The present invention relates to methods and compositions for treating Alzheimer's disease and other diseases and conditions with an inflammatory component (e.g., central nervous system injury, dermatological disorder, cystic fibrosis). In particular, the present invention provides agents that regulate the production of proinflammatory and/or neurotoxic products involved in Alzheimer's disease and other inflammatory diseases.
Alzheimer's disease (AD) is a complex multi-genic neurodegenerative disorder characterized by progressive impairments in memory, behavior, language, and visuo-spatial skills, ending ultimately in death. Hallmark pathologies within vulnerable regions include extracellular β-amyloid deposits, intracellular neurofibrillary tangles, synaptic loss, and extensive neuronal cell death. Research on the causes and treatments of Alzheimer's disease has led investigators down numerous avenues. Although many models have been proposed, no single model of AD satisfactorily accounts for all neuropathologic findings as well as the requirement of aging for disease onset. The mechanisms of disease progression are equally unclear. Considerable human genetic evidence has implicated alterations in production or processing of the human amyloid precursor protein (APP) in the etiology of the disease. However, intensive research has proven that AD is a multifactorial disease with many different, perhaps overlapping, etiologies.
To date, Alzheimer's disease is the third most expensive disease in the United States, costing society approximately $100 billion each year. It is one of the most prevalent illnesses in the elderly population, and with the aging of society, will become even more significant. Costs associated with AD include direct medical costs such as nursing home care, direct nonmedical costs such as in-home day care, and indirect costs such as lost patient and care giver productivity. Medical treatment may have economic benefits by slowing the rate of cognitive decline, delaying institutionalization, reducing care giver hours, and improving quality of life. Pharmacoeconomic evaluations have shown positive results regarding the effect of drug therapy on nursing home placement, cognition, and care giver time.
Thus far, the therapeutic strategies attempted have targeted neurotransmitter replacement, or the preservation of normal brain structures, which potentially provide short-time relief, but do not prevent neuronal degeneration and death. Thus, there is a need for therapies that prevent neuronal degeneration and death associated with Alzheimer's disease and provide long-term relief.
One aspect of the present invention relates to a method of treating Alzheimer's disease in a subject. The method includes administering to the subject a therapeutically effective amount of at least one RXR agonist. In one example, the RXR agonist can include Bexarotene.
In another aspect, the method of treating Alzheimer's disease can include administering a PPARγ agonist in combination with the RXR agonist. The PPARγ agonist can include a thiazolidinedione or a derivative thereof. The thiazolidinedione can include at least one compound or a pharmaceutically acceptable salt thereof selected from the group consisting of: (+)-5[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4thiazolidinedione; 5-[4-[2-(5-ethylpyridin-2-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[(1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; (ciglitazone); 4-(2-naphthylmethyl)-1,2,3,5-oxathiadiazole-2-oxide; 5-[4-[2-[(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]-5-methlthiazolidine-2,4-dione; 5-[4-[2-[2,4dioxo-5-phenylthiazolidine-3-yl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-[(N-methyl-N-(phenoxycarbonyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-phenoxyethoxy)benzyl]thiazolidine-2,4-dione; 5-[4-[2-(4-chorophenyl)ethylsulfonyl]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[[4-(3-hydroxy-1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[(2-benzyl-2,3-dihydrobenzopyran)-5-ylmethyl]thiazolidine-2,4-dione; 5-[[2-(2-naphthylmethyl)benzoxazol]-5-ylmethyl]thiazolidine-2,4-dione; 5-[4-[2-(3-phenylureido)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(N-benzoxazol-2-yl)-N-metholamino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[2-(5-methyl-2-phenyloxazol-4-ylmethyl)benzofuran-5-ylmethyl]oxazolidine-2,4-dione; 5-[4-[2-(N-methyl-N-(2-pyridyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; and 5-[4-[2-(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]oxazolidine-2,4-dione.
In a further aspect, the method of treating Alzheimer's disease can include administering a LXR agonist in combination with the RXR agonist and the PPARγ agonist.
Another aspect of the present invention relates to a method of treating a central nervous system injury in a subject. The method includes administering to the subject a therapeutically effective amount of at least one RXR agonist. In one example, the RXR agonist can include Bexarotene.
In another aspect, the method of treating a central nervous system injury can include administering a PPARγ agonist in combination with the RXR agonist. The PPARγ agonist can include a thiazolidinedione or a derivative thereof. The thiazolidinedione can include at least one compound or a pharmaceutically acceptable salt thereof selected from the group consisting of: (+)-5[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4thiazolidinedione; 5-[4-[2-(5-ethylpyridin-2-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[(1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; (ciglitazone); 4-(2-naphthylmethyl)-1,2,3,5-oxathiadiazole-2-oxide; 5-[4-[2-[(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]-5-methlthiazolidine-2,4-dione; 5-[4-[2-[2,4dioxo-5-phenylthiazolidine-3-yl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-[(N-methyl-N-(phenoxycarbonyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-phenoxyethoxy)benzyl]thiazolidine-2,4-dione; 5-[4-[2-(4-chorophenyl)ethylsulfonyl]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[[4-(3-hydroxy-1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[(2-benzyl-2,3-dihydrobenzopyran)-5-ylmethyl]thiazolidine-2,4-dione; 5-[[2-(2-naphthylmethyl)benzoxazol]-5-ylmethyl]thiazolidine-2,4-dione; 5-[4-[2-(3-phenylureido)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(N-benzoxazol-2-yl)-N-metholamino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[2-(5-methyl-2-phenyloxazol-4-ylmethyl)benzofuran-5-ylmethyl]oxazolidine-2,4-dione; 5-[4-[2-(N-methyl-N-(2-pyridyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; and 5-[4-[2-(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]oxazolidine-2,4-dione.
In a further aspect, the method of treating a neural inflammation can include administering a LXR agonist in combination with the RXR agonist and the PPARγ agonist.
Another aspect of the present invention relates to a method of treating neural inflammation in a subject. The method includes administering to the subject a therapeutically effective amount of at least one RXR agonist. In one example, the RXR agonist can include Bexarotene.
In another aspect, the method of treating neural inflammation can include administering a PPARγ agonist in combination with the RXR agonist. The PPARγ agonist can include a thiazolidinedione or a derivative thereof. The thiazolidinedione can include at least one compound or a pharmaceutically acceptable salt thereof selected from the group consisting of: (+)-5[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4thiazolidinedione; 5-[4-[2-(5-ethylpyridin-2-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[(1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; (ciglitazone); 4-(2-naphthylmethyl)-1,2,3,5-oxathiadiazole-2-oxide; 5-[4-[2-[(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]-5-methlthiazolidine-2,4-dione; 5-[4-[2-[2,4dioxo-5-phenylthiazolidine-3-yl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-[(N-methyl-N-(phenoxycarbonyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-phenoxyethoxy)benzyl]thiazolidine-2,4-dione; 5-[4-[2-(4-chorophenyl)ethylsulfonyl]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[[4-(3-hydroxy-1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[(2-benzyl-2,3-dihydrobenzopyran)-5-ylmethyl]thiazolidine-2,4-dione; 5-[[2-(2-naphthylmethyl)benzoxazol]-5-ylmethyl]thiazolidine-2,4-dione; 5-[4-[2-(3-phenylureido)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(N-benzoxazol-2-yl)-N-metholamino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[2-(5-methyl-2-phenyloxazol-4-ylmethyl)benzofuran-5-ylmethyl]oxazolidine-2,4-dione; 5-[4-[2-(N-methyl-N-(2-pyridyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; and 5-[4-[2-(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]oxazolidine-2,4-dione.
In a further aspect, the method of treating neural inflammation can include administering a LXR agonist in combination with the RXR agonist and the PPARγ agonist.
Yet another aspect of the present invention relates to a method of treating cystic fibrosis in a subject. The method includes administering to the subject a therapeutically effective amount of at least one RXR agonist. In one example, the RXR agonist can include Bexarotene.
In another aspect, the method of treating cystic fibrosis can include administering a PPARγ agonist in combination with the RXR agonist. The PPARγ agonist can include a thiazolidinedione or a derivative thereof. The thiazolidinedione can include at least one compound or a pharmaceutically acceptable salt thereof selected from the group consisting of: (+)-5[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4thiazolidinedione; 5-[4-[2-(5-ethylpyridin-2-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[(1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; (ciglitazone); 4-(2-naphthylmethyl)-1,2,3,5-oxathiadiazole-2-oxide; 5-[4-[2-[(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]-5-methlthiazolidine-2,4-dione; 5-[4-[2-[2,4dioxo-5-phenylthiazolidine-3-yl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-[(N-methyl-N-(phenoxycarbonyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-phenoxyethoxy)benzyl]thiazolidine-2,4-dione; 5-[4-[2-(4-chorophenyl)ethylsulfonyl]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[[4-(3-hydroxy-1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[(2-benzyl-2,3-dihydrobenzopyran)-5-ylmethyl]thiazolidine-2,4-dione; 5-[[2-(2-naphthylmethyl)benzoxazol]-5-ylmethyl]thiazolidine-2,4-dione; 5-[4-[2-(3-phenylureido)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(N-benzoxazol-2-yl)-N-metholamino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[2-(5-methyl-2-phenyloxazol-4-ylmethyl]benzofuran-5-ylmethyl]oxazolidine-2,4-dione; 5-[4-[2-(N-methyl-N-(2-pyridyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; and 5-[4-[2-(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]oxazolidine-2,4-dione.
In a further aspect, the method of treating cystic fibrosis can include administering a LXR agonist in combination with the RXR agonist and the PPARγ agonist.
Another aspect of the present invention relates to a method of treating a dermatological disorder in a subject. The method includes administering to the subject a therapeutically effective amount of at least one RXR agonist. In one example, the RXR agonist can include Bexarotene.
In another aspect, the method of treating a dermatological disorder can include administering a PPARγ agonist in combination with the RXR agonist. The PPARγ agonist can include a thiazolidinedione or a derivative thereof. The thiazolidinedione can include at least one compound or a pharmaceutically acceptable salt thereof selected from the group consisting of: (+)-5[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4thiazolidinedione; 5-[4-[2-(5-ethylpyridin-2-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[(1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; (ciglitazone); 4-(2-naphthylmethyl)-1,2,3,5-oxathiadiazole-2-oxide; 5-[4-[2-[(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]-5-methlthiazolidine-2,4-dione; 5-[4-[2-[2,4dioxo-5-phenylthiazolidine-3-yl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-[(N-methyl-N-(phenoxycarbonyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-phenoxyethoxy)benzyl]thiazolidine-2,4-dione; 5-[4-[2-(4-chorophenyl)ethylsulfonyl]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[[4-(3-hydroxy-1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[(2-benzyl-2,3-dihydrobenzopyran)-5-ylmethyl]thiazolidine-2,4-dione; 5-[[2-(2-naphthylmethyl)benzoxazol]-5-ylmethyl]thiazolidine-2,4-dione; 5-[4-[2-(3-phenylureido)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(N-benzoxazol-2-yl)-N-metholamino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[2-(5-methyl-2-phenyloxazol-4-ylmethyl)benzofuran-5-ylmethyl]oxazolidine-2,4-dione; 5-[4-[2-(N-methyl-N-(2-pyridyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; and 5-[4-[2-(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]oxazolidine-2,4-dione.
