to request additional information or terminate the approval process.
The embodiment of
As can be seen from the foregoing examples of income verification rules and income prediction models, data application 150 may leverage information from various information provider systems 120 to determine a verified income for the user. While specific examples are provided for understanding, the income verification rules may be complex and rely on data from additional or alternative sources.
Returning to
Data application 150 can interact with one or more financial institutions, credit reporting agencies, income estimation services (which can be examples of information provider systems 120) or other information to collect information about a user's income and debts to verify income and determine affordability. Data processing system 100 may perform one or more income tests to ensure that a consumer meets minimum income qualifications.
In determining affordability, data application 150 can interact with one or more financial institutions, credit reporting agencies, income estimation services (which can be examples of information provider systems 120) or other information to collect information about a user's income and debts to verify income and determine affordability.
Embodiments of data processing system 100 can determine affordability without relying on LTV. In general, the affordability evaluation can use income and debt information for the consumer to determine how large of a monthly payment the user can afford. The affordability score thus provides a prediction of the amount that the consumer can fairly pay to underwrite a loan on a monthly (or other periodic) basis. The monthly payment determined by the affordability decision may be scaled based on debt obligation.
In accordance with one embodiment, affordability may be based on income, debt-to-income ratio (DTI), payment-to-income ratio (PTI) and other factors. In general, the affordability score determination can be used to determine a maximum monthly payment that does not exceed a maximum PTI and when added to the consumer's current obligations does not cause the obligations do not exceed a maximum DTI. The maximum DTI and PTI may be set by rules, through modeling or through other mechanism.
As part of determining a fair affordable monthly payment, the rules or model used to determine affordability may take into account additional costs associated with a purchased asset. For example, if a consumer is purchasing a vehicle, the affordability score may be calculated to leave room in the consumer's monthly budget for items such as gas and regular maintenance and thus the affordable monthly payment determined for the consumer can be selected to allow the consumer to underwrite the loan while paying for other expected costs associated with the asset (e.g., insurance, maintenance, gas).
In accordance with one embodiment then, data application 150 applies affordability rules 563 to predict the monthly payment a consumer can afford from information provided by information provider systems 120. Thus, the affordability determination can be used to determine that the consumer can pay a maximum of $X a month. As discussed below, this value can be used to filter inventory items such that the user can only purchase items within his or her affordability.
If there is insufficient application data to determine an affordability score, vehicle data application 150 may generate a decision result 568 indicating that the application was not approved. Furthermore, vehicle data application 150 may send a decision response to client application 114 indicating that the application was not approved and the reason the application was not approved. Client application 114 can display one or more pages indicating why the application was not approved and, in some cases, request additional information.
The affordability determination may rely on credit reports from one or more credit reporting agencies. Thus, data application 150 can be configured to fetch credit report data for a user. As discussed above, a credit report may already have been fetched (e.g., in the credit check or income verification steps). Thus, data application 150 may fetch the credit report from cache. In other embodiments, data application 150 can provide PII (e.g., user name, user address, user phone number, user email address, date of birth, driver's license number or other PII, financial institution information or other information) to one or more credit reporting agencies, receive responsive income verification data, and apply an income prediction model and income verification rules to income verification data to determine a verified income.
At step 1004, data application 150 determines if the application 502 includes the inputs required to fetch a credit report (or other credit check data) from an information provider system 120 or cache, such as a credit reporting agency. If not, an error can be generated. Data application 150 may generate a decision response to client application 114 to cause client application 114 to request the additional information necessary to fetch the credit report.
If data application 150 has the information necessary to fetch the credit report corresponding to the application 502, data application 150 may use the API for the credit reporting agency to submit user application data, such as PII, and fetch the credit report (step 1006). If a failure occurs when pulling the credit report, data application 150 may generate an error.
