SAFE POTENT SINGLE VECTOR PLATFORM VACCINE AGAINST COVID-19

Information

  • Patent Application
  • 20230181720
  • Publication Number
    20230181720
  • Date Filed
    May 13, 2021
    3 years ago
  • Date Published
    June 15, 2023
    11 months ago
Abstract
Embodiments of the invention include immunogenic compositions that comprise an attenuated recombinant Francisella tularensis subspecies holarctica Live Vaccine Strain (LVS) having a deletion in a polynucleotide encoding CapB (LVS ΔcapB), wherein the LVS ΔcapB expresses one or more antigens present on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Embodiments of the invention also include methods of immunizing a susceptible host against a pathogen comprising administering to the host a vaccine that comprises an attenuated recombinant Live Vaccine Strain lacking a polynucleotide encoding CapB (LVS ΔcapB), wherein the LVS ΔcapB expresses one or more antigens expressed by a severe acute respiratory syndrome coronavirus 2 (SAR8-CoV-2) polypeptide.
Description
TECHNICAL FIELD

The invention relates to single platform vaccines for preventing diseases caused by pathogens and in particular, COVID-19.


BACKGROUND OF THE INVENTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), closely related to SARS-CoV, is an enveloped, single-stranded positive RNA virus with a nucleocapsid that belongs to the betacoronavirus genus of the Coronaviridae. Starting in the final months of 2019, the virus caused an ongoing pandemic of COVID-19; the pandemic originated in Wuhan, Hubei Province of China and quickly spread worldwide with millions of confirmed cases and hundreds of thousands of fatalities.


The virus is primarily spread between people during close contact, most often via small droplets produced by coughing, sneezing, and talking. The droplets usually fall to the ground or onto surfaces rather than travelling through air over long distances. The time from exposure to onset of symptoms is typically around five days but may range from two to fourteen days. Common symptoms include fever, cough, fatigue, shortness of breath, and loss of smell and taste. While the majority of cases result in mild symptoms, some progress to acute respiratory distress syndrome (ARDS), multi-organ failure, septic shock, and blood clots.


There are currently no vaccines available to prevent COVID-19. Accordingly, there is a need for vaccines and associated methods designed to protect individuals from COVID-19 infection.


SUMMARY OF THE INVENTION

The invention disclosed herein provides a SARS-CoV-2 vaccine vector platform which is useful for preventing the disease COVID-19 caused by SARS-CoV-2 in humans and animals. The invention utilizes a vector termed “LVS ΔcapB”, which is a live attenuated capB mutant of Francisella tularensis Live Vaccine Strain (LVS), itself attenuated by serial passage in the 20th century from Francisella tularensis subsp. holarctica. In this context, LVS has two major attenuating deletions and several minor mutations. The invention is also the use of this vaccine platform to construct and use vaccines against numerous other pathogens caused by bacteria, viruses, parasites, etc.


Embodiments of the invention include an immunogenic composition comprising at least one recombinant attenuated Francisella tularensis subspecies holarctica Live Vaccine Strain (LVS) having a deletion in a capB gene and an antigen expression cassette which comprises a F. tularensis promoter and which expresses at least one antigenic epitope present in a polypeptide expressed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In such compositions, the antigenic polypeptide epitope elicits an immune response in a mammalian host when the immunogenic composition is administered orally (p.o.), intradermally (i.d.), subcutaneously (s.q.), intramuscularly (i.m.), intranasally (i.n.), or by inhalation to the mammalian host.


In typical embodiments of the invention, the at least one antigenic polypeptide epitope present in the polypeptide expressed by severe acute respiratory syndrome coronavirus 2 is present on: a SARS-CoV-2 large surface spike (S) glycoprotein; a SARS-CoV-2 envelope (E) protein: a SARS-CoV-2 membrane (M) glycoprotein: and/or a SARS-CoV-2 nucleocapsid (N) phosphoprotein. Optionally in these compositions, the polypeptide expressed by severe acute respiratory syndrome coronavirus 2 comprises at least two antigenic polypeptide epitopes present in: a SARS-CoV-2 large surface spike (S) glycoprotein: a SARS-CoV-2 envelope (E) protein; a SARS-CoV-2 membrane (M) glycoprotein: and/or a SARS-CoV-2 nucleocapsid (N) phosphoprotein.