In a further aspect, the method of treating a dermatological disorder can include administering a LXR agonist in combination with the RXR agonist and the PPARγ agonist.
As used herein “agent” or “drug” is used herein to denote a chemical compound, a mixture of chemical compounds, a biological macromolecule, or an extract made from biological materials, such as bacteria, plants, fungi, or animal particularly mammalian cells or tissues that are suspected of having therapeutic properties. The agent or drug may be purified, substantially purified or partially purified.
As used herein, the term “purified” or “to purify” refers to the removal of one or more contaminants from a sample. The present invention contemplates purified compositions.
As used herein, the term “partially purified” refers to the removal of a moderate portion of the contaminants of a sample to the extent that the substance of interest is recognizable by techniques known to those skilled in the art as accounting for a measurable amount of the mixture. Preferably, the compound of interest is at least 5% of the total preparation and up to 50% of the total preparation. As used herein, the term “substantially purified” refers to the removal of a significant portion of the contaminants of a sample to the extent that the substance of interest is recognizable by techniques known to those skilled in the art as the most abundant substance in the mixture.
As used herein “agonist” refers to a molecule which, when interacting with a biologically active molecule, causes a change (e.g., enhancement) in the biologically active molecule, which modulates the activity of the biologically active molecule. Agonists include, but are not limited to proteins, nucleic acids, carbohydrates, lipids or any other molecules which bind or interact with biologically active molecules. For example, agonists can alter the activity of gene transcription by interacting with RNA polymerase directly or through a transcription factor or signal transduction pathway. Agonists can mimic the action of a “native” or “natural” compound. Agonists may be homologous to these natural compounds in respect to conformation, charge or other characteristics. Thus, agonists may be recognized by, e.g., nuclear receptors. This recognition may result in physiologic and/or biochemical changes within the cell, such that the cell reacts to the presence of the agonist in the same manner as if the natural compound was present.
The term “RXR agonist” refers to a compound or composition which, when combined with a Retinoid X Receptor (RXR), increases the transcriptional regulation activity of RXR homodimers and heterodimers.
As used herein, the term “therapeutically effective amount” refers to that amount of a composition that results in amelioration of symptoms or a prolongation of survival in a patient. A therapeutically relevant effect relieves to some extent one or more symptoms of a disease or condition or returns to normal either partially or completely one or more physiological or biochemical parameters associated with or causative of the disease or condition.
As used herein, the term “PPARγ agonist” refers to a compound or composition, which when combined with PPARγ, directly or indirectly stimulates or increases an in vivo or in vitro reaction typical for the receptor (e.g., transcriptional regulation activity). The increased reaction can be measured by any of a variety of assays known to those skilled in the art. An example of a PPARγ agonist is a thiazolidinedione compound, such as troglitazone, rosiglitazone, pioglitazone, ciglitazone, WAY-120,744, englitazone, AD 5075, darglitazone, and congeners, analogs, derivatives, and pharmaceutically acceptable salts thereof.
As used herein, the term “subject” refers to any animal, including, but not limited to, humans and non-human animals (e.g., rodents, arthropods, insects, fish (e.g., zebrafish), non-human primates, ovines, bovines, ruminants, lagomorphs, porcines, caprines, equines, canines, felines, ayes, etc.), which is to be the recipient of a particular treatment. Typically, the terms “patient” and “subject” are used interchangeably herein in reference to a human subject.
“ABCA1” is used herein to mean “ATP-binding cassette transporter A1”, and is also referred to in the art as “ABC1”.
“Activate”, when used in connection with a receptor, means to change the receptor's conformation so as to promote transcriptional activity.
“LXR” is used herein to mean “liver X receptors.”
As used herein, the term “in vitro” refers to an artificial environment and to processes or reactions that occur within an artificial environment. In vitro environments consist of, but are not limited to, test tubes and cell culture. The term “in vivo” refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.
“Treating” or “treatment” of a condition or disease includes: (1) preventing at least one symptom of the conditions, i.e., causing a clinical symptom to not significantly develop in a subject that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease, (2) inhibiting the disease, i.e., arresting or reducing the development of the disease or its symptoms, or (3) relieving the disease, i.e., causing regression of the disease or its clinical symptoms. Treatment, prevention and ameliorating a condition, as used herein, can include, for example decreasing or eradicating a deleterious or harmful condition associated with a PPARγ/RXR related disease(s) or disorder(s).
For the purposes of this application, the terms “PPARγ/RXR related disease(s) or disorder(s)” includes diseases and/or conditions related to the transcription of LXR target genes (e.g., ApoE, ABCA1, and ABCG1).
As used herein, the term “dermatological disorder” refers to any disorder of skin, hair, or glands. A dermatological disorder can be manifest in the form of visible lesions, pre-emergent lesions, pain, sensitivity to touch, irritation, inflammation, or the like. Dermatological disorders include disorders of the cutaneous and pilosebaceous unit or the process of keratogenesis. For example, a dermatological disorder can be a disorder of the epidermis or dermis, or within and surrounding a pilosebaceous unit, which is located within the epidermis, dermis, subcutaneous layer, or a combination thereof. Examples of dermatological disorders include, but are not limited to, acne, alopecia, psoriasis, seborrhea, ingrown hairs and pseudofolliculitis barbae, hyperpigmented skin, cutaneous infections, lichen planus, Graham Little Syndrome, periorificial dermatitis, rosacea, hidradenitis suppurativa, dissecting cellulitis, systemic lupus erythematosus, discoid lupus erythematosus, and the like.
As used herein, the term “alopecia” refers to partial or full baldness, hair loss, and/or hair thinning.
As used herein, the term “primary cicatricial alopecia” refers to a group of hair disorders that cause permanent destruction of the hair follicle. The term includes hair disorders in which the hair follicles are the primary target of a destructive inflammatory process. Cicatricial alopecias (CA) can be classified as lymphocytic, neutrophilic, and combinations thereof (i.e., “mixed”). Examples of lymphocytic CAs include lichen planopilaris, frontal fibrosing alopecia, chronic cutaneous lupus, erythematosus, pseudopelade, central centrifugal alopecia, alopecia mucinosa, and keratosis follicularis spinulosadecalvans. Examples of neutrophilic CAs include folliculitis decalvans, tufted folliculitis, and dissecting cellulitis. Examples of mixed CAs include follicullitis keloidalis and erosive dermatosis.
The present invention relates to compositions and methods of treating PPARγ and/or RXR related diseases and disorders. PPARγ and/or RXR related diseases and disorders can include, but are not limited to, neurodegenerative diseases and disorders, diseases and disorder resulting from trauma and injury, and/or an inflammatory component as well as dermatological diseases and disorders with or without an inflammatory component.
In one aspect of the invention, the compositions and methods can be used to regulate the production of proinflammatory and neurotoxic products involved in neurodegenerative diseases and disorders in a subject. Neurodegenerative disorders include, but are not limited to, Alzheimer's, Parkinson's, Huntington's Disease, as well as neural diseases and conditions with an inflammatory components, including, but not limited to, central nervous system injuries, stroke, ischemic damage to the nervous system, neural trauma (e.g., percussive brain damage, spinal cord injury, and traumatic damage to the nervous system), multiple sclerosis and other immune-mediated neuropathies (e.g., Guillain-Barre syndrome and its variants, acute motor axonal neuropathy, acute inflammatory demyelinating polyneuropathy, and Fisher Syndrome), HIV/AIDs dementia complex, and bacterial, parasitic, fungal, and viral meningitis and encephalitis.
In other aspects, the compositions and methods described herein can be administered to a subject to treat cystic fibrosis (CF) and CF-related disease(s) and disorder(s) (e.g., variant cystic fibrosis and non-CF bronchiectasis inflammatory responses), and inflammatory responses associate with associated with cystic fibrosis-related disease(s) or disorder(s). In still further aspects, the composition and methods described herein can be used to treat dermatological diseases and/or disorders where lipid PPARγ-regulated gene expression is decreased (e.g., LPP).
The compositions and methods of the present invention can include the use of RXR agonist alone or in combination with a PPARγ agonist (and optionally an LXR agonist) to suppress, inhibit, or mitigate a diverse range of PPARγ and/or RXR related diseases as described above and/or inflammatory responses associated with the PPARγ and/or RXR related diseases.
It was found that RXR nuclear receptors act in concert with other nuclear receptors (PPARγ and LXR) to facilitate the primary actions of the PPARγ and LXR receptors in a cell. PPARγ and LXRs are type II nuclear receptors, which form obligate heterodimers with RXR and form a functionally active transcription factor that is then competent to bind DNA and stimulate gene expression. It has been previously shown that PPARγ and LXRs act in concert to regulate lipid metabolism and ApoE expression (
An aspect of the invention relates to a method of treating PPARγ and/or RXR related diseases and disorders by administering to a subject with the disorder a therapeutically effective amount of RXR agonist. Administration of RXR agonists can increase LXR target gene expression in the subject, improve the therapeutic efficacy of PPARγ agonist and LXR agonist agents in the treatment of PPARγ/RXR related diseases and disorders. Advantageously, the RXR agonist can be administered in combination with a PPARγ agonists and optionally an LXR agonist to synergistically treat the PPARγ and/or RXR related diseases and disorders. It is contemplated by the present invention that the administration of RXR agonists, by increasing LXR target gene expression in the subject, can improve the therapeutic efficacy of PPARγ agonist and LXR agonist agents in the treatment of PPARγ/RXR related diseases and disorders. The present invention therefore relates to therapies that utilize the synergistic properties of two or more therapeutic agents for the treatment of PPARγ/RXR related diseases and disorders.
