To meet demand for natural resources, companies often invest substantial amounts of time and money in searching for and extracting oil, natural gas, and other subterranean resources from the earth. Once a desired subterranean resource is discovered, drilling and production systems are employed to access and extract the resource. These systems may be located onshore or offshore depending on the location of a desired resource. Such systems generally include a wellhead assembly through which the resource is extracted. These wellhead assemblies may include a wide variety of components, e.g. casings, hangers, valves, fluid conduits, that control drilling and/or extraction operations. In some drilling and production systems, casing hangers and other types of tubing hangers may be used to suspend strings (e.g. piping for various flows in and out of the well). Such hangers may be disposed within a housing of a wellhead which supports both the hanger and the string. The hanger may be secured to the wellhead via a locking or mounting mechanism activated by a running tool.
In general, a system and methodology are provided for utilizing a running tool system with respect to a tubing hanger deployed at a wellhead. According to an embodiment, the running tool system comprises a running tool which may be coupled to a hanger. The running tool may include a first sleeve which may be coupled to the hanger for moving the hanger in an axial direction. The running tool also may include a second sleeve which may be coupled to an adjustable landing ring disposed about the hanger. The second sleeve may be used to rotate the adjustable landing ring so as to lock the hanger in position.
However, many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
Embodiments described herein are directed to a running tool system which may be used to expedite well operations, e.g. drilling operations. As explained in greater detail below, the running tool system enables a running tool to both lower and set a hanger without a separate tool, e.g. without a slipshot sleeve, sliding over the running tool and without running multiple tools. The running tool system described herein may thus be used to run, e.g. deploy, the hanger and/or tubing into a wellbore and to secure, e.g. lock, the hanger within the wellhead in a single trip.
Referring generally to
The illustrated wellhead hub 20, which may be a large diameter hub, acts as a junction between the well 16 and the equipment located above the well 16. The wellhead hub 20 may include a complementary connector, e.g. a collet connector, to facilitate connections with the surface equipment. Additionally, the wellhead hub 20 may be constructed to support various strings of casing/tubing that extend into the wellbore 18 and, in some cases, extend down into the mineral deposit 12.
The wellhead 14 generally comprises a series of devices and components which control and regulate activities and conditions associated with the well 16. For example, the wellhead 14 may provide for routing the flow of minerals, e.g. oil and/or gas, produced from the mineral deposit 12 in wellbore 18. Additionally, the wellhead 14 may provide for regulating pressure in the well 16 and/or for the injection of chemicals downhole into the wellbore 18. In the illustrated embodiment, the wellhead 14 includes a housing/casing spool 22, e.g. a tubular housing, and a tubing spool 24. A hanger 26, e.g. a tubing hanger or a casing hanger, may be deployed and set in the casing spool/housing 22. The wellhead 14 also may comprise a blowout preventer (BOP) 28.
In operation, the wellhead 14 enables completion and workover procedures such as tool insertion into well 16 for installation and removal of various components, e.g. hangers, shoulders, and/or other components. Furthermore, oil, gas, and/or other minerals extracted from the well 16 may be regulated and routed via the wellhead 14. According to one example, the blowout preventer 28 may include a variety of valves, fittings, and control features to prevent oil, gas, or other fluid from exiting the well 16 in the event of an unintentional release of pressure or an overpressure condition.
In the illustrated example, the casing spool 22 defines a bore 30, e.g. a casing spool bore, which enables fluid communication between the wellhead 14 and the well 16. Thus, the bore 30 may provide access to the wellbore 18 during various completion and workover procedures including deploying tools or components within the casing spool 22. For example, the illustrated embodiment of mineral extraction system 10 comprises a running tool 34 suspended from a string 36 to form a running tool system 38. The running tool 34 may be moved axially to position hanger 26 and also rotationally to apply torque for installing the hanger 26 in the casing spool 22.
In contrast, a conventional installation of a hanger involves both a running tool and a separate sleeve, e.g. a slipshot sleeve, which slides over the running tool. With conventional systems, the running tool lowers the hanger into the wellhead while the separate sleeve slides over the running tool to contact and set the hanger. As explained in greater detail below, however, the running tool system 38, illustrated in
Referring generally to
During a hanger suspension operation, the pistons 111 are driven radially inward in the direction indicated by arrows 68. The pistons 111 may be shifted via an actuator 70 until the casing slips 102 are coupled with and suspend the hanger 26 within the casing spool 22. The casing slips 102 may thus be used to grip the hanger 26 until it is more permanently secured in the wellhead 14 as described in greater detail below. The actuator 70 may be a hydraulic actuator, electric actuator, manual actuator, combinations of actuators, or another type of suitable actuator or actuators. In some embodiments, the actuator 70 may be in the form of a hydraulic actuator which receives hydraulic actuating fluid via ports 110.
The running tool 34 may be used to deploy the hanger 26 into the casing spool 22. However, after coupling the hanger 26 with the casing slips 102, the running tool 34 may be relaxed, e.g. tension on string 36 may be released or reduced. At this stage, the running tool 34 may be rotated to energize the adjustable landing ring 104. By releasing tension on the running tool 34, the running tool system 38 may reduce strain between hanger 26 and the adjustable landing ring 104. This, in turn, is able to facilitate coupling of the hanger 26 to the casing spool 22, e.g. via rotation of the adjustable landing ring 104.
