The present invention relates to an improved spinal fixation screw for transiliac fixation and a method of use.
Many complaints of lower back pain and leg pain have been attributed to herniated discs or other injuries to the spinal column. Extensive therapy and treatment has often been unsuccessful in alleviating such pain. It has been established that some of this lower back and leg pain can be attributed to symptomatic sacroiliac dysfunction or instability. Normally, the sacroiliac joint which spans between the sacrum bone and ilium bone has nutation of one to two degrees. “Nutation” is the medical term which describes the relative movement between the sacrum and ilium. A patient's sacroiliac joint can become damaged resulting in hypermobility of the joint. Because of the small range of motion in the sacroiliac joint, hypermobility is very difficult to diagnose. Therefore, lower back pain or leg pain caused by sacroiliac dysfunction often goes misdiagnosed or undiagnosed.
Accordingly, it is an objective of this invention to provide a device for correcting symptomatic sacroiliac dysfunction or instability. It is another aspect of this invention to provide a device which enhances stability and compression for purposes of immobilizing a joint, and for fusing two opposed bone structures across the joint.
An improved joint fusion screw for transiliac fixation has an elongate hollow shaft. The hollow shaft has an externally threaded end portion extending to a tip end and a non-externally threaded shank portion having a plurality of openings. The tip end has at least two bone cutting flutes at the bottom of the shaft. Each bone cutting flute has a cutting edge on a circumferential exterior of the threaded tip to cut bone and direct the cut bone internally into the hollow shaft toward the shank. Each cutting edge lies in a plane parallel to an axis of the elongate hollow shaft.
In each embodiment, the hollow shaft has a bone chamber for receiving the cut bone fragments. The bone chamber extends to at least the openings of the shank portion. Autograft cut bone fragments are directed to the openings to enhance new bone growth and rapid fusion of the fusion screw. Preferably, the openings of the shank portion are elongated slots.
The screw has an enlarged flat head affixed or integral to an end of the shank. The end of the shank portion has internal or female threads for receiving a threaded driver cap. The threaded driver cap has a cannulated opening or aperture for passing a guide wire and a torquing tool receiving cavity to thread the screw into the bone. The drive cap is affixed into the threaded end of the shank. The driver cap can be removably attached to allow bone packing material to be packed into the hollow shaft after screw insertion into the bone. The at least two cutting flutes are preferably diametrically opposed.
In one embodiment, each bone cutting flute has an arcuate ramp extending from the cutting edge toward an inside diameter of the hollow shaft. The cut bone fragments are directed internal along the arcuate ramps upon implantation of the screw into the hollow shaft. Each of the cutting edges form spiral cut autograft bone upon screw implantation. Each of the formed spiral cut autograft bone remains connected by tissue to increase osteoconductivity.
In a second embodiment, the at least two cutting flutes extend starting from the tip end longitudinally through two or more threads.
In a third embodiment, the tip end can have a web or bridge extending across the hollow shaft. The web or bridge has an aperture for receiving a guide wire. The aperture is coaxial with an axis of the screw and the aperture of the cap driver.
A method of transiliac fixation using the improved screw comprises the steps of pre-drilling an opening in the sacrum and the ilium bones to be fixed with a pilot hole opening and inserting a joint fixation screw with a hollow shaft onto the pre-drilled opening while cutting autograft bone fragments directed into the hollow shaft. The hollow shaft has a bone receiving chamber extending to a plurality of openings further in the hollow shaft and the step of threading of the screw directs the autograft bone fragments to the openings to enhance fusion. The screw can have apertures at the tip end and at the driver cap and the method may further comprise the steps of inserting a guide wire to create a drill path, inserting a cannulated drill over the guide wire to pre-drill the pilot hole, and then inserting the screw onto the guide wire to direct the path for insertion into the bone.