The RXR agonist can include known RXR agonists that are described in, for example, the following U.S. patents and patent applications, which are incorporated by reference herein: U.S. Pat. Nos. 5,399,586, 5,466,861, 5,780,676, and 5,801,253; U.S. patent application Ser. Nos. 07/809,980, 08/003,223, 08/027,747, 08/045,807, 08/052,050, 08/052,051, 08/179,750, 08/366,613, 08/480,127, 08/481,877, 08/872,707, and 08/944,783. See also, WO 93/11755, WO 93/21146, WO 94/15902, WO 94/23068, WO 95/04036, and WO 96/20913.
Other RXR agonists that can be used in the present invention can include RXR agonists described for example, in the following articles: Boehm et al. J. Med. Chem. 38:3146 (1994), Boehm et al. J. Med. Chem. 37:2930 (1994), Antras et al., J. Biol. Chem. 266:1157-61 (1991), Salazar-Olivo et al., Biochem. Biophys. Res. Commun. 204: 10 257-263 (1994), and Safanova, Mol. Cell. Endocrin. 104:201 (1994). Such compounds may be prepared according to methods known in the art as described in the aforementioned references, as well as in M. L. Dawson and W. H. Okamura, Chemistry and Biology of Synthetic Retinoids, Chapters 3, 8, 14 and 16, CRC Press, Inc., Florida (1990); M. L. Dawson and P. D. Hobbs, The Retinoids, Biology, Chemistry and Medicine, M. B. Sporn et al., Eds. (2nd ed.), Raven Press, New York, N.Y., pp. 5-178 (1994); Liu et al., Tetrahedron, 40:1931 (1984); Cancer Res., 43:5268 (1983); Eur. J. Med. Chem. 15:9 (1980); Allegretto et al., J. Bio. Chem., 270:23906 (1995); Bissonette et al., Mol. Cell. Bio., 15:5576 (1995); Beard et al., J. Med. Chem., 38:2820 (1995), Koch et al., J. Med. Chem., 39:3229 (1996); and U.S. Pat. Nos. 4,326,055 and 4,578,498.
In some aspects of the invention, the RXR agonists can include LGD1069 (also known as Bexarotene), LGD100268, and LGD100324. The structures of RXR agonists designated LGD1069, LGD100268, and LGD100324 are shown below, and the synthesis of these compounds is described in U.S. Pat. Nos. 7,655,699 and 5,780,676. The synthesis of compounds LGD1069, LGD100268, and LGD100324 is also described in, e.g., WO 94/15902 and Boehm et al., J. Med. Chem. 38(16):3146 (1994).
In some aspects of the invention, a RXR agonist can include compounds of the following general formulas:
Y represents C, O, S, N, CHOH, CO, SO, SO2, or a pharmaceutically acceptable salt;
R3 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;
R4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R4 does not exist if Y is N, and neither R3 or R4 exist if Y is S, O, CHOH, CO, SO, or SO2;
R′ and R″ represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino, or R′ or R″ taken together form an oxo (keto), methano, thioketo, HO—N═, NC—N═, (R7R8) N—N═, R17O—N═, R17N═, epoxy, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;
R′″ and R″″ represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino, or R′″ and R″″ taken together form a cycloalkyl group having 3-10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen;
R5 represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR7, SR7, NR7R8, or (CF) nCF3, but R5 cannot be hydrogen if together R6, R10, R11, R12 and R13 are all hydrogen, Z, Z′, Z″, Z′″, and Z″″ are all carbon, and R′ and R″ represent H, OH, C1-C4 alkoxy or C1-C4 acyloxy or R′ and R″ taken together form an oxo, methano, or hydroxyimino group;
R6, R10, R11, R12, R13, each independently represent hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR7, SR7, NR7R8 or (CF)nCF3, and exist only if the Z, Z′, Z″, Z′″, or Z″″ from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z′, Z″, Z′″, or Z″″ from which it originates is N, and where one of R6, R10, R11, R12 or R13 is X;
R7 represents hydrogen or a lower alkyl having 1-6 carbons;
R8 represents hydrogen or a lower alkyl having 1-6 carbons;
R9 represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;
R14 represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol, or thioketone;
R15 represents a lower or branched alkyl having 1-12 carbons and can be methyl only if R16 is a halogen or a lower alkyl having 1-8 carbons;
R16 represents hydrogen, a lower alkyl having 1-8 carbons, or halogen,
or R15 and R16 taken together form a phenyl, cyclohexyl, or cyclopental ring, or one of the following:
R17 represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR7 and SR7 substituted alkenes), R9, alkyl carboxylic acid (including halogen, acyl, OR7 and SR7 substituted alkyls), alkenyl carboxylic acid (including halogen, acyl, OR7 and SR7 substituted alkenes), alkyl amines (including halogen, acyl, OR7 and SR7 substituted alkyls), and alkenyl amines (including halogen, acryl, OR7 and SR7 substituted alkenes);
R18 represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR7, SR7, NR7R8 or (CF)nCF3;
R19 represents hydrogen, a lower alkyl having 1-8 carbons, halogen, OR7, SR7, or (CF)nCF3;
X is COOH, tetrazole, PO3H, SO3H, CHO, CH2OH, CONH2, COSH, COOR9, COSR9, CONHR9, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring;
Z, Z′, Z″, Z′″ and Z″″, each independently, represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;
n=0-3; and the dashed lines depict optional double bonds.
In addition, thiophene, furanyl, pyridine, pyrazine, pyrazole, pyridazine, thadiazole, and pyrrole groups function as isosteres for phenyl groups, and may be substituted for the phenyl group of the above bicyclic benzyl derivatives.
Specific examples of RXR agonist compounds of the present invention are given in the following list:
Representative structures for such compounds are as follows:
In addition, derivatives of the above compounds can be prepared according to U.S. Pat. Nos. 5,780,676; 5,962,731; 6,043,279; and 6,320,074 which are incorporated herein by reference.
In some aspects of the present invention, the RXR agonist can comprise compounds having the structure selected from the following formulas:
In certain aspects of the present invention, the RXR agonist can comprise a compound having the following structure;
In another aspect of the present invention, the RXR agonist can include an agent disclosed in U.S. Pat. No. 7,348,359, having the following general formula (i):
In formula (i), R is selected from the group of H, F, Cl, Br, I, C1-C3 alkyl, C1-C3 haloalkyl, C2-C3 alkenyl, C2-C3 haloalkenyl, C2-C3 alkynyl, C2-C3 haloalkynyl, and C1-C3 alkoxy, wherein said alkyl, haloalkyl, alkenyl, haloalkenyl, alkynyl, haloalkynyl, and alkoxy groups may be optionally substituted;
R1 and R2 are each, independently, H, a halo, a C1-C10 alkyl, a C3-C10 cycloalyl, a C5-C10 cycloalkenyl, a 6 to 10 membered aryl, a 5 to 10 membered heteroaryl, an aryl-C1-C6-alkyl, or an amino group represented by the formula NR14R15, wherein the alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and arylalkyl are optionally substituted with one or more halo, C1-C3 alky, C1-C3 haloalkyl or C1-C3 alkoxy; or R1 and R2 taken together with the carbon atoms to which they are attached form a five or six membered carbocyclic ring which is optionally substituted with one or more halo or C1-C6 alkyl groups. R14 and R15 are each, independently, H, a C1-C6 alkyl, or taken together with the nitrogen they are attached to form a 5 to 8 heterocycle.
Alternatively, R and R1 taken together with the carbon atoms to which they are attached form an aryl, a heteroaryl, a C5-C8 cycloalkyl or C5-C8 cycloalkenyl ring in which the aryl, heteroaryl, C5-C8 cycloalkyl or C5-C8 cyclolkenyl are optionally substituted with one or more halo, C1-C3 alkyl, C1-C3 haloalkyl or CI-C3 alkoxy substituents. Preferably, when R and R1 together with the carbon atoms to which they are attached form an aryl or a heteroaryl, the aryl and heteroaryl have from five to six atoms.
R3 is H, a halo, a C1-C10 alkyl, a C3-C10 cycloalkyl, C5-C10 cycloalkenyl, a 6 to 10 membered aryl, a 5 to 10 membered heteroaryl, an aryl-C1-C6-alkyl, or an amino group represented by the formula NR14R15, wherein the alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and arylalkyl are optionally substituted with one or more halo, C1-C3 alkyl, C1-C3 haloalkyl or C1-C3 alkoxy.
R4 is H, a halo, an aryl-C1-C6-alkyl, a C1-C10 alkyl or a C1-C10 alkoxy group wherein the arylalkyl, alkyl, and alkoxy are optionally substituted with one or more substituents selected from halo, C1-C6 alkyl, aryl, heteroaryl, a C1-C6 alkoxy, an amino group represented by the formula NR14R15. Preferably, the aryl and the heteroaryl substituents each, independently, have from five to ten atoms.
Alternatively, R3 and R4 taken together with the carbon atoms to which they are attached form an aryl, a heteroaryl, a C5-C8 cycloalkyl or C5-C8 cycloalkenyl ring wherein the aryl, heteroaryl, cycloalkyl and cycloalkenyl are optionally substituted with one or more halo, C1-C3 alkyl, C1-C3 haloalkyl or C1-C3 alkoxy substituents. Preferably, when R3 and R4 together with the carbon atoms to which they are attached form an aryl or a heteroaryl, the aryl and heteroaryl have from five to ten atoms.
R5 is H, a halo, or a C1-C3 alkyl group, which is optionally substituted with one or more halo.
R6 is H or halo.
R16 is OR17, OCH(R17)OC(O)R18, —NR19R20, or an aminoalkyl.
R17, R19 and R20 are each, independently, H or a C1-C6 alkyl.
R18 is a C1-C6 alkyl.
Ring A is a heteroaryl group represented by the following structural formula:
In ring A, X1 and X2 are each, independently, O, S, N, NH, or CH.
X3 is N or C.
X4 is CH or N.
P is 0 or 1.
However, when X1 is O or S, then X2 is CH or N and p is 0.
Ring A is optionally substituted with one or more substituents selected from a halo, a C1-C6 alkyl, or a C1-C6 alkoxy.
This group of compounds can be represented by the following formula (ii):
In this formula, R5, R6, and R16, are as defined in formula (i).
R1′ and R3′ are each, independently, H, a halo, a C1-C10 alkyl, a C3-C10 cycloalkyl, a C5-C10 cycloalkenyl, a 6 to 10 membered aryl, a 5 to 10 membered heteroaryl, an aryl-C1-C6-alkyl or an amino group represented by the formula NR14R15 wherein the alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and arylalkyl are optionally substituted with one or more halo, C1-C3 alkyl, C1-C3 haloalkyl or C1-C3 alkoxy.
