Field of the Invention
The present invention relates to transporting large towers by railroad. More specifically, the present invention relates to a system and method for transporting large towers and tower sections, such as towers used to support commercial wind turbines, using adjustable position fixtures to accommodate tower sections of various lengths and weight profiles.
Description of the Related Art
Large-scale wind turbines are used to generate electrical power. Such wind turbines consist of a tall tower with a generator nacelle rotatably coupled about the top of tower's vertical axis. A rotor hub extends out a horizontal axis of the nacelle. Two or more turbine blades are connected to the rotor hub at right angles to the horizontal axis. During operation, prevailing winds cause the turbine blades to rotate about the rotor hub's horizontal axis. The rotational forces are coupled to a generator within the nacelle, which produces electricity. The nacelle rotates about the vertical axis of the tower to maintain the wind turbine blades in proper orientation to the direction of the prevailing winds.
The various components of a large-scale wind turbine may be manufactured at different geographic locations, which may be anywhere in the world. These components must then be transported to the ultimate power generation site, assembled, erected, and placed into operation. Since the manufacturing operations may be spread across the world, transportation of the components to the generation site may utilize all modes of transportation, including ships, barges, trains and trucks. The various components are expensive to manufacture, and include delicate components that must be protected and handled properly during transportation. The transportation issues are exacerbated in that the components may be transported using plural modes during their journey. For example, a wind turbine tower manufactured in Denmark may travel by ship across the ocean, then via railroad to a location in the geographic area of the generation site, and then finally by truck to the ultimate destination. Mounting fixtures are needed to adapt the particular component being transported to each mode of transportation.
Generally, longer rail flatcars are preferred for transpiration of towers and tower sections. Presently, the inventory of 89-foot long flatcars in the railroad industry is declining, while the usage demand for these cars is increasing, particularly with regards to the transport of wind turbine tower sections. Given this constraint, users are demanding systems that allow for the quick reconfiguration of the available flatcars, as needed to transport wind turbine tower sections of varying length. Reconfiguration is desirable because this limited fleet of rail assets must be used for a variety of towers and tower sections that may have various lengths and weight distribution profiles, and which must be loaded onto the railcars in a manner that satisfies the design criteria of the railcars. Fixed saddle systems for the railcar transport of wind turbine tower sections are shown in co-assigned U.S. Pat. No. 8,529,174, which is incorporated herein by reference for all purposes. Thus it can be appreciated that there is a need in the art for a system and method addressing the problems related to transportation of long and heavy towers and tower sections via rail.
The need in the art is addressed by the systems and methods of the present invention. The present disclosure teaches a system for transporting tower sections of various lengths and weight profiles on railcars that have a deck, wherein the tower sections have a first end and an elongated portion. The system includes a locating assembly, which includes a key rail assembly and a foot stop assembly. The foot stop assembly includes a locating key and is adapted for rigid attachment to the first end of the tower section. The key rail assembly is adapted for rigid attachment to the railcar deck, and includes plural key fixtures along its length for selective engagement with the locating key, which define plural mounting locations along the length of the railcar at which the foot stop assembly may be located. A saddle assembly is configured to rest upon the deck of the railcar at a location along the elongated portion of the tower section, and has a saddle that generally conforms to the circumference of the tower section. The locating assembly and the saddle assembly cooperatively support the tower section above the deck of the railcar.
In a specific embodiment, the foregoing system further includes plural deck brackets that are adapted for fixed connection to the railcar deck, such as by welding. In this embodiment, the saddle assembly further includes at a least one attachment gusset configured to selectively engage any of the plural deck brackets. The plural deck brackets are fixedly connected to the railcar deck and longitudinally spaced such that the location of the saddle assembly is adjustable along the longitudinal axis of the tower section.
In a specific embodiment of the foregoing system, the locating key and the plural key fixtures are implemented to engage one another with cooperative slots and bars. In another specific embodiment, the key rail assembly includes at least a first steel rail, and the plural key fixtures are plural longitudinally spaced transverse slots formed in the rail. The locating key includes a transverse steel bar sized to retainably engage any of the plural longitudinally spaced transverse slots.
In a specific embodiment of the foregoing system, the key rail assembly includes at least two parallel rails, and the plural key fixtures are plural longitudinally spaced transverse bars connected between the rails. The locating key includes a transverse slot formed in the foot stop that is sized to retainably engage any of plural longitudinally spaced transverse bars.
In a specific embodiment of the foregoing system, the key rail assembly includes plural holes formed though it, which correspond with the plural mounting locations. The foot stop assembly includes at least a first pin hole. This embodiment further includes at least a first locating pin disposed between the first pin hole and at least one of the plural holes formed in the key rail assembly, to thereby lock the foot stop assembly at one of the plural mounting locations on the key rail assembly.