At step 1008, data application 150 determines a debt-to-income ratio based on the credit report and verified_monthly_income associated with the application 502. According to one embodiment, a monthly debt obligation can be determined from a credit report for the user. One example of pseudo-code for determining a monthly debt obligation (monthly_debt_obligations) from a credit report is illustrated in
At step 1010, data application 150 determines a debt-to-income ratio (DTI) for the user. For example, according to one embodiment, DTI can be determined as follows:
current_dti_ratio=monthly_debt_obligations/verified_monthly_income
At step 1012, data application 150 applies the affordability rules to determine an affordability score the user (maximum_monthly_payment). According to one embodiment, that maximum monthly payment can be determined as follows:
where:
maximum_dti is the maximum DTI permitted by the data processing system. In some embodiments, the maximum DTI can be set based on verified statistics, such as those provided by the Bureau of Labor Statistics number on how much individuals pay for personal transportation. If, the maximum DTI will not be exceeded when the non_adjusted_max_payment is added to the consumer's obligations, then the maximum payment for the consumer can be set to the non_adjusted_max_payment.
Data application 150 may further determine a suggested affordability score. In one embodiment, for example, a suggested monthly payment can be determined based on, for example, a suggested PTI:
The affordability score may allow the intermediary to loan more than the value of an underlying item being purchased (e.g., a vehicle or other item) can back. For example, based on the affordability score, the intermediary may provide funding to allow a consumer to purchase a vehicle in combination with products that cannot be used as security, such as maintenance contracts, warranties, fuel contracts, etc. Thus, the loan may only be partially secured by an asset, such as a vehicle.
According to one embodiment, data processing system 100 can use information from information provider systems 120 to determine the consumer's DTI based on the consumer's monthly debt obligation and income (e.g., verified income). The monthly debt obligation for a consumer can be determined by, for example, analyzing the consumer's credit report, such as credit report data provided by TransUnion or other credit reporting agency.
In some embodiments, data processing system 100 may include an affordability model configured to set an upper limit on the user's affordability. The affordability model can be trained over sets of data through machine learning and may become increasingly accurate with additional data. The affordability model may contextualize data analysis. For example, one piece of information (or combination thereof) may be analyzed differently depending on the results of analyzing another piece of information (or combination thereof). The data returned by one information provider system 120, for example, may be analyzed differently based on the results of evaluating data from another information provider system 120.
As discussed above, embodiments described herein can provide a low friction interface for registration and loan approval. Various steps of the approval process discussed above can be implemented to minimize the amount of time required for approval. For example, data processing system 100 may request information from the various information provider systems 120 simultaneously, thus avoiding the need to wait between each step to obtain information from systems 120 for subsequent steps.
Furthermore, embodiments described herein eliminate much of the delay often associated with seeking financing. Part of the delay introduced by financing stems from the methods by which conventional loans are approved. Conventionally, loan providers use a loan-to-value ratio (LTV) (ratio of the loan to the value of the asset purchased) to approve loans for illiquid assets (or other assets that can act as security). Generally, the value of the asset must be sufficient to secure the entire loan even if the purchase includes items that cannot be secured (e.g., service contracts). As such, the loan approval process requires that a consumer know, prior to applying for financing, the value of the asset being purchased, its price, and their down payment or cap cost reduction. Consequently, financing often does not happen until a consumer and seller agree on a price and down payment/cap cost reduction for an asset (e.g., a consumer and dealer agree on a price for a specific car). Data processing system 100 on the other hand does not require knowledge of which inventory item the user will purchase to approve financing because data processing system 100 can generate an affordability score without using LTV.
As discussed above, the approval rules 140 may be implemented as decisions executed by decision service 250.
In the embodiment depicted, the decision service 250 can execute an approval decision 1210, a fraud decision 1220, a credit check decision 1230 and an affordability decision 1240. The decision service may receive a call to execute any of the decisions. However, a decision may reference one or more sub-decisions. For example, approval decision 1210 references fraud decision 1220, credit decision 1230 and affordability decision 1240. A decision may contain rules applicable to the results of the sub-decisions.