R4′ is H, a halo, an aryl-C1-C6-alkyl, a C1-C10 alkyl or a C1-C10 alkoxy group wherein the arylalkyl, alkyl and alkoxy groups are optionally substituted with one or more substituents selected from halo, C1-C6 alkyl, aryl, heteroaryl, a C1-C6 alkoxy, an amino group represented by the formula NR14R15.
Each R7 is, independently, a halo or a C1-C6 alkyl group.
R8 is H, a halo or a C1-C6 alkyl group.
k is 0, 1, 2 or 3.
In a second preferred embodiment, compounds of the present invention and pharmaceutically acceptable salts, solvates and hydrates thereof, separately or with their respective pharmaceutical compositions, have a benzo[b]thienyl ring A. This group of compounds can be represented by formula (iii):
In formula (iii), R5, R6, and R16, are as defined for Structural Formula i and R1′, R3′, and R4′ are defined as in Structural Formula ii.
Each R9 is, independently, a halo or a C1-C6 alkyl group;
R10 is H, a halo or a C1-C6 alkyl group; and
m is 0, 1, 2 or 3.
In one aspect, compounds of the present invention and pharmaceutically acceptable salts, solvates and hydrates thereof, separately or with their respective pharmaceutical compositions, have an indolyl ring A. This group of compounds can be represented by formula (iv):
In formula (Iv), R5, R6, and R16, are as defined for Structural Formula i and R1′, R3′, and R4′ are defined as in Structural Formula ii.
R11 is H, a halo or a C1-C6 alkyl.
R12 is H or a C1-C6 alkyl.
Each R13 is, independently, a halo or a C1-C6 alkyl group.
q is 0, 1, 2 or 3.
Specific examples of RXR agonist agents disclosed in U.S. Pat. No. 7,348,359 for use in the present invention are given in the following list:
In one aspect, ring A of the agents disclosed in U.S. Pat. No. 7,348,359 for use in the present invention is a benzo[b]furanyl. These compounds include, but are not limited to, the following compounds:
In another embodiment, ring A of compounds of the present invention is a benzo[b]thienyl. These compounds include but are not limited to the following group of compounds:
In another aspect, ring A of the agents disclosed in U.S. Pat. No. 7,348,359 for use in the present invention is an indolyl. These compounds include, but are not limited to, the following:
In some aspects, compounds represented by Structural Formula i have a ring A that is selected from the group consisting of an optionally substituted benzofuranyl, an optionally substituted benzo[b]thiophenyl, an optionally substituted indolyl, an optionally substituted thieno[2,3-c]pyridinyl, an optionally substituted benzold]isoxazolyl, an optionally substituted indazolyl, an optionally substituted imidazo[1,2-a]pyridinyl, an optionally substituted isoquinolinyl, or an optionally substituted quinolinyl.
In some aspects, compounds represented by formula (i) have a ring A that is selected from the following groups:
The symbol “U” indicates a single bond connecting ring A to the phenyl group, and the symbol “T” indicates a single bond connecting ring A to the a, αβ-unsaturated carbonyl group.
In another aspect, R4 of formula (i) or R4 of preferred embodiments four and five is a C2-C5 alkoxy group, which is optionally substituted with one or more fluoro.
In another aspect, R4′ of preferred embodiments one, two and three is a C2-C5 alkoxy group which is optionally substituted with one or more fluoro.
In another aspect, R5 is methyl and R6 is H in anyone of the previous embodiments.
In another aspect, R5 is methyl and R6 is fluoro in anyone of the previous embodiments.
In another aspect, R1 and R3 in anyone of the previous embodiments in which they occur are the same.
In another aspect, R1 and R3 in anyone of the previous embodiments in which they occur are the same and are iso-propyl or tert-butyl.
In another aspect, R1′ and R3′ in anyone of the previous embodiments in which they occur are the same.
In another embodiment, R1′ and R3′ in anyone of the previous embodiments in which they occur are the same and are iso-propyl or tert-butyl.
Optionally, a PPARγ agonist can be administered in combination with the RXR agonist to treat the PPARγ and/or RXR related diseases and disorders. PPARγ agonists for use in the present invention can include, for example, prostaglandin J2 (PGJ2) and analogs thereof (e.g., A2-prostaglandin J2 and 15-deoxy-2,4-prostaglandin J2), members of the prostaglandin D2 family of compounds, docosahexaenoic acid (DHA), and thiazolidinediones (e.g., ciglitazone, troglitazone, pioglitazone and rosiglitazone).
In addition, such PPARγ agonists can include, but are not limited to, L-tyrosine-based compounds, farglitazar, GW7845, indole-derived compounds, indole 5-carboxylic acid derivatives and 2,3-disubstituted indole 5-phenylacetic acid derivatives. It is appreciated that most of the PPARγ agonists exhibit substantial bioavailability following oral administration and have little or no toxicity associated with their use (See, e.g., Saltiel and Olefsky, Diabetes 45:1661 (1996); Wang et al., Br. J. Pharmacol. 122:1405 (1997); and Oakes et al., Metabolism 46:935 (1997)). It will be appreciated that the present invention is not limited to above-identified PPARγ agonists and that other identified PPARγ agonists can also be used.
PPARγ agonists that can be used for practicing the present invention, and methods of making these compounds, are disclosed in WO 91/07107; WO 92/02520; WO 94/01433; WO 89/08651; WO 96/33724; WO 97/31907; U.S. Pat. Nos. 4,287,200; 4,340,605; 4,438,141; 4,444,779; 4,461,902; 4,572,912; 4,687,777; 4,703,052; 4,725,610; 4,873,255; 4,897,393; 4,897,405; 4,918,091; 4,948,900; 5,002,953; 5,061,717; 5,120,754; 5,132,317; 5,194,443; 5,223,522; 5,232,925; 5,260,445; 5,814,647; 5,902,726; 5,994,554; 6,294,580; 6,306,854; 6,498,174; 6,506,781; 6,541,492; 6,552,055; 6,579,893; 6,586,455, 6,660,716, 6,673,823; 6,680,387; 6,768,008; 6,787,551; 6,849,741; 6,878,749; 6,958,355; 6,960,604; 7,022,722; and U.S. Applications 20030130306, 20030134885, 20030109579, 20030109560, 20030088103, 20030087902, 20030096846, 20030092697, 20030087935, 20030082631, 20030078288, 20030073862, 20030055265, 20030045553, 1 20020169192, 20020165282, 20020160997, 20020128260, 20020103188, 20020082292, 20030092736, 20030069275, 20020151569, and 20030064935.
The disclosures of these publications are incorporated herein by reference in their entireties, especially with respect to the PPARγ agonists disclosed therein, which may be employed in the methods described herein.
In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula I:
In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula II:
In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula III:
In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula IV:
In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula V:
In other aspects of the present invention, the PPARγ agonists can comprise compounds of Formula VI:
In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula VII:
In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula VIII:
In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula IX:
or a tautomeric form thereof and/or a pharmaceutically acceptable salt thereof, and/or a pharmaceutically acceptable solvate thereof, wherein: A5 represents a substituted or unsubstituted aromatic heterocyclyl group; A6 represents a benzene ring having in total up to substituents; X6 represents O, S, or NR32 wherein R32 represents a hydrogen atom, an alkyl group, an acyl group, an aralkyl group, wherein the aryl moiety may be substituted or unsubstituted, or a substituted or unsubstituted aryl group; Y2 represents O or S; R31 represents an alkyl, aralkyl, or aryl group; and n represents an integer in the range from 2 to 6. Aromatic heterocyclyl groups include substituted or unsubstituted, single or fused ring aromatic heterocyclyl groups comprising up to 4 hetero atoms in each ring selected from oxygen, sulfur, or nitrogen. Aromatic heterocyclyl groups include substituted or unsubstituted single ring aromatic heterocyclyl groups having 4 to 7 ring atoms, preferably 5 or 6 ring atoms.
In particular, the aromatic heterocyclyl group comprises 1, 2, or 3 heteroatoms, especially 1 or 2, selected from oxygen, sulfur, or nitrogen. Values for A5 when it represents a 5-membered aromatic heterocyclyl group include thiazolyl and oxazoyl, especially oxazoyl. Values for A6 when it represents a 6-membered aromatic heterocyclyl group include pyridyl or pyrimidinyl. R31 represents an alkyl group, in particular a C-6 alkyl group (e.g., a methyl group).
A5 can represent a moiety of formula (a), (b), or (c), under Formula IX:
In one aspect of the present invention, R33 and R34 together present a moiety of Formula (d), under Formula IX:
In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula X:
In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula XI:
In some aspects of the present invention, the PPARγ agonists can comprise a compound of Formulas XII and XIII:
Some embodiments of the present invention include the use of the compounds of Formulas I through XIII are referred to as thiazolidine derivatives. Where appropriate, the specific names of thiazolidine derivatives may be used, including, for example, troglitazone, ciglitazone, pioglitazone, and rosiglitazone.
In certain aspects, an activator of a PPARγ agonist may be used as described in U.S. Pat. No. 5,994,554, e.g., having a structure selected from the group consisting of formulas (XIV)-(XXVI):
In yet other aspects, the PPARγ agonists can comprise a compound as disclosed in U.S. Pat. No. 6,306,854, e.g., a compound having a structure of Formula (XXVII):
In yet other aspects of the present invention, a PPARγ agonist can comprise a compound such as those disclosed in U.S. Pat. No. 6,294,580 and/or Liu et al., Biorg. Med. Chem. Lett. 11 (2001) 3111-3113, e.g., having a structure within Formula XXVIII:
One specific group of compounds are those of Formula XI, wherein the dotted line represents no bond, R1 is methyl, X is O and A is O. Examples of compounds in this group are those compounds where R is phenyl, 2-naphthyl and 3,5-bis(trifluoronethyl)phenyl. Another specific group of compounds are those of Formula XIII, wherein the dotted line represents no bond, R1 is methyl and A is O. Particularly preferred compounds within this group are compounds where B is CH and R is phenol, p-tolyl, m-tolyl, cyclohexyl, and 2-naphthyl. In alternative embodiments of the present invention, the B is N and R is phenyl.
