The present disclosure is generally related to recreational vehicle (RV) awning systems and related methods and, more particularly, to solar powered RV awning systems and related methods.
A recreational vehicle (RV) is literally a home on wheels. It has all the basic amenities of a home and provides the owner with the benefit of mobility. A typical RV is equipped with a full functioning kitchen, bathroom, electrical power, heating, air conditioning, and a bedroom, or at least a bed. Power is typically supplied by an onboard generator or by plugging the RV to a power source at a campsite or at a house.
Large solar panels have been employed in recent years to supply RVs with renewable energy. When employed, they are typically mounted on the RV rooftop, between the two side edges and are wired to charge the onboard battery banks. More efficient and better use of solar power for RVs remain elusive.
An aspect of the described embodiments includes a method for forming a mounting bracket, the method comprising forming a bracket body with one or more cavities, placing a charge controller and one or more rechargeable batteries into the one or more cavities to form an energized mounting bracket.
The method can further comprise attaching the energized mounting bracket to an awning unit to form an energized awning system.
The method can further comprise mounting one or more solar panels to the mounting bracket or to a housing of the awning unit.
The method can further comprise attaching the energized awning system to a side surface of an RV or on an RV rooftop.
A further aspect of the described embodiments includes a method for forming an energized mounting bracket, the method comprising receiving an extruded mounting bracket with one or more cavities, and placing a charge controller and one or more rechargeable batteries into the one or more cavities.
The method can further comprise mounting one or more solar panels directly to the mounting bracket.
The method can further comprise attaching the energized mounting bracket to an awning unit and mounting one or more solar panels directly to a housing of the awning unit.
The method can further comprise wiring the charge controller, the one or more batteries, and the one or more solar panels to charge the one or more rechargeable batteries and powering a motor in an awning unit with power from the one or more rechargeable batteries.
The method can further comprise wiring one or more DC outlets or sockets with power from the one or more rechargeable batteries.
A still further aspect of the described embodiments includes an energized mounting bracket comprising a bracket body having one or more cavities and a charge controller and one or more rechargeable batteries located in the one or more cavities.
A still yet further aspect of the described embodiments includes an energized awning system comprising a mounting bracket attached to a housing of an awning unit, wherein the mounting bracket includes a bracket body having one or more cavities and a charge controller and one or more rechargeable batteries located in the one or more cavities.
These and other features and advantages of the present devices, systems, and methods will become appreciated as the same becomes better understood with reference to the specification, claims and appended drawings wherein:
The detailed description set forth below in connection with the appended drawings is intended as a description of the presently preferred embodiments of RV awning systems and mounting brackets provided in accordance with aspects of the present devices, systems, and methods and is not intended to represent the only forms in which the present devices, systems, and methods may be constructed or utilized. The description sets forth the features and the steps for constructing and using the embodiments of the present devices, systems, and methods in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and structures may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the present disclosure. As denoted elsewhere herein, like element numbers are intended to indicate like or similar elements or features.
Exemplary RV awning units are commercially available. The solar cells, batteries, and charge controller can be sourced from existing commercial or wholesale suppliers provided they fit within the mounting configuration of the RV awning system 100 or mounting brackets of the described embodiments, as further discussed below.
With reference now to
In an example, the first panel section 134 comprises a generally planar section having an awning-side surface 136 and an opposed RV-side surface 138. The awning-side surface 136 is configured to directly face or contact an awning unit when the awning unit is mounted to the mounting bracket 130. The RV-side surface 138 is configured to directly face the RV or contact the RV when the mounting bracket 130 is mounted to the RV so as to mount the awning unit to the RV, as further discussed below.
The second panel section 140 extends at an angle to the first panel section 134. In an example, the second panel section 140 has an upper surface 142 and a lower surface 144, and at least the upper surface 142, the lower surface 144, or both the upper and lower surfaces are at approximately right angle to a surface section of the awning-side surface 136, the RV-side surface 138, or both the awning-side surface 136 and the RV-side surface 138. The first panel section 134 and the second panel section 140 define a receiving space for receiving an awning unit. For example, when assembled, the awning unit is flanked on at least two sides by the mounting bracket, such as along an upper side by the second panel section 140 and along a lateral side by the first panel section 134.
The second panel section 140 has a thickness dimension measured between the upper surface 142 and a lower surface 144. That is, the second panel section 140 has a body 148 with a thickness defined between the upper and lower surfaces. A first cavity 150 is provided in the body 148 between the upper and lower surfaces. The first cavity 150 is sized and shaped to accommodate the charge controller 104. The first cavity 150 can extend the entire length of the second panel section 140 or any length less provided the first cavity 150 can accommodate the charge controller 104. Preferably, the first cavity is sized to fully receive the charge controller 104 so that a panel cover 152 can then mount over the opening of the first cavity to enclose the first cavity.