In certain embodiments of the invention, the at least one antigenic polypeptide epitope present in the polypeptide expressed by severe acute respiratory syndrome coronavirus 2 is present on SARS-CoV-2 membrane (M) glycoprotein; or SARS-CoV-2 nucleocapsid (N) phosphoprotein. Typically, in these embodiments, the LVS ΔcapB expresses at least two antigenic polypeptide epitopes present on severe acute respiratory syndrome coronavirus 2 including: at least one peptide epitope present in SARS-CoV-2 membrane (M) glycoprotein; at least one peptide epitope present in SARS-CoV-2 nucleocapsid (N) phosphoprotein. In illustrative working embodiments of the invention disclosed herein, the at least two antigenic polypeptide epitopes present on a severe acute respiratory syndrome coronavirus 2 polypeptide are encoded by a sequence found in SEQ ID NO: 1 (e.g., a polynucleotide sequence encoding SARS-CoV-2 membrane (M) glycoprotein coupled via a polypeptide linker to a SARS-CoV-2 nucleocapsid (N) phosphoprotein). In these working embodiments, the antigenic polypeptide is encoded in a codon optimized polynucleotide sequence (i.e., one optimized for expression in Francisella tularensis).


Related embodiments of the invention method of making an immunogenic composition, such methods comprising introducing a polynucleotide encoding at least one antigenic epitope present in a polypeptide expressed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into a recombinant attenuated Francisella tularensis subspecies holarctica Live Vaccine Strain (LVS). In these methods, the LVS has a deletion in a capB gene; and the antigenic polypeptide epitope encoded by the polynucleotide elicits an immune response to SARS-CoV-2 in a mammalian host when the immunogenic composition is administered orally (p.o.), intradermally (i.d.), subcutaneously (s.q.), intramuscularly (i.m.), intranasally (i.n.) or by inhalation to the mammalian host. Embodiments of the invention include making compositions of matter that further comprise additional agents such as a pharmaceutical excipient selected for a specific route of administration, for example oral or intranasal administration. In certain embodiments, the at least one antigenic polypeptide epitope present in the polypeptide expressed by severe acute respiratory syndrome coronavirus 2 is present on SARS-CoV-2 membrane (M) glycoprotein; or SARS-CoV-2 nucleocapsid (N) phosphoprotein. Typically, in these embodiments, the LVS ΔcapB expresses at least two antigenic polypeptide epitopes including: at least one peptide epitope present in SARS-CoV-2 membrane (M) glycoprotein; at least one peptide epitope present in SARS-CoV-2 nucleocapsid (N) phosphoprotein. In illustrative working embodiments of the invention that are disclosed herein, the at least two antigenic polypeptide epitopes present on a severe acute respiratory syndrome coronavirus 2 polypeptide arc encoded by SEQ ID NO: 1.


Other embodiments of the invention include the use of an immunogenic composition disclosed herein for inducing immunity to SARS-CoV-2. Such embodiments of the invention include methods of generating an immune response in a mammal comprising administering the immunogenic composition disclosed herein (e.g., a LVS ΔcapB transformed with a polynucleotide encoding a SARS-CoV-2 M and N fusion protein such as the polynucleotide of SEQ ID NO: 1) to the mammal so that an immune response is generated to the antigenic polypeptide epitope present in a severe acute respiratory syndrome coronavirus 2 polypeptide. In certain embodiments of the invention, the immunogenic composition is administered orally. In other embodiments of the invention, the immunogenic composition is administered intranasally.