In response to a request for an approval decision (e.g., from user application service 210), the decision service can process the tree beginning at the node for the requested decision and including the sub-decisions, through n number of levels of decisions. Using the example of
A decision may include a set of decision rules. The decision rules may apply conditions to input data from a user application, the output of a sub-decision, a prediction from a prediction model or data from a data source. For example, approval decision 1210 may include initial checks and a rule that requires an application to pass each sub-decision to pass the approval decision. Fraud decision 1220, in the embodiment illustrated includes fraud detection rules and identity verification rules, credit decision 1230 includes credit check rules and affordability decision 1240 includes income verification rules and affordability rules. A decision may also specify the decision outputs, for example, decline codes that are output or scores that are passed.
As discussed earlier, a decision may reference a data source defined by decision service 250. For example, fraud decision 1220 references a data source for Threatmetrix data. In addition, the decisions may reference prediction models. For example, credit decision 1230 references a credit risk prediction and affordability decision references an income prediction. The prediction models may further reference data sources.
The decision service 250 can be configured to walk the tree, determine all the data sources required to approve a consumer and pre-fetch or not data for decisions further in the decision tree based on configuration. For example, responsive to a request for an approval decision, decision service 250 walk the tree comprising an approval decision 1210, fraud decision 1220, credit check decision 1230 and approval decision 1240, determine the data sources required for the decisions, including communicating with prediction and modeling service 260 to determine the data sources required for the prediction models referenced by the decisions, and fetch the data sources from data vendor service 270.
In another embodiment, decision service 250 can be configured to wait to fetch a data source until processing a decision or requesting a predication that uses the data source. For example, responsive to a request for an approval decision, decision service 250 may execute the approval decision 1210, moving to the fraud decision 1220 prior to the other sub-decisions. If an application does not pass the fraud decision 1220, decision service 250 may return the appropriate decline codes and terminate the process. In this configuration and example, the decision service will not reach the credit decision 1230 and, therefore, will not fetch the data source referenced in credit decision 1230.
In one embodiment, the decision service 250 may be configured to wait to pull certain data, due to processing or financial cost, until the consumer has otherwise passed decisions in the decision tree. For example, because final decision 1200 references the sub-decision 1210 before initiating a hard credit pull, decision service 250 can wait for decision 1210 to be fully executed before pulling hard credit data. In yet another embodiment, data may be pulled based on the amount of time it takes to pull certain types of data.
Furthermore, the data sources, models, etc. loaded at one level of the tree may be available to sub-decisions further down the tree. For example, because approval decision 1210 references the data source Innovis Version 1.1, this data source is implicitly available to fraud decision 1220, credit decision 1230 and affordability decision 1240. The sub-decisions may or may not reference the data sources again. By selecting the order of statements in a decision and the arrangement of decisions in a decision tree, the decision engine can be configured to wait to pull certain data, due to processing or financial cost, until the consumer passes earlier decisions.
It can be noted that approval decision 1210 does not require a hard credit pull. Instead, a hard credit pull can be performed in later processes, for example, when a consumer is finalizing a transaction based on an application approved by approval decision 1210.
If a consumer application is approved through the approval process, the application may be enhanced with one or more affordability scores and credit risk scores.
Data processing system 100 may facilitate the purchase of inventory items. As such, data processing system 100 may maintain inventory records 136 for the inventory items. The inventory record 136 for an inventory item may hold a variety of information about an inventory item including one or more payment schedules for the inventory item. A payment schedule for an inventory item may include an initial payment amount and a periodic payment amount. In some cases, the payment schedule may include fees for add-ons. The affordability score discussed above can be used in a purchase process implemented via the data processing system 100.
At step 1601, data processing system 100 can receive a request from a consumer to view inventory items (e.g., based on a user interaction in a GUI of client application 114). According to one embodiment, the inventory items comprise illiquid assets (or other assets that can act as collateral) (e.g., automobiles, boats, planes, real-estate, etc.). In some embodiments, an inventory item may comprise a combination of an illiquid asset and an item that cannot be used as security. For example, an inventory item may comprise a vehicle with an included maintenance contract.