Specific examples of PPARγ agonist compounds of the present invention are given in the following list: (+)-5[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4thiazolidinedione; (troglitazone); 5-[4-[2-(5-ethylpyridin-2-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; (pioglitazone); 5-[4-[(1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; (ciglitazone); 4-(2-naphthylmethyl)-1,2,3,5-oxathiadiazole-2-oxide; 5-[4-[2-[(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]-5-methlthiazolidine-2,4-dione; 5-[4-[2-[2,4dioxo-5-phenylthiazolidine-3-yl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-[(N-methyl-N(phenoxycarbonyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-phenoxyethoxy)benzyl]thiazolidine-2,4-dione; 5-[4-[2-(4-chorophenyl)ethylsulfonyl]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[[4-(3-hydroxyl-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[(2-benzyl-2,3-dihydrobenzopyran)-5-ylmethyl]thiazolidine-2,4-dione; (englitazone); 5-[[2-(2-naphthylmethyl)benzoxazol]-5-ylmethyl]thiazolidine-2,4-dione; 5-[4-[2-(3-phenylureido)ethoxyl]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(N-benzoxazol-2-yl)-N-metholamino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[2-(5-methyl-2-phenyloxazol-4-ylmethyl)benzofuran-5-ylmethyl]oxazolidine-2,4-dione; 5-[4-[2-(N-methyl-N-(2-pyridyl)amino]ethoxy]benzyl]thiazolidine-2,4-dione (rosiglitazone); and 5-[4-[2-(N-(benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]oxazolidine-2,4-dione.
In yet other aspects of the present invention, the PPARγ agonists can comprise compounds having the structure shown in Formula XXIX:
Optionally, an LXR agonist can be administered in combination with a PPARγ agonist and a RXR agonist as described above. LXR agonists that can be used for practicing the present invention, and methods of making these compounds, are disclosed in PCT WO/03082198A2. In one aspect of the invention, the LXR agonists are selected from those disclosed in International Patent Applications WO 01154759 (Tularik Inc. US), PCT/US01127622 (SmithKline Beecham plc UK), WO 01141704 (Merck & CO., INC) and WO97/28137 (Merck & CO., INC).
In some aspects, the LXR agonist comprises a compound disclosed in International Patent Application WO 00/54759 having the following general formula (XXX):
Ar represents an aryl group;
R1 is —OH, —O—(C1-C7)alkyl, —OC(O)—(C1-C7)alkyl, —O—(C1-C7)heteroalkyl, —OC(O)— (C1-C7) heteroalkyl, —CO2H, —NH2, —NH(C1-C7)alkyl, —N((C1-C7)alkylh or —NH—S(Oh-(C1-C8)alkyl;
R2 is (C1-C7)alkyl, (C1-C7)heteroalkyl, aryl and aryl(C1-C7)alkyl;
X1, X2, X3, X4, X5 and X6 are each independently H, (CI-C5)alkyl, (C1-C5)hetroalkyl, F or Cl, with the proviso that no more than three of X1 through X6 are H, (C1-C5)alkyl or (C1-C5)heteroalkyl; and Y is —N(R12)S(O)m-, —N(R12)S(O)mN(R13)—, —N(R12)C(O), —N(R12)C(O)N(R13)—, —N(R12)C(S)— or —N(R12)C(O)O—, wherein R12 and R13 are each independently hydrogen, (C1-C7)aryl, (C1-C7)heteroalkyl, aryl and aryl(C1-C7)alkyl, and optionally when Y is —N(R12)S(O)m- or —N(R12)S(O)mN(R13)—, R12 forms a five, six or seven-membered ring fused to Ar or to R2 through covalent attachment to Ar or R2, respectively. In the above Y groups, the subscript m is an integer of from 1 to 2, as being useful as agonists of LXR and their use in pharmaceutical formulations of the present invention.
In some aspects the LXR agonist can include a compound with the following structure:
International Patent Application PCT/US01/27622 (SmithKline Beecham) discloses compounds of formula (XXXI):
X is OH or NH2;
p is 0-6;
each R1 and R2 are the same or different and are each independently selected from the group consisting of H, C1-8alkyl, C1-8alkoxy and C1-8thioalkyl;
Z is CH or N; when Z is CH, k is 0-4; when Z is N, k is 0-3;
each R3 is the same or different and is independently selected from the group consisting of halo, —OH, C1-8alkyl, C2-8alkenyl, C1-8alkoxy, C2-8alkenyloxy, —S(O)aR6, —NR7Rs, COR6, COOR6, R10COOR6, OR10COOR6, CONR7R8, —OC(O)R9, —R10NR7R8, —OR10NR7R8, 5-6 membered heterocycle, nitro, and cyano; a is 0, 1 or 2;
R6 is selected from the group consisting of H, C1-8 alkyl, C1-8 alkoxy and C2-8 alkenyl; each R7 and R8 are the same or different and are each independently selected from the group consisting of H, C1-8 alkyl, C2-8 alkenyl, C3-8 alkynyl;
R9 is selected from the group consisting of H, C1-8 alkyl and —NR7R8;
R10 is C1-6 alkyl;
n is 2-8;
q is 0 or 1;
R4 is selected from the group consisting of H, C1-8 alkyl, C1-8 alkenyl, and alkenyloxy;
Ring A is selected from the group consisting of C3-8 cycloalkyl, aryl, 4-8 membered heterocycle, and 5-6 membered heteroaryl;
each ring B is the same or different and is independently selected from the group consisting of C3-8 cycloalkyl and aryl.
In some aspects of the present invention, the LXR agonists can comprise 2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]propoxy}-phenyl)acetic acid, having the following structure:
In some aspects of the present invention, the LXR agonists can comprise compounds of formula (XXXII), described in U.S. Provisional application Ser. Nos. 09/368,427, 60/368,425 and 60/368,426, each filed Mar. 27, 2002:
or X and an adjacent R3, taken together with the atoms to which they are bonded, form an alkylenedioxy moiety;
Z is CH, CH3 or N, wherein when Z is CH or CH3, k is 0-4 and t is 0 or 1, and when
Z is N, k is 0-3 and t is 0;
Y is selected from —O—, —S—, —N(R20)-, and —C(R4)(R5)-;
W1 is selected from C1-C6 alkyl, C3-C8 cycloalkyl, aryl and Ret, wherein said C1-C6 alkyl, C3-C8 cycloalkyl, Ar and Ret are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —C0-C6 alkyl-CONR11R12, —C0-C6 alkyl-COR13, —CO—C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-SR10, —C0-C6 alkyl-SO3H, —C0-C6 alkyl SO2NR11R12, —C0-C6 alkyl-SO2R10, —C0-C6 alkyl-SOR13, —C0-C6 alkyl-OCOR12, —C0-C6 alkyl-OC(O)NR11R12, —C0-C6 alkyl-OC(O)OR13, —C0-C6 alkyl-NR11C(O)OR13, —C0-C6 alkyl-NR11C(O)NRI1R12, and —C0-C6 alkyl-NR11COR13, where said C1-C6alkyl, is optionally unsubstituted or substituted by one or more halo substituents;
W2 is selected from R, halo, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-OR10, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —C0-C6 alkyl-CONR11R12, —C0-C6 alkyl-COR13, —C0-C6 alkyl-OCOR13, —C0-C6 alkyl-OCONR11R12, —C0-C6 alkyl-NR11CONR11R12, —C0-C6 alkyl-NR11COR13, —C0-C6 alkyl-Ret, —C0-C6 alkyl-Ar and —C0-C6 alkyl-C3-C7 cycloalkyl, wherein said C1-C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C3-C7 cycloalkyl, Ar and Ret moieties of said —CO—C6 alkyl-Ret, —CO—C6 alkyl-Ar and —CO—C6 alkyl-C3-C7 cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —C0-C6 alkyl-CONR11R12, —C0-C6 alkyl-COR13, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-OR10, —C0-C6 alkyl-SO3H, —C0-C6 alkyl-SO2NR11R12, —CO—C6 alkyl-SO2R10, —CO—C6 alkyl-SOR13, —CO—C6 alkyl-OCOR13, —C0-C6 alkyl-OC(O)NR11R12, —C0-C6 alkyl-OC(O)OR13, —C0-C6 alkyl-NR11C(O)OR13, —C0-C6 alkyl-NR11C(O)NR11R12, and —C0-C6 alkyl-NR11COR13, where said C1-C6 alkyl, is optionally unsubstituted or substituted by one or more halo substituents;
W3 is selected from the group consisting of: R, halo, C1-C6 alkyl, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-OR10, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —C0-C6 alkyl-CONR11R12, —C0-C6 alkyl-COR13, —C0-C6 alkyl-OCOR13, —C0-C6 alkyl-OCONR11R12, —C0-C6 alkyl-NR11CONR11R12, —C0-C6 alkyl-NR11COR13, —C0-C6 alkyl-Het, —C1-C6 alkyl-Ar and —C1-C6 alkyl-C3-C7 cycloalkyl, wherein said C1-C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;
Q is selected from C3-C8 cycloalkyl, Ar and Het; wherein said C3-C8 cycloalkyl, Ar and Ret are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —C0-C6 alkyl-CONR11R12, —C0-C6 alkyl-COR13, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-OR10, —C0-C6 alkyl-SO3H, —C0-C6 alkyl-SO2NR11R12, —C0-C6 alkyl-SO2R10, —C0-C6 alkyl-SOR13, —C0-C6 alkyl-OCOR13, —C0-C6 alkyl-OC(O)NR11R12, —C0-C6 alkyl-OC(O)OR13, —C0-C6 alkyl-NR11C(O)OR13, —C0-C6 alkyl-NR11C(O)NR11R12, and —C0-C6 alkyl-NR11COR13, where said C1-C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;
p is 0-8;
n is 2-8;
m is 0 or 1;
q is 0 or 1;
t is 0 or 1;
each R1 and R2 are independently selected from R, halo, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-OR10, —C0-C6 alkyl-SR10, —C1-C6 alkyl-Het, —C1-C6 alkyl-Ar and —C1-C6 alkyl-C3-C7 cycloalkyl, or R1 and R2 together with the carbon to which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where any of said C1-C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents; each R3 is the same or different and is independently selected from halo, cyano, nitro, C1-C6 alkyl, C3-C6 alkenyl, Cr C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het, —C0-C6 alkyl-C3-C7 cycloalkyl, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —C0-C6 alkyl-CONR11R12, —C0-C6 alkyl-COR13, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-OR10, —C0-C6 alkyl-SO3H, —CO—C6 alkyl-SO2NR11R12, —C0-C6 alkyl-SO2 R10, —C0-C6 alkyl-SOR13, —C0-C6 alkyl-OCOR13, —C0-C6 alkyl-OC(O)NR11R12, —C0-C6 alkyl-OC(O)OR13, —CO—C6 alkyl-NR11C(O)OR13, —CO—C6 alkyl-NR11C(O)NR11R12, and —CO—C6 alkyl-NR11 COR13, wherein said C1-C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents; each R4 and R5 is independently selected from H, halo, C1-C6 alkyl, —C0-C6 alkyl-Het, —C0-C6 alkyl-Ar and —C0-C6 alkyl-C3-C7 cycloalkyl; R6 and R7 are each independently selected from H, halo, C1-C6 alkyl, —C0-C6 alkyl-Het, —C0-C6 alkyl-Ar and —C0-C6 alkyl-C3-C7 cycloalkyl; R8 and R9 are each independently selected from H, halo, C1-C6 alkyl, —C0-C6 alkyl-Het, —C0-C6 alkyl-Ar and —C0-C6 alkyl-C3-C7 cycloalkyl; R10 is selected from H, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het and —C0-C6 alkyl-C3-C7 cycloalkyl; each R11 and each R12 are independently selected from H, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het and —C0-C6 alkyl-C3-C7 cycloalkyl, or R11 and R12 together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; R13 is selected from C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het and —C0-C6 alkyl-C3-C7 cycloalkyl;
R14 and R15 are each independently selected from H, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het, —C0-C6 alkyl-C3-C7 cycloalkyl, —C0-C6 alkyl-O—Ar, —C0-C6 alkyl-O-Het, —C0-C6 alkyl-O—C3-C7 cycloalkyl, —C0-C6 alkyl-S(O)x-C1-C6 alkyl, —C0-C6 alkyl-S(O)x—Ar, —C0-C6 alkyl-S(O)x-Het, —C0-C6 alkyl-S(O)x-C3-C7 cycloalkyl, —C0-C6 alkyl-NH-Het, —C0-C6 alkyl-NH—C3-C7 cycloalkyl, —C0-C6 alkyl-N(C1-C4 alkyl)-Ar, —C0-C6 alkyl-N(C1-C4 alkyl)-Het, —C0-C6 alkyl-N(C1-C4 alkyl)-C3-C7cycloalkyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het and —C0-C6 alkyl-C3-C7 cycloalkyl, where x is 0, 1 or 2, or R14 and R15, together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C1-C6 alkyl is optionally substituted by one or more of the substituents independently selected from the group halo, —OH, —SH, —NH2, —NH(unsubstituted C1-C6 alkyl), —N(unsubstituted C1-C6 alkyl)(unsubstituted C1-C6 alkyl), unsubstituted —OC1-C6 alkyl, —CO2H, —CO2(unsubstituted C1-C6 alkyl), —CONH2, CONH(unsubstituted C1-C6 alkyl), —CON(unsubstituted C1-C6 alkyl)(unsubstituted C1-C6 alkyl), —SO3H, —SO2NH2, —SO2NH(unsubstituted C1-C6 alkyl) and —SO2N(unsubstituted C1-C6 alkyl)(unsubstituted C1-C6 alkyl);
R16 is C1-C6 alkyl, —C1-C6 alkyl-Ar or —C0-C6 alkyl-Het; and
R17 is H, C1-C6 alkyl, —C0-C6 alkyl-Ar or —C0-C6 alkyl-Het; or a pharmaceutically acceptable salt or solvate thereof.