In a specific embodiment of the foregoing system, the key rail assembly is welded to the deck of the railcar and the foot stop assembly is bolted to the first end of the tower section.
In a specific embodiment of the foregoing system, the tower section includes a mount attached to the first end. The foot stop assembly further includes a mount engagement means configured to engage the mount to resist movement along the longitudinal axis of the railcar, and resist rotation of the tower section. In a refinement to this embodiment, where the mount includes a horizontal support surface, the system further provides that the mount engagement means is a recess formed in the top of the foot stop assembly that is shaped to partially conform to the shape of the horizontal support surface.
In a specific embodiment, the foregoing system further include a first group of plural deck brackets fixed to the railcar deck and longitudinally spaced apart. The saddle assembly further includes a first attachment gusset configured to selectively engage any of the first group of plural deck brackets such that the location of the saddle assembly is adjustable along the longitudinal axis of the tower section. A second group of plural deck brackets is also fixed to the railcar deck and longitudinally spaced, and, a second saddle assembly that has a second attachment gusset configured to selectively engage any of the second group of plural deck brackets such that the location of the second saddle assembly is adjustable along the longitudinal axis of the tower section.
In a specific embodiment, the foregoing system further includes a second locating assembly, which includes a second key rail assembly and a second foot stop assembly. The second foot stop assembly is adapted for rigid attachment to a second end of the tower section, and includes a second locating key. The second key rail assembly is adapted for rigid attachment to the railcar deck, and includes a second group of plural key fixtures along its length for selective engagement with the second key set of the second foot stop assembly, to thereby define plural mounting locations along the length of the railcar at which the second foot stop assembly may be located.
The present disclosure teaches a method for transporting a tower sections that have a first end and an elongated portion, and that have various lengths and weight distribution profiles, on a railcar having a deck, using a locating assembly that includes a key rail assembly with plural key fixtures along its length that define plural mounting locations, and a foot stop assembly with a locating key, and a saddle assembly with a saddle that generally conforms to the circumference of the tower section. The method includes the steps of attaching the foot stop assembly to the first end of a tower section, attaching the key rail assembly to the railcar deck, and attaching the saddle assembly to the deck of the railcar at a location along the elongated portion of the tower section. The method further includes resting the elongated portion of the tower section on the saddle of the saddle assembly, and engaging the locating key with a selected one of the plural key fixtures on the key rail assembly, to thereby fixedly located the tower section along the railcar at a selected one of the plural mounting locations.
In a specific embodiment of the foregoing method, where the saddle assembly includes a first attachment gusset, the method further includes attaching plural deck brackets to the railcar deck, which are longitudinally spaced apart, and selectively engaging the first attachment gusset to one of the plural deck brackets such that the location of the saddle assembly is selectively located along the longitudinal axis of the tower section.
In a specific embodiment of the foregoing method, where the key rail assembly includes a first steel rail, and the plural key fixtures are longitudinally spaced transverse slots formed in the steel rail, and wherein the locating key includes a transverse steel bar, the method further includes engaging the transverse steel bar into a selected one of the transverse slots, thereby selectively positioning and retaining the locating key along the key rail.
In a specific embodiment of the foregoing method, where the key rail includes two parallel rails, and where the plural key fixtures are plural longitudinally spaced transverse bars connected between the rails, and where the locating key includes a transverse slot formed in the foot stop, the method further includes engaging the transverse slot onto a selected one of the transverse bars, thereby selectively positioning and retaining the locating key along the key rail.
In a specific embodiment of the foregoing method, where the key rail assembly includes plural holes formed though it, which correspond with the plural mounting locations, and where the foot stop assembly includes a first pin hole, the method further includes inserting a locating pin between the first pin hole and one of the plural holes formed in the key rail assembly, thereby locking the foot stop assembly at one of the plural mounting locations on the key rail assembly.
In a specific embodiment of the foregoing method, where the tower section includes a mount attached to the first end, and where the foot stop assembly includes a recess formed in the top of the foot stop assembly that is shaped to partially conform to the mount, the method further includes engaging the mount in the recess in the top of the foot stop assembly to resist movement of the tower section along the longitudinal axis of the railcar and resist rotation of the tower section about the tower section's longitudinal axis.
Illustrative embodiments and exemplary applications will now be described with reference to the accompanying drawings to disclose the advantageous teachings of the present invention.
While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the invention is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications, and embodiments within the scope hereof and additional fields in which the present invention would be of significant utility.
In considering the detailed embodiments of the present invention, it will be observed that the present invention resides primarily in combinations of steps to accomplish various methods or components to form various apparatus and systems. Accordingly, the apparatus and system components, and method steps, have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the disclosures contained herein.