Data processing system 100 searches inventory items based on affordability score. Data processing system 100 may also search its program pool for eligible inventory items based on other parameters, such as credit risk. Accordingly, data processing system 100 can determine the affordability score and other parameters associated with the consumer (step 1602). In some implementations, the affordability score may be included in the request from client application 114. In other embodiments, data application 150 augments a request from client application 114 with the affordability score. According to one embodiment, when a request to view inventory items is received, interface proxy service 204 routes the request to order service 220 and order service 220 augments the request with consumer context information from the order profile. In particular, order service 220 can augment the request with the affordability score received from user application service 210 and pass the augmented request to inventory service 230 as part of a search request.
At step 1604, data processing system 100 identifies a set of eligible inventory items for a consumer based on the consumer's affordability score, the periodic payment (e.g., monthly payment) for each inventory item and other factors, such as geography or other factors. In one embodiment, data processing system 100 identifies the eligible inventory items as those items having a monthly payment that is less than the consumer's affordability score. If the base monthly payment is not adjusted with the payments for the required add-on products in the inventory record, the inventory service may make this adjustment when searching for eligible inventory items. In the embodiment of
The consumer may provide consumer filter parameters to filter the set of eligible inventory items by various factors. Data processing system 100 can receive the filter parameters (step 1606), search the inventory records of the eligible inventory items and return inventory record data for the inventory items meeting the filter criteria (step 1608). For example, if a consumer who has been approved for a payment of $1,062 a month indicates that he or she is searching for inventory meeting certain criteria, say made by a certain manufacturer, data processing system 100 can present to the consumer (e.g., through client application 114) inventory items made by the selected manufacturer that have a base monthly payment of $1062.
The inventory items presented may be filtered by the maximum approved monthly payment or the suggested approved monthly payment for the consumer. In another embodiment, the data processing system 100 may apply a scaling factor such that data processing system 100 will present the consumer with inventory items that have a monthly payment<=maximum approved payment*scaling factor (e.g., $400*0.7). The scaling factor may be selected to help ensure that the consumer can afford additional products, such as maintenance contracts, and expected additional expenses (gas, insurance for vehicles). In any event, at this point, the consumer can view actual inventory items that fall within that individual's affordability as determined by data processing system 100.
The consumer may select an inventory item from the set of eligible inventory items from the program pool (step 1610). According to one embodiment, interface proxy service 204 can receive a request from client application 114, forward the request to order service 220, order service 220 can augment the request with consumer context data, such as affordability score, and forward the augmented request to inventory service 230. Inventory service 230 returns additional inventory item detail data for the requested inventory item to order service 220, which can be returned to client application 114.
The user may indicate a purchase decision—a decision to proceed with the purchase of an inventory item—such as by clicking “Purchase Item” or other control in the GUI of client application 114. When a user indicates that he or she wishes to purchase an inventory item, all the information about the inventory item, including the initial payment and monthly payment should be known by data processing system 100. Data processing system 100 can create an “order” to capture the information about the transaction from the current context (e.g., the order profile or other containers of inventory item information, financing information, consumer information or other information) (step 1614). The order may be managed as an object.
The user may be given the opportunity to select additional items (goods or services) to add to the order (step 1616), including items that cannot act as security. In particular, the user may be presented with options for goods and services associated with the selected inventory item and that have recurring periodic payments. For example, the user may be presented with the option to add an extended warranty, maintenance contract or other item that has a monthly payment to the order. When the user selects to finalize a purchase, data processing system 100 can determine if the combined monthly (or other period) payments of the inventory item selected at step 1610 and other items in the order exceed the affordability score. If so, data processing system 100 can reject the order. Otherwise, data processing system 100 can proceed to an order completion process (step 1620) in which any remaining information necessary to complete the order is collected. The completion process may further include performing a hard pull credit check on the user. The completion process may further include generating any documents that require signature, receiving signed documents and taking other configured actions. At step 1622, the order is executed. For example, electronic financial transactions are initiated to transfer payments from the user to the seller, delivery of the ordered items is arranged or other actions taken.
According to one aspect of the present disclosure, the computer system may facilitate efficient financing approval by approving financing based on the consumer's ability to afford a periodic obligation (e.g., monthly payment). Unlike traditional loan approval determinations, embodiments described herein do rely on LTV or the value of an asset being purchased to approve financing and can thus be done quickly in an online session. Furthermore, unlike credit card loans, the loan can be partially backed by collateral.