In some aspects of the present invention, the LXR agonist can include N-(2,2,2-trifluoroethyl)-N-[4-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethylethyl)-phenyl]-benzenesulfonamide (also known as T0901317) having the following chemical structure:
Other examples of suitable LXR agonists for use in the present invention include: (R)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid methyl ester
and
Additional LXR agonists useful in the methods of the present invention include those of Formula (XXXIII), which are described in U.S. Provisional Application No. 60/368,415, filed Mar. 27, 2002:
X is CH or N;
Y is N(R10), O, or S, wherein t is 0 or 1 when Y is N(R10) or 0, and t is 0 when Y is S;
U is selected from halo, —OR10, —NR14R15, nitro, cyano, —COOR10, —COR13, —OCOR13, —CONR14R15, —N(R14)COR13, —SO3H, —SO2NR14R15, —C(═NR17)NR14R15, —N(R14)SO2R16, and a 5 or 6-membered heterocyclic group;
A is a phenyl fused ring moiety or a pyridyl fused ring moiety, wherein when A is a phenyl ring moiety, k is 0-3 and t is 0 or 1 and when A is a pyridyl ring moiety, k is 0-2 and t is 0;
W1 is selected from C3-C8 cycloalkyl, aryl and Het, wherein said C3-C8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —CO—C6 alkyl-CONR11R12, —C0-C6 alkyl-C0R13, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-OR10, —C0-C6 alkyl-SO3H, —C0-C6 alkyl-SO2NR11R12, —C0-C6 alkyl-SO2R10, —C0-C6 alkyl-SOR13, —C0-C6 alkyl-OCOR13, —C0-C6 alkyl-OC(O)NR11R12, —C0-C6 alkyl-OC(O)OR13, —C0-C6 alkyl-NR11C(O)OR13, —C0-C6 alkyl-NR11C(O)NR11R12, and —C0-C6 alkyl-NR11COR13, where said C1-C6 alkyl, is optionally unsubstituted or substituted by one or more halo substituents;
W2 is selected from H, halo, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-OR10, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —C0-C6 alkyl-CONR11R12, —C0-C6 alkyl-COR13, —C0-C6 alkyl-OCOR13, —C0-C6 alkyl-OCONR11R12, —C0-C6 alkyl-NR11CONR11R12, —C0-C6 alkyl-NR11COR13, —C0-C6 alkyl-Het, —C0-C6 alkyl-Ar and —C0-C6 alkyl-C3-C7 cycloalkyl, wherein said C1-C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C3 C7 cycloalkyl, Ar and Het moieties of said —C0-C6 alkyl-Het, —C0-C6 alkyl-Ar and —C0-C6 alkyl-C3-C7 cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —C0-C6 alkyl-CONR11R12, —C0-C6 alkyl-COR13, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-OR10, —C0-C6 alkyl-SO3H, —C0-C6 alkyl-SO2NR11R12, —C0-C6 alkyl-SO2R10, —C0-C6 alkyl-SOR13, —C0-C6 alkyl-OCOR13, —C0-C6 alkyl-OC(O)NR11R12, —C0-C6 alkyl-OC(O)OR13, —C0-C6 alkyl-NR11C(O)OR13, —C0-C6 alkyl-NR11C(O)NR11R12, and —C0-C6 alkyl-NR11COR13, where said C1-C6 alkyl, is optionally unsubstituted or substituted by one or more halo substituents;
W3 is selected from the group consisting of: H, halo, C1-C6 alkyl, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-OR10, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl C(O)SR10, —C0-C6 alkyl-CONR11R12, —C0-C6 alkyl-COR13, —C0-C6 alkyl-OCOR13, —C0-C6 alkyl-OCONR11R12, —C0-C6 alkyl-NR11CONR11R12, —C0-C6 alkyl-NR11COR13, —C0-C6 alkyl-Het, —C1-C6 alkyl-Ar and —C1-C6 alkyl-C3-C7 cycloalkyl, wherein said C1-C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;
Q is selected from C3-C8 cycloalkyl, Ar and Het; wherein said C3-C8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —C0-C6 alkyl CONR11R12, —C0-C6 alkyl-COR13, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —CO—C6 alkyl-OR10, —C0-C6 alkyl-SO3H, —C0-C6 alkyl-SO2NR11R12, —C0-C6 alkyl-SO2R10, —C0-C6 alkyl-SOR13, —C0-C6 alkyl-OCOR13, —C0-C6 alkyl-OC(O)NR11R12, —C0-C6 alkyl-OC(O)OR13, —C0-C6 alkyl-NR11C(O)OR13, —C0-C6 alkyl-NR11C(O)NR11R12, and —C0-C6 alkyl-NR11COR13, where said C1-C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;
p is 0-8;
n is 2-8;
m is 0 or 1;
q is 0 or 1;
t is 0 or 1;
each R1 and R2 are independently selected from R, halo, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-OR10, —C0-C6 alkyl-SR10, —C1-C6 alkyl-Het, —C1-C6 alkyl-Ar and —C1-C6 alkyl-C1-C7 cycloalkyl, or R1 and R2 together with the carbon to which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where said C1-C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;
each R3 is the same or different and is independently selected from halo, cyano, nitro, C1-C6 alkyl, C1-C6 alkenyl, C1-C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het, —C0-C6 alkyl-C3-C7 cycloalkyl, —C0-C6 alkyl-CO2R10, —C0-C6 alkyl-C(O)SR10, —C0-C6 alkyl-CONR11R12, —C0-C6 alkyl-COR13, —C0-C6 alkyl-NR11R12, —C0-C6 alkyl-SR10, —C0-C6 alkyl-OR10, —C0-C6 alkyl-SO3R, —C0-C6 alkyl-SO2NR11R12, —C0-C6 alkyl-SO2R10, —C0-C6 alkyl-SOR13, —C0-C6 alkyl-OCOR13, —C0-C6 alkyl-OC(O)NR11R12, —C0-C6 alkyl-OC(O)OR13, —C0-C6 alkyl-NR11C(O)OR13, —CO—C6 alkyl-NR11C(O)NR11R12, and —C0-C6 alkyl-NR11COR13, wherein said C1-C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;
each R4 and R5 is independently selected from R, halo, C1-C6 alkyl, —C0-C6 alkyl-Het, —C0-C6 alkyl-Ar and —C0-C6 alkyl-C1-C7 cycloalkyl;
R6 and R7 are each independently selected from R, halo, C1-C6 alkyl, —C0-C6 alkyl-Het, —C0-C6 alkyl-Ar and —C0-C6 alkyl-C3-C7 cycloalkyl;
R8 and R9 are each independently selected from R, halo, C1-C6 alkyl, —C0-C6 alkyl-Het, —C0-C6 alkyl-Ar and —C0-C6 alkyl-C3-C7 cycloalkyl;
R10 is selected from R, C1-C6 alkyl, C1-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het and —C0-C6 alkyl-C3-C7 cycloalkyl;
each R11 and each R12 are independently selected from H, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het and —C0-C6 alkyl-C3-C7 cycloalkyl, or R11 and R12 together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O and S;
R13 is selected from C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het and —C0-C6 alkyl-C1-C7 cycloalkyl;
R14 and R15 are each independently selected from H, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het, —C0-C6 alkyl-C3-C7 cycloalkyl, —C0-C6 alkyl-O—Ar, —C0-C6 alkyl-O-Het, —C0-C6 alkyl-O—C3-C7 cycloalkyl, —C0-C6 alkyl-S(O)x-C1-C6 alkyl, —C0-C6 alkyl-S(O)xAr, —C0-C6 alkyl-S(O)xHet, —C0-C6 alkyl-S(O)xC3-C7 cycloalkyl, —C0-C6 alkyl-NH—Ar, —C0-C6 alkyl-NH-Het, —C0-C6 alkyl-NH—C3-C7 cycloalkyl, —C0-C6 alkyl-N(C1-C4 alkyl)-Ar, —C0-C6 alkyl-N(C1-C4 alkyl)-Het, —C0-C6 alkyl-N(C1-C4 alkyl)-C3-C7 cycloalkyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het and —C1-C6 alkyl-C3-C7 cycloalkyl, where x is 0, 1 or 2, or R14 and R15 are each independently selected from H, C1-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, —C0-C6 alkyl-Ar, —C0-C6 alkyl-Het, —C0-C6 alkyl-C3-C7 cycloalkyl, —C0-C6 alkyl-O—Ar, —CO—C6 alkyl-O-Ret, —CO—C6alkyl-0-C3-C7 cycloalkyl, —CO—C6alkyl-S(0)x-C1-C6 alkyl, —CO—C6alkyl-S(OkAr, —CO—C6 alkyl-S(OkRet, —CO—C6alkyl-S(OkC3-C7 cycloalkyl, —CO—C6alkyl-NR—Ar, —CO—C6 alkyl-NR-Ret, —CO—C6 alkyl-NR—C3-C7 cycloalkyl, —CO—C6alkyl-N(C1-C4alkyl)-Ar, —CO—C6alkyl-N(C1-C4alkyl)-Ret, —CO—C6alkyl-N(C1-C4alkyl)-C3-C7 cycloalkyl, —CO—C6 alkyl-Ar, —CO—C6 alkyl-Ret and —CO—C6 alkyl-C3-C7 cycloalkyl, where x is 0, 1 or 2, or R14 and R15, together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C1-C6 alkyl is optionally substituted by one or more of the substituents independently selected from the group halo, —OH, —SH, —NH2, NH(unsubstituted C1-C6 alkyl), —N(unsubstituted C1-C6 alkyl)(unsubstituted C1-C6 alkyl), unsubstituted —OC1-C6 alkyl, —CO2H, —CO2(unsubstituted C1-C6 alkyl), —CONH2, —CONH(unsubstituted C1-C6 alkyl), —CON(unsubstituted C1-C6 alkyl)(unsubstituted C1-C6 alkyl), —SO3H, —SO2NH2, —SO2NH(unsubstituted C1-C6 alkyl) and —SO2N(unsubstituted C1-C6 alkyl)(unsubstituted C1-C6 alkyl);
R16 is C1-C6 alkyl, —C0-C6 alkyl-Ar or —C0-C6 alkyl-Het; and
R17 is H, C1-C6 alkyl, —C0-C6 alkyl-Ar or —C0-C6 alkyl-Het; or a pharmaceutically acceptable salt or solvate thereof.