A second cavity 154 can be provided with the second panel section 140. The second cavity 154 can be located next to the first cavity 150 and can be sized and shaped to receive one or more rechargeable batteries 106. The rechargeable batteries 106 can be lithium-ion batteries packaged in a cylindrical configuration for fitting into the second cavity 154. The panel cover 152 can mount over the opening of the second cavity 154 in addition the opening of the first cavity 150 to enclose the two cavities. Optionally, two separate panel covers are provided, one for mounting over the first opening and another for mounting over the second opening of the two cavities. The second cavity 154 can extend the entire length of the second panel section 140 or any length less provided the second cavity can accommodate the one or more rechargeable batteries 106. In an alternative embodiment, the first and second cavities can be combined in a single cavity that accommodates both the charge controller 104 and the one or more rechargeable batteries 106. A baffle or a divider can be located in the single cavity to separate the charge controller from the one or more batteries.
Two spaced apart hook tabs 160 may be provided on the awning-side surface 136 of the first panel section 134. Each hook tab 160 can have a structure that extends radially of the surface 136 and can have a hook at an end thereof for engaging a corresponding channel on the awning unit to mount the awning unit. In the example shown, each hook tab 160 has a continuous body or structure that runs the length of the first panel section 134. In other embodiments, each hook tab 160 can have gaps and can embody a plurality of sections. The two hook tabs 160 can be generally parallel to each another. The spacing of the two hook tabs 160 should coincide with the spacing of corresponding receiving channels on the awning unit so that they mate during assembly.
A plurality of mounting holes 162, 164 can be provided with the first panel section 134. The mounting holes 162, 164 can be through holes and are configured to receive mounting screws that can be used to fasten the mounting bracket 130 to a side of an RV. Slotted through holes 164 can be provided to facilitate drilling and/or screwing efforts.
In an example, the length of the mounting bracket 130 is about the same or slightly less than the length of an awning unit that is mounted to the mounting bracket. Alternatively, the length of the mounting bracket 130 can be substantially shorter than the length of the awning unit, such as being less than half of the length of the awning unit, so that two or more mounting brackets 130 can be used to mount the awning unit to an RV. In yet another example, only one such mounting bracket 130 is used for powering the awning unit and the additional different mounting brackets, without the charge controller and batteries, are used to support the awning unit to then mount the awning unit to an RV.
The solar panel 102 can be mounted atop the upper surface 142 of the second panel section 140. The solar panel 102 can have a plurality of solar cells. Preferably, the solar panel 102 can have a footprint or size that is the same or smaller than the surface area of the upper surface 142. As shown, the solar panel 102 has ends and sides that are recessed from the ends and sides of the second panel section 140. Alternatively, the solar panel 102 can extend beyond one or more edges of the second panel section 140. In some examples, two or more solar panels can be mounted atop the upper surface 142 of the second panel section 140.
Although not shown, ports, slots, and/or channels may be provided for wiring the various components to electrically connect them. If the ports, slots, and/or channels terminate on the exterior of the second panel section 140 or exterior of the mounting bracket, then they could be sealed or waterproofed. In some examples, the panel cover 152 can have a pocket or pockets to accommodate cables that may pass outwardly of the cavities to enable connection of the components.
The mounting bracket 130 with the charge controller 104 and one or more rechargeable batteries 106 can be referred to as an energized mounting bracket 131. The charge controller 104 and the one or more rechargeable batteries 106 can be located in a cavity formed in the body of the mounting bracket as described above or can be located in separate cavities formed in the body of the mounting bracket.
The mounting bracket 130 can be an energized mounting bracket 131 and has a charge controller 104, and one or more batteries 106. Additionally, one or more solar panels 102 can be mounted on the upper surface of the energized mounting bracket 131. The energized mounting bracket 131 can be mounted closer to the first end 180 of the housing 114 than the second end 182 of the housing. The first end 180 can be the end with connection ports or terminals for wiring the power source located in the mounting bracket 130 to the motor of the awning unit 108. Optionally, the mounting bracket 130 can be located further away from the connection ports or terminals of the awning unit, and connections can be completed via longer cables or wires. Depending on where the mounting bracket 130 is positioned relative to the housing 114 of the awning unit, at least one additional mounting bracket can be coupled to the housing 114 to support the housing when mounting the awning unit to the RV. In some examples, the additional mounting brackets can be a second energized mounting bracket 131 and wherein power from the second energized mounting bracket 131 can power DC sockets located inside the RV and/or provide power to exterior sockets located externally of the RV interior. In still yet other examples, one or more mounting brackets 130 without the power unit, i.e., without the solar panel, charge controller, and one or more rechargeable batteries, can be used with the energized mounting bracket 131 to support the awning unit.
As shown, two non-energized mounting brackets 130 may be provided in addition to the energized mounting bracket 131 for supporting the awning unit 108 when mounting the awning unit to an RV, such as to a side of the RV. The two mounting brackets 130, one near the second end 182 of the housing and the other proximate the center location, are similar to the first panel section 134 of the mounting bracket of
The base 192 has a thickness located between an awning-side surface 136 and an opposed RV-side surface 138. The awning-side surface 136 is configured to directly face or contact an awning unit when the awning unit is mounted to the mounting bracket 130′. The RV-side surface 138 is configured to directly face the RV or contact the RV when the mounting bracket 130′ is mounted to the RV so as to mount the awning unit to the RV, as further discussed below. In the present embodiment, the RV-side surface 138 is configured to be placed on the RV rooftop and be mounted atop thereof.