The computer system can apply rules/models to the consumer's financial data to determine an affordability score that determines a periodic payment that an intermediary (financing provider) will approve for a consumer. In particular, according to one embodiment, the computer system may approve financing for the purchase of an illiquid asset or other asset that can be used as collateral (such as a vehicle, real estate, etc.) potentially in combination with other assets that cannot be used as security. The financing may be used, in some implementations, to purchase a mixture of illiquid assets (or other assets that can be used as security) and items that cannot be used as security. Therefore, the assets may only partially provide security for the financing. The computer system's application of rules/models can therefore facilitate a novel securitization, referred to herein as “partial-asset securitization,” in which the debt obligations of consumers are partially backed by illiquid assets (or other assets that can be used as security). Furthermore, embodiments described herein can provide a computer system that uses information from distributed sources to approve financing based on affordability.
For the purpose of illustration, a single system is shown for each of client computing device 2014 and server system 2016. However, a plurality of computers may be interconnected to each other over network 2004. For example, a plurality client computing devices 2014 and server systems 2016 may be coupled to network 2004.
Client computer device 2014 can include central processing unit (“CPU”) 2020, read-only memory (“ROM”) 2022, random access memory (“RAM”) 2024, hard drive (“HD”) or storage memory 2026, and input/output device(s) (“I/O”) 2028. I/O 2028 can include a keyboard, monitor, printer, electronic pointing device (e.g., mouse, trackball, stylus, etc.), or the like. In one embodiment I/O 2028 comprises a touch screen interface and a virtual keyboard. Client computer device 2014 may implement software instructions to provide a client application configured to communicate with a data processing system. Likewise, server system 2016 may include CPU 2060, ROM 2062, RAM 2064, HD 2066, and I/O 2068. Server system 2016 may implement software instructions to implement a variety of services for a data processing system. These services may utilize data stored in data store 2018 and obtain data from third party systems 2017. Many other alternative configurations are possible and known to skilled artisans.
Each of the computers in
Portions of the methods described herein may be implemented in suitable software code that may reside within ROM 2022 or 2062; RAM 2024 or 2064; or HD 2026 or 2066. The instructions may be stored as software code elements on a data storage array, magnetic tape, floppy diskette, optical storage device, or other appropriate data processing system readable medium or storage device.
Those skilled in the relevant art will appreciate that the invention can be implemented or practiced with other computer system configurations, including without limitation multi-processor systems, network devices, mini-computers, mainframe computers, data processors, and the like. The invention can be embodied in a computer or data processor that is specifically programmed, configured, or constructed to perform the functions described in detail herein. The invention can also be employed in distributed computing environments, where tasks or modules are performed by remote processing devices, which are linked through a communications network such as a local area network (LAN), wide area network (WAN), and/or the Internet. In a distributed computing environment, program modules or subroutines may be located in both local and remote memory storage devices. These program modules or subroutines may, for example, be stored or distributed on computer-readable media, including magnetic and optically readable and removable computer discs, stored as firmware in chips, as well as distributed electronically over the Internet or over other networks (including wireless networks).
ROM, RAM, and HD are computer memories for storing computer-executable instructions executable by the CPU or capable of being compiled or interpreted to be executable by the CPU. Suitable computer-executable instructions may reside on a computer readable medium (e.g., ROM, RAM, and/or HD), hardware circuitry or the like, or any combination thereof. Within this disclosure, the term “computer readable medium” is not limited to ROM, RAM, and HD and can include any type of data storage medium that can be read by a processor. Examples of computer-readable storage media can include, but are not limited to, volatile and non-volatile computer memories and storage devices such as random access memories, read-only memories, hard drives, data cartridges, direct access storage device arrays, magnetic tapes, floppy diskettes, flash memory drives, optical data storage devices, compact-disc read-only memories, and other appropriate computer memories and data storage devices. Thus, a computer-readable medium may refer to a data cartridge, a data backup magnetic tape, a floppy diskette, a flash memory drive, an optical data storage drive, a CD-ROM, ROM, RAM, HD, or the like.