Unless otherwise provided, each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, aryl or Het (including any 3-5-membered, 4-7-membered or 5-7-membered carbocyclic or heterocyclic rings or ring moieties) in the compounds of formula (2 generics above with W groups) is independently unsubstituted or substituted with one or more substituents defined herein below.
In the compounds of formula (2 generics directly above), group A is defined as a phenyl or a pyridyl fused ring moiety and is exemplified by the following: phenyl: pyridyl:
International Patent Application WO 01/41704 (Merck & Co., Inc.) discloses a compound of formula (XXXIV) and (XXXV):
The RXR agonists, PPARγ agonists, and the LXR agonists of the present invention described herein are capable of further forming both pharmaceutically acceptable acid addition and/or base salts.
Pharmaceutically acceptable acid addition salts of the present invention can include, but are not limited to, salts derived from nontoxic inorganic acids such as hydrochloric, nitric, phosphohoric, sulfuric, hydrobromic, hydriodic, hydrofluoric, phosphorous, and the like, as well as the salts derived forth nontoxic organic acids, such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, etc. Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bissulfite, nitrate, phosphate, monoLydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, trifluoracetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, malcate, mandelate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, maleate, tartrate, methanesulfonate, and the like. Also contemplated are salts of amino acids such as arginate and the like, as well as gluconate, galacturonate, and n-methyl glucamine.
The acid addition salts of the basic compounds are prepared by contacting the free base form with a sufficient amount of the desired acid to produce the salt in the conventional manner. The free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner or as described above. The free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but are otherwise equivalent to their respective free base for purposes of the present invention.
Pharmaceutically acceptable base addition salts are formed with metals or amides, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations include, but are not limited to, sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines include, but are not limited to, N2-N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine.
The base addition salts of the acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner or as described above. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention.
Certain of the compounds of the present invention can exist in unsolvated forms as well as solvated forms, including, but not limited to, hydrated forms. In general, the solvated forms, including hydrated forms, are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention. Certain of the compounds of the present invention possess one or more chiral centers and each center may exist in different configurations. The compounds can, therefore, form stereoisomers. Although these are all represented herein by a limited number of molecular formulas, the present invention includes the use of both the individual, isolated isomers and mixtures, including racemates, thereof. Where stereo-specific synthesis techniques are employed or optically active compounds are employed as starting materials in the preparation of the compounds, individual isomers may be prepared directly. However, if a mixture of isomers is prepared, the individual isomers may be obtained by conventional resolution techniques, or the mixture may be used as is, with resolution.
The dose, amount, and/or quantity of the pharmaceutical compositions described above, which are administered to the subject can depend on the specific RXR agonists, PPARγ agonists, or optionally LXR agonists selected. It will be appreciated that the dosage amounts used will depend on the potency of the specific RXR agonists, PPARγ agonists, or the LXR agonists and the therapeutic regimen employed.
In another aspect, the PPARγ agonist and RXR agonist when administered in combination to subject can be administered at an amount or dosage to achieve a therapeutic effect that is substantially less (i.e., subtherapeutic dose or amount) than the amount or dose that would be required to achieve a therapeutic effect if each compound was administered alone. Co-administration of a PPARγ agonist and RXR agonist to the subject can also mitigate resistance to one single agent. Such resistance results either in the requirement for higher dosages of the drug and/or the renewed symptoms.
Moreover, co-administration of a PPARγ agonist and RXR agonist to the subject can mitigate toxicity and side effects associated with potentially administering a single agent at an amount effective to achieve a therapeutic effect. For example, according to an FDA alert issued on May 21, 2007, therapeutic doses of the PPARγ agonist rosiglitazone, are associated with a significantly increased risk of heart attack, and even higher risk of death from all cardiovascular diseases. In addition, both rosiglitazone and pioglitazone have been suspected of causing macular edema. Therefore, there is a practical upper limit to the amount that a subject can receive. However, if two or more agents are used in concert, the dosage of any single drug can be lowered. This is beneficial to the patient since using lower levels of therapeutic agents is generally safer for the patient. Additionally, cells are less likely to generate resistance to the combination of drugs as they are to a single drug. Thus in some aspects of the present invention, the compositions described herein can be administered to a subject at a subtherapeutic level.
The present invention is not limited by the order in which the agents are administered. In one embodiment, the agents are administered sequentially. In another embodiment, the agents are administered as a combined formulation (e.g., a formulation comprising a PPARγ agonist and an RXR agonist).
The PPARγ agonists, RXR agonists, and optionally LXR agonists can be formulated for systemic administration and/or topical administration. The PPARγ agonists, RXR agonists, and optionally LXR agonists of the present invention are not limited by the route of administration. Pharmaceutical compositions comprising the PPARγ agonists, RXR agonists, and optionally LXR agonists may be administered orally, intravenously, intraperitoneally. In some aspects of the present invention, pharmaceutical compositions may be administered directly to a lesion or injury site by injection or, in the case of dermatological disorders, for example, by direct application of creams or ointments. In certain aspects, one agent is administered by one route, while the second agent is administered by a second route.
Advantageously, the PPARγ agonists, RXR agonists, and optionally LXR agonists can be administered by local topical administration to the site of the dermatological disorder. Topical administration is desirable because a lower dosage can be administered to the subject being treated to provide a therapeutically effective benefit. Additionally, administration of a lower topical dosage can mitigate adverse side-effects that may be associated with systemic administration.
Topical formulations include those for delivery via the mouth (buccal) and through the skin such that at least one layer of skin (i.e., the epidermis, dermis, and/or subcutaneous layer) is contacted with a PPARγ agonists, RXR agonists, and optionally LXR agonists or derivative thereof. Topical delivery systems may be used to administer topical formulations of the present invention. Topical delivery systems can include, for example, transdermal patches containing a PPARγ agonists, an RXR agonists, and optionally an LXR agonists or derivative thereof to be administered. Delivery through the skin can further be achieved by iontophoresis or electrotransport, if desired.
Formulations for topical administration in the mouth can include any one or combination of: lozenges comprising a PPARγ agonists, RXR agonists, and optionally LXR agonists or derivative thereof in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising a PPARγ agonists, RXR agonists, and optionally LXR agonists or derivative thereof in an inert basis such as gelatin and glycerin or sucrose and acacia; and mouthwashes comprising a PPARγ agonists, RXR agonists, and optionally LXR agonists or derivative thereof to be administered in a suitable liquid carrier.
Formulations for topical administration to the skin can include ointments, creams, gels, and pastes comprising PPARγ agonists, RXR agonists, and optionally LXR agonists or derivatives thereof to be administered in a pharmaceutically acceptable carrier. Topical formulations for administration to the skin can include creams, ointments, and gels, for example, and can be prepared using oleaginous or water-soluble ointment bases, as is well known to those in the art. For example, these formulations may include vegetable oils, animal fats, and more preferably, semisolid hydrocarbons obtained from petroleum. Particular components used may include white ointment, yellow ointment, cetyl esters wax, oleic acid, olive oil, paraffin, petrolatum, white petrolatum, spermaceti, starch glycerite, white wax, yellow wax, lanolin, anhydrous lanolin, and glyceryl monostearate. Various water-soluble ointment bases may also be used including, for example, glycol ethers and derivatives, polyethylene glycols, polyoxyl 40 stearate, and polysorbates.