The invention will be described by way of example and with reference to the accompanying drawings in which:
With reference to
Each screw 10A, 10B and 10C has a hollow elongated shaft 20. The shaft 20 has an externally threaded end portion 21 and a smooth shank portion 25. The smooth shank portion 25 has a plurality of openings 24 open to a chamber 12 inside the hollow shaft 20. At a proximal end of the screws 10A, 10B and 10C is an enlarged head 30. The center of the head 30 is a threaded opening 32 open to the chamber 12. The threaded end portion 21 of the hollow shaft 20 has threads 29. All these features are common to each screw 10A, 10B and 10C.
In a first embodiment of
In a second embodiment of
With reference to
As the screw 10A, 10B or 10C is torqued into the pre-drilled pilot hole, the cutting flutes 11 create autograft bone fragments that are delivered directly into the chamber 12. In this way, the patient's bone fragments are made available to enhance new bone growth to fuse the screw 10A, 10B or 10C in place.
One purpose of this invention is to direct bone that is cut by the self-tapping threads and cutting edges 13 at the tip of the bone screw 10A, 10B or 10C or otherwise gathered by the flutes 11 into the internal chamber 12 of the screw to serve as additional autograft material. Previously, this material would be compressed into the bone around the outside of the screw. The screw would be filled with previously harvested autograft material which could be packed into the screw from an opening in the head end of the screw. The screw is used to secure two bones together, in this case the sacrum and the ilium. When preparing the bone to accept the screw, a hole will be drilled and tapped to a size smaller than the actual screw. The screw can be packed with graft material prior to implantation. The self-tapping edge of the screw will cut additional autograft material as it is installed and the flute will direct this freshly cut autograft material to join the existing material in the inner chamber 12 of the screw. Some of this material will be pushed out of the plurality of openings 24 or fenestrations in the shaft 20 of the screw as it is tightened to aid in fusion around and into the body of the screw. Many variations of similar flute shapes will produce a similar result. The screw material can be anything hard and strong enough to cut and direct bone chips and withstand the biomechanical loads of the application, preferably titanium, stainless steel or alloys of these materials or metals will work satisfactorily.
The present invention SI (Sacro-iliac) screw described herein has shown several important features of this screw. These features include: the lagging where the head 30 is pulled down by the coarse threads 29 and the lagged portion is within the smooth shank portion 25 and not engaged by threads 29; the screw has a large bore or chamber 12 for inserting bone graft with the option to cap this bore which communicates to the SI space after insertion with the driver cap 40; the shaft 20 has only the single threaded end portion 21 to engage only the sacrum bone, the ilium bone is positioned on the smooth shank portion 25; an optional anti-back out feature under the head 30 in the form of a series of wedge-shaped teeth 33 to engage the iliac bone surface can be used as shown in
Variations in the present invention are possible in light of the description of it provided herein. While certain representative embodiments and details have been shown for the purpose of illustrating the subject invention, it will be apparent to those skilled in this art that various changes and modifications can be made therein without departing from the scope of the subject invention. It is, therefore, to be understood that changes can be made in the particular embodiments described, which will be within the full intended scope of the invention as defined by the following appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6019760 | Metz-Stavenhagen et al. | Feb 2000 | A |
6053916 | Moore | Apr 2000 | A |
6402757 | Moore, III | Jun 2002 | B1 |
6635059 | Randall et al. | Oct 2003 | B2 |
8529609 | Helgerson et al. | Sep 2013 | B2 |
8808377 | Donner | Aug 2014 | B2 |
8894685 | Mickiewicz et al. | Nov 2014 | B2 |
20060155286 | Wang | Jul 2006 | A1 |
20070233123 | Ahmad | Oct 2007 | A1 |
20090192551 | Cianfrani et al. | Jul 2009 | A1 |
20100211113 | Olson | Aug 2010 | A1 |
20110137352 | Biedermann | Jun 2011 | A1 |
20110190830 | Biedermann | Aug 2011 | A1 |
20120095515 | Hamilton | Apr 2012 | A1 |
20120197311 | Kirschman | Aug 2012 | A1 |
20120323285 | Assell | Dec 2012 | A1 |
20130018427 | Pham et al. | Jan 2013 | A1 |
20140121707 | Stark | May 2014 | A1 |
20140257409 | Reed | Sep 2014 | A1 |
20140277188 | Poulos | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
102793579 | Nov 2012 | CN |