Any suitable programming language can be used to implement the routines, methods or programs of embodiments of the invention described herein. Other software/hardware/network architectures may be used. For example, the functions of the disclosed embodiments may be implemented on one computer or shared/distributed among two or more computers in or across a network. Communications between computers implementing embodiments can be accomplished using any electronic, optical, radio frequency signals, or other suitable methods and tools of communication in compliance with known network protocols.
Different programming techniques can be employed such as procedural or object oriented. Any particular routine can execute on a single computer processing device or multiple computer processing devices, a single computer processor or multiple computer processors. Data may be stored in a single storage medium or distributed through multiple storage mediums, and may reside in a single database or multiple databases (or other data storage techniques). Although the steps, operations, or computations may be presented in a specific order, this order may be changed in different embodiments. In some embodiments, to the extent multiple steps are shown as sequential in this specification, some combination of such steps in alternative embodiments may be performed at the same time. The sequence of operations described herein can be interrupted, suspended, or otherwise controlled by another process, such as an operating system, kernel, etc. The routines can operate in an operating system environment or as stand-alone routines. Functions, routines, methods, steps and operations described herein can be performed in hardware, software, firmware or any combination thereof.
Embodiments described herein can be implemented in the form of control logic in software or hardware or a combination of both. The control logic may be stored in an information storage medium, such as a computer-readable medium, as a plurality of instructions adapted to direct an information processing device to perform a set of steps disclosed in the various embodiments. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will appreciate other ways and/or methods to implement the invention.
It is also within the spirit and scope of the invention to implement in software programming or code an of the steps, operations, methods, routines or portions thereof described herein, where such software programming or code can be stored in a computer-readable medium and can be operated on by a processor to permit a computer to perform any of the steps, operations, methods, routines or portions thereof described herein. The invention may be implemented by using software programming or code in one or more digital computers, by using application specific integrated circuits, programmable logic devices, field programmable gate arrays, optical, chemical, biological, quantum or nanoengineered systems, components and mechanisms may be used. The functions of the invention can be achieved by distributed or networked systems. Communication or transfer (or otherwise moving from one place to another) of data may be wired, wireless, or by any other means.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, article, or apparatus that comprises a list of elements is not necessarily limited only those elements but may include other elements not expressly listed or inherent to such process, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition “A or B” is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
To the extent particular values are provided in any example embodiments in the description, such values are provided by way of example and not limitation. Moreover, while in some embodiments rules may use hardcoded values, in other embodiments rules may use flexible values. In one embodiment, one or more of the values may be specified in a registry, allowing the value(s) to be easily updated without changing the code. The values can be changed, for example, in response to analyzing system performance.
Additionally, any examples or illustrations given herein are not to be regarded in any way as restrictions on, limits to, or express definitions of, any term or terms with which they are utilized. Instead, these examples or illustrations are to be regarded as being described with respect to one particular embodiment and as illustrative only. Those of ordinary skill in the art will appreciate that any term or terms with which these examples or illustrations are utilized will encompass other embodiments which may or may not be given therewith or elsewhere in the specification and all such embodiments are intended to be included within the scope of that term or terms. Language designating such nonlimiting examples and illustrations includes, but is not limited to: “for example,” “for instance,” “e.g.,” “in one embodiment.”
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any component(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or component.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/447,355, entitled “Networked Computer System and Method for Rules/Model-Based Approval of a User to Participate in Transactions Using Distributed Information,” filed Jan. 17, 2017, U.S. Provisional Application No. 62/596,007, entitled “Data Processing System and Method for Managing Location Independent Transactions,” filed Dec. 7, 2017 and U.S. Provisional Application No. 62/447,349, entitled “Networked Vehicle Data System,” filed Jan. 17, 2017, each of which is fully incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
62447355 | Jan 2017 | US | |
62596007 | Dec 2017 | US | |
62447349 | Jan 2017 | US |