In some aspects of the invention, the PPARγ agonist, RXR agonist, and optionally LXR agonist described above find use in the treatment of Alzheimer's disease, as well as diseases and conditions with inflammatory components, including, but not limited to, stroke, ischemic damage to the nervous system, neural trauma (e.g., percussive brain damage, spinal cord injury, and traumatic damage to the nervous system), multiple sclerosis and other immune-mediated neuropathies (e.g., Guillain-Barre syndrome and its variants, acute motor axonal neuropathy, acute inflammatory demyelinating polyneuropathy, and Fisher Syndrome), HIV/AIDs dementia complex, and bacterial, parasitic, fungal, and viral meningitis and encephalitis.
Experiments conducted during development of the present invention demonstrate that RXR agonists stimulate the proteolytic degradation of Aβ by astrocytes, reduce pathology in an animal model of Alzheimer's Disease, reduce plaque burden in an animal model of Alzheimer's Disease, reduce Aβ in the brains in an animal model of Alzheimer's Disease, and reduce inflammation in an animal model of Alzheimer's Disease. Moreover, RXR agonists administered to a subject can inhibit the heterodimer partners to RXR, LXR and PPARγ and reduce the effects of RXR activation to promote intracellular Aβ degradation. Thus, the present invention provides methods and compositions for attenuating the progressive neurodegenerative processes in Alzheimer's disease and other diseases and conditions with an inflammatory component. However, it is not intended that the present invention be limited to any particular mechanism. Indeed, an understanding of the mechanisms is not necessary in order to practice the present invention.
In another aspect of the present invention, a variety of dermatological disorders can be treated by topically administering at least one PPARγ agonist, RXR agonist, and optionally LXR agonist or derivative thereof to a subject. A dermatological disorder can include any disorder of skin, hair or glands. A dermatological disorder can be manifest in the form of visible lesions, pre-emergent lesions, pain, sensitivity to touch, irritation, inflammation, or the like. Dermatological disorders can also include disorders of the cutaneous and pilosebaceous unit or the process of keratogenesis. For example, a dermatological disorder can be a disorder of the epidermis, dermis, subcutaneous layer, or combination thereof within and surrounding a pilosebaceous unit. Examples of dermatological disorders can include, but are not limited to, acne, alopecia, psoriasis, seborrhea, ingrown hairs and pseudofolliculitis barbae, hyperpigmented skin, cutaneous infections, lichen planus, Graham Little Syndrome, periorificial dermatitis, rosacea, hidradenitis suppurativa, dissecting cellulitis, systemic lupus erythematosus, discoid lupus erythematosus, and the like.
In another aspect of the present invention, at least one primary Cicatricial alopecia (CA) can be treated by topically administering at least one PPARγ agonist, RXR agonist, and optionally LXR agonist or derivative thereof to a subject. In general, CAs can be classified as lymphocytic, neutrophilic, and combinations thereof (i.e., “mixed”). Examples of lymphocytic CAs include lichen planopilaris, frontal fibrosing alopecia, chronic cutaneous lupus, erythematosus, pseudopelade, central centrifugal alopecia, alopecia mucinosa, and keratosis follicularis spinulosadecalvans. Examples of neutrophilic CAs include folliculitis decalvans, tufted folliculitis, and dissecting cellulitis. Examples of mixed CAs include follicullitis keloidalis and erosive dermatosis.
In an example of the present invention, a pharmaceutical composition comprising a thiazolidinedione, such as rosiglitazone and/or pioglitazone, and Bexarotene can be topically administered to treat a subject having a primary CA, such as LPP. A topical formulation comprising a thiazolidinedione and Bexarotene may be prepared in a gel or liquid, for example, and then administered to at least one region of the subject affected by LPP. For example The topical formulation may be administered to a portion of the subject's scalp exhibiting shiny, flat-topped bumps having an angular shape and a reddish-purplish color,
Administering the topical formulation to the affected region may inhibit or decrease peroxisome loss in at least one cell, such as in a sebaceous stem cell, by increasing expression of the PEX genes and/or genes associated with lipid β-oxidation and desaturation. This, in turn, may decrease or inhibit lipid accumulation in the pilosebaceous unit and thereby channel the lipid stores to increase β-oxidation and abrogate the deleterious effects of lipid overload, i.e., inflammation, loss of hair follicles, and fibrosis.
The following example included to demonstrate an embodiment of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples, which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
PPARγ and LXRs act in concert to regulate lipid metabolism and ApoE expression (
In the brain, the primary RXR partners are LXR and PPARγ and their metabolic actions are similar to those observed in the periphery. Importantly, RXR agonists, acting alone, are sufficient to stimulate the transcriptional activity of the LXR and PPARγ heterodimers. However, the actions of RXR in the brain have not been extensively examined. It is important to point out that the RAR class of retinoic acid receptors also heterodimerize with RXR, but are termed ‘nonpermissive’ as they do not respond to RXR ligation. RARs bind all-trans retinoic acid, while RXRs do not.
The retinoid LGD1069 (Bexarotene, TARGRETIN) is the only FDA approved RXR agonist. Bexarotene is a highly selective retinoid X receptor (RXR) agonist developed for the treatment of cutaneous T-cell lymphoma and has recently been investigated in the treatment of psoriasis and breast cancer. Bexarotene has been shown to induce the expression of the LXR target genes, ABCA1 and ABCG1 in a murine model of mixed dyslipidemis. Clinically, Bexarotene has a good safety profile and has been used over extended periods in humans without significant side effects.
We found that (a) the ligation of RXR is as effective as either of the PPARγ and LXR agonists in stimulating the expression of their target genes and promoting Aβ degradation and (b) the RXR agonist results in positively cooperative effects whereby the effective dose to elicit the responses of PPARγ and LXR agonists are reduced. We also determined that RXR agonists, alone, or in combination with LXR and PPARγ agonists reduced plaque burden and alter cognition in a murine model of AD. These results are of potential therapeutic importance due to (1) the availability of FDA approved RXR agonists that could be used as monotherapy for AD, and (2) ongoing clinical trials of thiazolidinedione PPARγ agonists which have limited blood brain barrier (BBB) permeability and whose actions can be enhanced by combined treatment with RXR agonists.
To determine if RXR activation regulates the expression of LXR target genes, we treated primary murine microglia with increasing doses of Bexarotene for 24 hours. We found that the RXR agonist treatment drives the expression of ABCA1, ABCG1, and ApoE (
To determine if RXR ligation enhances the lipidation status of ApoE, confluent primary murine astrocytes were treated with increasing doses of Bexarotene for 48 hours. Astrocyte conditioned media was collected and assessed by native gel electrophoresis. We found that Bexarotene increases the lipidation status of ApoE, thus increasing the size of the ApoE particles. (
Given the ability of RXR activation to drive LXR target gene expression, we predicted that agonist treatment should promote the proteolytic degradation of Aβ by microglia. We found 9cisRA (
To verify that the RXR agonist, Bexarotene alters gene expression in the brain, we orally gavaged 6 month old mice with 100 mg/kg Bexarotene (n=4) or vehicle (water) (n=4 per group) for 7 days. We found drug treated animals exhibited elevated levels of ABCA1, ABCG1 and ApoE (
To determine if RXR ligation by Bexarotene alters the concentration of Aβ in the brains of transgenic mice that harbor both mutations in APP and PS1 (Borchelt animal model), ELISAs were performed on diethylamine (DEA) and formic acid (FA) extractions from brain homogenates. Both Aβ1-40 and Aβ1-42 were assessed on both soluble (DEA) and insoluble (FA) fractions. We found that a 7 day drug treatment of 6 month Borchelt animals reduces both soluble and insoluble Aβ fractions. (
To determine whether treatment of Bexarotene reduces signs of AD pathology, we treated 6 month old AD mice for 7 days with Bexarotene by oral gavage (100 mg/kg/day in water). We extracted the brains of the mice, and assessed by immunohistochemistry plaque pathology (6E10). AD mice treated with Bexarotene show about 62% reduction in plaque burden in comparison to those not treated with Bexarotene (
To determine whether treatment with Bexarotene improves the behavioral deficit found in the AD animal model, we orally gavaged 6 month old AD model mice for 7 days on Bexarotene (100 mg/kg/day in water) (n=8). We then assessed contextual fear conditioning behavior, an accepted behavioral test for Alzheimers's Disease study, and found that Bexarotene significantly improves behavior r (
To determine if the effects of RXR activation can effect astrocytes as well as microglia, we treated primary murine astrocytes with increasing doses of Bexarotene for 24 hours. We found that RXR agonist treatment drives the expression of ABCA1, ABCG1 and ApoE (
In order to confirm that RXR activation not only drives LXR target genes, but also PPARγ target genes, we treated confluent primary murine astrocytes with 10 nM Bexarotene in a time course. We found that RXR activation drives CD36, a PPARγ regulated gene, expression by qRT-PCR (
As shown above, astrocytes can drive the expression of LXR target genes after RXR activation, we predicted that agonist treatment should also promote the intracellular degradation of Aβ by astrocytes. We found that Bexarotene (
To determine if the ability of RXR activation to degrade Aβ is ApoE dependent, we used ApoE knock out microglia (A) or astrocytes (B) in the presence of Bexarotene. Bexarotene has no effect without the presence of ApoE, however, with the addition of exogenous ApoE, the effect of intracellular Aβ degradation returns (
To determine which heterodimer partners are involved in RXR activation driven Aβ intracellular degradation, we inhibited PPARγ and LXR by competitive inhibitors, TO and 22-s-Hydroxycholesterol, respectively. Aβ degradation mediated by either microglia (A) or astrocytes (B) is inhibited with either inhibitor to PPAR or LXR. Additionally, a co-treatment with both inhibitors reduces Aβ degradation further (
To determine if activating RXR would reduce inflammation, we treated AD mouse models with Bexarotene (100 mg/kg/day in water) for 7 days and analyzed a marker for inflammation, Glial Fibrially Acidic Protein (GFAP). As mentioned above, we extracted the brains of the mice, and assessed by immunohistochemistryg GFAP expression. AD mice treated with Bexarotene show significantly reduced GFAP expression (
In order to determine if microglia are capable of taking up Aβ, we used confocal microscopy to show Aβ peptides within microglia, the brain's macrophage. We analyzed cryostat sections of transgenic, AD mouse models, with 6E10 and a marker for microglia, Iba1 treated with Bexarotene. Microglia in the brains of Bexarotene treated animals can take up Aβ in vivo (
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims. All references, publications, and patents cited in the present application are herein incorporated by reference in their entirety.
This application claims priority from U.S. Provisional Application No. 60/224,709, filed Jul. 10, 2009, the subject matter which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/41707 | 7/12/2010 | WO | 00 | 1/9/2012 |
Number | Date | Country | |
---|---|---|---|
61224709 | Jul 2009 | US |