This application claims priority to Singapore Patent Application No. 200506795-4, filed Oct. 18, 2005.
This invention relates to a method for repairing defects in gas turbine engine components and, more particularly, to utilizing a protective coating to resist inter-granular attack during chemical cleaning.
Conventional gas turbine engines include components such as high and low pressure turbine vanes that operate for extended periods of time under relatively harsh conditions. Under such conditions, the gas turbine engine components may incur damage from erosion, creep, and high cycle fatigue that results in defects such as cracks. Typically, the defects can be repaired to extend the service life of the gas turbine engine component.
Conventional repair methods include cleaning the defect to remove oxidation and particles that may hamper the repair. After the cleaning, a braze material such as a braze filler powder is applied near the defect. The gas turbine engine component is then heated to melt the braze material and fill in the defect portion.
Conventional cleaning processes include using hydrogen fluoride gas to reduce oxidation on the defect surface and transform undesired particles into volatile fluorides that are then carried away by hydrogen gas. Disadvantageously, the hydrogen fluoride gas preferentially attacks grain boundaries of a metallic microstructure of the gas turbine engine component, which may undesirably weaken the gas turbine engine component, lead to unsuccessful repair, and result in scrappage of the component.
Accordingly, there is a need for a method of cleaning gas turbine engine component defects while minimizing the possibility of inter-granular boundary attack.
The present invention provides a method of repairing a defect in a gas turbine engine component. The defect has a defect surface that includes grain boundaries. The defect is exposed to a chemically reducing gas to clean the defect surface of undesired particles and oxidation. Before the cleaning, a protective coating is applied to the defect surface to protect the grain boundaries from chemical attack. The protective coating functions as a sacrificial layer such that the chemically reducing gas preferentially attacks the protective coating rather than the grain boundaries.
The example method of repairing a defect in a gas turbine engine component therefore provides the benefit of minimizing inter-granular attack during chemical cleaning.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows.
During the cleaning step 24, the gas turbine engine component 10 is heated at a temperature between approximately 900° C. and 1100° C., and exposed to a chemically reducing gas 32 such as hydrogen fluoride. The chemically reducing gas 32 diffuses through the protective coating 30 and chemically reacts with the oxidation scale 18 and undesired particles 20. In one example, the oxidation scale 18 includes aluminum oxide and the chemically reducing gas 32 reacts with the aluminum oxide as illustrated in the following example reaction equation:
12HF+2Al2O3→6H2O+4AlF3
The resulting water and aluminum fluoride are volatile materials that then diffuse out of the protective coating and are carried away by a purge gas flow 33, such as hydrogen. The chemically reducing gas 32 also reacts with the undesired particles 20 such as aluminum and titanium as illustrated by the following example reaction equations:
6HF+2Al→2AlF3+3H2
6HF+2Ti→2TiF3+3H2
The resulting aluminum fluoride and titanium fluoride are volatile materials that then diffuse out of the protective coating and are carried away by the purge gas flow 33. The reactions between the chemically reducing gas 32, the aluminum oxide, the aluminum, and the titanium, for example, are controlled by controlling the heating temperature, time, and hydrogen fluoride concentration. In one example, use of the protective coating 30 does not change the temperature, time, and hydrogen fluoride concentration previously known and used for defect repair.
As shown in
A portion of the protective coating 30 may remain on the defect surface 16 after the chemical cleaning (
In one example, the protective coating 30 is a nickel material that is deposited with a thickness between 0.0005″ and 0.0008″. In another example, the protective coating 30 includes a chromium material deposited with a thickness between 0.0006″ and 0.0015″.
These example protective coatings 30 and thicknesses provide resistance to inter-granular attack and are depleted during the cleaning step 24 to achieve a clean crack surface 16 that is relatively free of impurities. Given this description, however, one of ordinary skill would recognize other suitable protective coatings and thicknesses for use with hydrogen fluoride or other cleaning gases.
The volatile materials carried away by the purge gas flow 33 such as aluminum fluoride, titanium fluoride may later be neutralized in a fume scrubber with a neutralizing chemical such as caustic soda (NaOH).
Once the crack 14 has been cleaned and the oxidation scale 18 and undesired particles 20 have been removed, the crack 14 is filled with a braze material 36 and heated in a known brazing process to complete the repair as shown in
The disclosed example method provides a protective coating 30 that acts as a sacrificial layer to resist inter-granular attack between a hydrogen fluoride chemically reducing gas and grain boundaries 34 of a defect surface 16 of a gas turbine engine component 10. This provides the benefit of minimizing inter-granular attack that may otherwise lead to scrapping of the gas turbine engine component 10 rather than repair.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4008844 | Duvall | Feb 1977 | A |
4073639 | Duvall | Feb 1978 | A |
4098450 | Keller et al. | Jul 1978 | A |
5373986 | Rafferty et al. | Dec 1994 | A |
5549767 | Pietruska | Aug 1996 | A |
5672261 | Wheat et al. | Sep 1997 | A |
5806751 | Schaefer | Sep 1998 | A |
6253441 | Wheat et al. | Jul 2001 | B1 |
6367687 | Reeves et al. | Apr 2002 | B1 |
6645926 | Abriles et al. | Nov 2003 | B2 |
20040005410 | Seidel | Jan 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070087208 A1 | Apr 2007 | US |