In this disclosure, relational terms such as first and second, top and bottom, upper and lower, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
The teachings herein address the problems in the prior art associated with railroad transportation of large towers and tower sections used in conjunction with commercial wind turbine systems. A variety of innovative mounting fixtures are employed, including tower manufacturer supplied fixtures, fixtures permanently attached to railcars, reusable fixtures, and fixture adaptors that accommodate various tower dimensions. The combination of these fixtures enables manufacturers, railroads, and rail services providers to accommodate virtually any tower configuration using the fewest possible number of fixtures types. Additionally, a greater number of the fixture components are reusable under the teachings of the present disclosure as compared to prior art systems, which substantially reduces costs. Through application of the teachings herein, there is less welding and cutting to and from the railcar decks, which improves utilization of the rolling stock and shortens turn-around time for loads. This is particularly beneficial in the case of 89-foot flatcars, which are often preferred for large tower sections, yet are in decreasing supply, industry wide.
The principles of the present disclosure are embodied in an improved saddle and locator assembly system, which includes a foot stop assembly with a key rail defining plural mounting locations on the railcar, and with movable saddles, which allow the saddles, as well as tower section securing assemblies, to be located and secured at different points along the longitudinal axis of the railcar, as required to support and secure tower sections of various a given lengths and weight distribution profiles. The considerations for loading and securing a tower section on a railcar include the length, position, and weight of the tower section as applied to the railcar, given that the railcar has certain loading restrictions. While it may be preferable to place loads directly over the railcar bolsters, the length and clearance issues may dictate otherwise. The present disclosure enables engineers to configure the saddles and foot stops at optimum positions for any given shipping set-up. Also importantly, the fixtures can be reused and adjusted to accommodate various tower section sizes and railcar loading requirements as may be required from time to time.
Reference is directed to
The tower section 14 in
Reference is directed to
The first saddles assembly in
Reference is directed to
Reference is directed to
Reference is directed to
The locating assembly components are further detailed in
Reference is directed to
Reference is directed to
Note in
Reference is directed to
Reference is directed to
Thus, the present invention has been described herein with reference to a particular embodiment for a particular application. Those having ordinary skill in the art and access to the present teachings will recognize additional modifications, applications and embodiments within the scope thereof.
It is therefore intended by the appended claims to cover any and all such applications, modifications and embodiments within the scope of the present invention.
This application claims priority to U.S. provisional application Ser. No. 62/287,032, which was filed on Jan. 26, 2016.
Number | Name | Date | Kind |
---|---|---|---|
3071269 | Moulds, Jr. | Jan 1963 | A |
3430407 | Berry | Mar 1969 | A |
3648622 | Lich | Mar 1972 | A |
3837295 | Fedele | Sep 1974 | A |
3922004 | Chamberlain | Nov 1975 | A |
4102274 | Feary | Jul 1978 | A |
4150628 | Keldenich | Apr 1979 | A |
4341494 | Fedele | Jul 1982 | A |
4365919 | Mehki | Dec 1982 | A |
4375860 | Greaves, Jr. | Mar 1983 | A |
4844672 | Yurgevich | Jul 1989 | A |
5114288 | Langendorf et al. | May 1992 | A |
5425608 | Reitnouer | Jun 1995 | A |
5562390 | Christenson | Oct 1996 | A |
5579698 | Lis | Dec 1996 | A |
5802981 | Kassab | Sep 1998 | A |
6286435 | Kassab et al. | Sep 2001 | B1 |
6398047 | Ladendorf et al. | Jun 2002 | B1 |
6422795 | Holt et al. | Jul 2002 | B2 |
6546878 | Smith et al. | Apr 2003 | B1 |
6827024 | Kassab et al. | Dec 2004 | B2 |
7210882 | Anderson et al. | May 2007 | B2 |
7244084 | Anthony | Jul 2007 | B2 |
7303365 | Wobben | Dec 2007 | B2 |
7429156 | Jensen | Sep 2008 | B2 |
8142120 | Landrum | Mar 2012 | B2 |
8491239 | Ferrari | Jul 2013 | B2 |
8500378 | Landrum | Aug 2013 | B1 |
8529174 | Landrum | Sep 2013 | B1 |
9683546 | Keller | Jun 2017 | B1 |
20040091346 | Wobben | May 2004 | A1 |
20050031431 | Wobben | Feb 2005 | A1 |
20050063795 | Jagos | Mar 2005 | A1 |
20060285937 | Wobben | Dec 2006 | A1 |
20070036627 | Wright | Feb 2007 | A1 |
20070051270 | Forbes et al. | Mar 2007 | A1 |
20070177954 | Kootstra | Aug 2007 | A1 |
20070189895 | Kootstra et al. | Aug 2007 | A1 |
20070248431 | Jensen | Oct 2007 | A1 |
20080213059 | Wright et al. | Sep 2008 | A1 |
20080272075 | DeMent | Nov 2008 | A1 |
20090169323 | Livingston | Jul 2009 | A1 |
20170210395 | Landrum | Jul 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20170210395 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62287032 | Jan 2016 | US |