In an example, the awning-side surface 136 of the base represents an upper surface 142 and the RV-side surface 138 represents a lower surface 144. The base 192 has a thickness dimension measured between the upper surface 142 and the lower surface 144. A first cavity 150 is provided in the body 190 between the upper and lower surfaces. The first cavity 150 is sized and shaped to accommodate a charge controller 104. The first cavity 150 can extend the entire length of the base 192 or any length less provided the first cavity 150 can accommodate the charge controller 104. Preferably, the first cavity is sized to fully receive the charge controller 104 so that a panel cover 152 can then mount over the opening of the first cavity 150.
A second cavity 154 can be provided in the base 192. The second cavity 154 can be located next to the first cavity 150 and can be sized and shaped to receive one or more rechargeable batteries 106. The rechargeable batteries 106 can be lithium-ion batteries packaged in a cylindrical configuration for fitting into the second cavity 154. The panel cover 152 can mount over the opening of the second cavity 154 in addition the opening of the first cavity 150. Optionally, two separate panel covers can be provided, one for mounting over the opening of the first cavity 150 and another for mounting over the opening of the second cavity 154. The second cavity 154 can extend the entire length of the base 192 or any length less provided the second cavity 154 can accommodate the one or more rechargeable batteries 106. In an alternative embodiment, the first and second cavities can be combined in a single cavity that accommodates both the charge controller 104 and the one or more rechargeable batteries 106. A baffle or a dividing wall can be provided to keep the charge controller 104 and batteries 106 apart.
The mounting bracket 130′ having a charge controller 104 and one or more rechargeable batteries 106 may be referred to as an energized mounting bracket 131′. The charge controller 104 and the one or more rechargeable batteries 106 can be located in a cavity formed in the body of the mounting bracket or can be located in separate cavities formed in the body of the mounting bracket.
An optional third cavity 200 can be provided in the base 192. The third cavity 200 may have a different cross-sectional shape than the first and second cavities and may be provided as a spare cavity, to receive additional batteries, to run cables, or to provide venting. Optionally, the third cavity 200 can be omitted. When incorporated, the same panel cover 152 can cover all three openings to the three cavities.
The plurality of hook tabs 194, 196 are configured to mate with channels or slots provided with the housing of an awning unit, as shown with reference to
One or more solar panels 102 may be mounted to the housing 114. For example, the one or more solar panels 102 may be mounted to the upper surface 170 of the housing. Alternatively, one or more solar panels 102 may be mounted to a side surface 208 of the housing 114. In an example, at least two solar panels 102 are mounted atop the upper surface 170 of the housing. Each solar panel 102 of the two solar panels can then be wired to a charge controller 104 located inside the mounting bracket of the nearest bracket. In exemplary embodiments, more than two solar panels 102 are mounted on top of the upper surface 170 of the awning unit to provide additional charging power to the charge controllers 104 to charge the batteries 106. The power provided by the rechargeable batteries 106 can be wired to one or more DC sockets to provide DC power, in addition to powering the motor located with, in or on the housing of the awning unit.
Methods of making and of using energized mounting brackets and solar panels and coupling the energized mounting brackets with awning units for mounting the awning units along upper side surfaces of RVs or on RV rooftops and components thereof are within the scope of the described embodiments.
An aspect of the described embodiments includes a method for forming a mounting bracket, the method comprising forming a bracket body with one or more cavities, placing a charge controller and one or more rechargeable batteries into the one or more cavities to form an energized mounting bracket. A method of the described embodiments can include attaching the energized mounting bracket to an awning unit. A method of the described embodiments can include attaching the combination awning unit and energized mounting bracket to a side surface of an RV or on an RV rooftop.
A still further aspect of the described embodiments includes mounting one or more solar panels directly to the mounting bracket or directly to the housing of the awning unit. The method can further include wiring the various components to charge the one or more rechargeable batteries and powering a motor in the awning unit with power from the one or more rechargeable batteries. The method can still include wiring one or more DC outlets or sockets with power from the one or more rechargeable batteries.
A still yet further aspect of the described embodiments includes mounting an awning unit using a mounting bracket to a side surface of an RV, which is angled from an RV rooftop, mounting one or more solar panels to charge one or more rechargeable batteries located in a cavity formed with the mounting bracket, and wherein the one or more solar panels are mounted laterally from a plane defined by the side surface of the RV and laterally away from the rooftop.
Although limited embodiments of energized mounting brackets and energized awning systems and their components have been specifically described and illustrated herein, many modifications and variations will be apparent to those skilled in the art. Accordingly, it is to be understood that the energized mounting brackets and energized awning system and their components constructed according to principles of the disclosed device, system, and method may be embodied other than as specifically described herein. The disclosure is also defined in the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 63/194,765, filed May 28, 2021, the entire content of which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
63194765 | May 2021 | US |