In operation, the outer sleeve 62 is releasably coupled with and rotates the adjustable landing ring 104 to cause engagement of a split load ring 105 to the casing spool 22. It should be noted that once casing slips 102 are engaged with, e.g. biting into, hanger 26 an upper joint 83 of the running tool 34 may be lowered relative to inner sleeve 60 to depress a dog 84, as illustrated in
For example, rotation of the outer sleeve 62 via running tool 34 in direction 72 causes the outer sleeve 62 to rotate the adjustable landing ring 104 about the hanger 26. In the example illustrated, the adjustable landing ring 104 is threadably engaged with the hanger 26 via threads 75. Thus, rotation of the adjustable landing ring 104 with respect to hanger 26 causes it to move in direction 64.
As the adjustable landing ring 104 moves axially in direction 64 (due to rotation by sleeve 62), the adjustable landing ring 104 drives a contact or support ring 76 in direction 64. In some embodiments, the support ring 76 may be releasably coupled with adjustable landing ring 104 via a shear member 80, e.g. a shear pin. The contact or support ring 76 supports the split load ring 105 which is configured to engage a profile, e.g. a groove, 78 located on an interior surface of the casing spool 22 or other suitable portion of wellhead 14. As the outer sleeve 62 continues to rotate the landing ring 104, the contactor support ring 76 continues to move in direction 64 until it engages a plug 106.
The plug 106 stops further axial movement of the support ring 76 in direction 64 so as to axially align the split load ring 105 with the groove 78. As the running tool 34 continues to rotate, the rotating outer sleeve 62 causes the adjustable landing ring 104 to shear through the shear pin 80 which couples support ring 76 to the adjustable landing ring 104. The adjustable landing ring 104 is then able to continue rotating independently of the support ring 76. As the adjustable landing ring 104 continues to be rotated, the adjustable landing ring 104 slides under the split load ring 105 and drives the split load ring 105 radially outward in the direction represented by arrows 82. As the split load ring 105 moves radially outward in direction 82, the split load ring 105 engages the groove 78, thus coupling the hanger 26 to the casing spool 22 (see
Because upper joint 83 and outer sleeve 62 are coupled together and rotate together, the outer sleeve 62 may be coupled with adjustable landing ring 104 via a castellation 107 (or other suitable structure) as further illustrated in
As illustrated, the castellation member 114 comprises an abutment edge 116, e.g. a right angle edge, which engages a corresponding abutment edge 118 in recess 115 of adjustable landing ring 104. The abutment edge 116 and corresponding abutment edge 118 allow the outer sleeve 62 to force rotation of adjustable landing ring 104 in a desired direction, e.g. direction 72. However, the castellation member 114 also comprises a sloped edge 120, e.g. a 45° angle edge, opposite abutment edge 116. The sloped edge 120 is oriented to engage a corresponding sloped edge 122 disposed appropriately in recess 115 of adjustable landing ring 104.
Thus, when upper joint 83 is rotated together with outer sleeve 62 in the opposite direction, e.g. direction 74, the outer sleeve 62 will not rotate adjustable landing ring 104 due to the engagement of sloped edge 120 and corresponding sloped edge 122. As the upper joint 83 and outer sleeve 62 are rotated in direction 74, the sloped edges 120, 122 cause the outer sleeve 62 to slide up and out of recess 116 to enable rotation of outer sleeve 62 with respect to adjustable landing ring 104. By way of example, the upper joint 83 and outer sleeve 62 may be rotated in direction 74 to release coupling mechanism 108 during, for example, retrieval of casing hanger running tool 34 from casing hanger 26. In other words, the upper joint 83 and outer sleeve 62 may be rotated in direction 74 freely so as to fully unthread the casing hanger running tool 34 from the hanger 26 (at least in embodiments using a threaded engagement between tool 34 and hanger 26). This allows retrieval of the running tool 34, as illustrated in
In
Depending on the parameters of a given application, various components may be adjusted, interchanged, or added. For example, running tool 34 may be mounted on a variety of strings 36 and may comprise a variety of features for coupling with and actuating components of hanger 26 and/or other tools. Similarly, the hanger 26 may be used for hanging a variety of tubular members and may have a variety of features to accommodate setting and use of the hanger. The hanger 26 also may be used in many types of wellheads 14 having various components and features. The sizes and configurations of components and features also may be selected according to the structural parameters and operating parameters of a given downhole operation.
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
The present document is a Continuation application of U.S. application Ser. No. 17/279,987, filed Mar. 25, 2021, which is a National Stage Entry of International Application No.: PCT/US2019/052940, filed Sep. 25, 2019, which is based on and claims priority to U.S. Provisional Application Ser. No. 62/735,929, filed Sep. 25, 2018, all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62735929 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17279987 | Mar 2021 | US |
Child | 18455800 | US |