Embodiments of the vaccine platform disclosed herein can be modified to accommodate mutated antigens of SARS-CoV-2 and future SARS-CoV-like viruses should such strains arise and be sufficiently different from SARS-CoV-2 that persons or animals vaccinated with an earlier vaccine version are no longer immune. The vaccine platform can be used to construct vaccines against other viruses including but not limited to SARS, MERS, and other coronaviruses: Influenza A and B: Hepatitis A. Hepatitis B, Hepatitis C, Hepatitis E; Ebolavirus; Lassa; Nipah; Rift Valley Fever; Zika; Chikungunya; Cocksackie A16; Enterovirus 68, Enterovirus 71; Marburg; HIV; Dengue; Rabies: Arenaviruses including Guanarito, Junin, Lassa, Lujo, Machupo, Sabia, Dandemong, lymphocytic choriomeningitis; Bunyaviruses including Andes, Bwamba, Crimean-Congo Hemorrhagic Fever, Oropouche, Rift Valley, Severe Fever with Thrombocytopenia, Syndrome (SFTS); Flaviviruses including Japanese encephalitis, Usutu, West Nile; Togaviruses including Bamah Forest, O'nyong-nyong, Ross River, Semliki Forest, Venezuelan Equine Encephalitis; Filviruses including Bundibugyo Ebola, Lake Victoria Marburg, Sudan Ebola: Herpesviruses: Polyomaviruses: Poxviruses, Cytomegalovirus, Epstein-Barr, etc. The vaccine platform can be used to construct vaccines against bacteria including but not limited to Burkholderia, pseudomallei, Burkholderia mallei, Francisella tularensis, Bacillus anthracis, Yersinia pestis, Mycobacterium tuberculosis, Mycobacterium leprae, Legionella pneumophila, Chlamydia trachomatis, Chlamydia pneumoniae, Chlamydia psittaci, Listeria monocytogenes, Brucella species, etc. The vaccine platform can be used to construct vaccines against rickettsia including but not limited to Rickettsia prowazekii, R. typhi, R. rickettsia, R. tsutsugamushi, Coxiella burnetii, etc. The vaccine platform can be used to construct vaccines against protozoa including but not limited to Leishmania species, Trypanosoma cruzi, Toxoplasma gondii, etc. The vaccine platform can be used to construct vaccines against fungi including but not limited to Histoplasma capsulatum, Coccidioides immitis or Coccidioides posadasii, etc.


As noted above, in certain embodiments of the invention, combinations of vaccines expressing different SARS-CoV-2 antigens can be administered together. The vaccine platform has consistently resulted in a strong antibody response and a strong cell-mediated immune response to recombinant pathogen antigens expressed by the vaccine. The vaccine composition is administered to humans or animals by injection intradermally or by another route, e.g., subcutaneously, intramuscularly, orally, intranasally, or by inhalation. Each vaccine composition can be administered intradermally (i.d.) or by another route, e.g., subcutaneously (s.q.), intramuscularly (i.m.), intranasally (i.n.), inhaled, or even orally (p.o.) to a mammalian host. The vaccine can be administered as part of a homologous or heterologous prime-boost vaccination strategy. In certain implementations, the host is administered a single dose of a first vaccine and one or more doses of a homologous or heterologous booster vaccine.


This single platform simplifies manufacture, regulatory approval, clinical evaluation, and vaccine administration, and would be more acceptable to people than multiple individual vaccines, and be less costly. Currently, no single bacterial platform vaccine against SARS-CoV-2 is available. Regarding manufacture, vaccines constructed from the same vectors can be manufactured under the same conditions. That is, the manufacture of the LVS ΔcapB vector will be the same regardless of which antigen it is expressing or overexpressing. Similarly, manufacture of the L. monocytogenes vector will be the same regardless of which antigen it is expressing.


Other objects, features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description. It is to be understood, however, that the detailed description and specific examples, while indicating some embodiments of the present invention, are given by way of illustration and not limitation. Many changes and modifications within the scope of the present invention may be made without departing from the spirit thereof, and the invention includes all such modifications.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C. Schematics showing the construction of rLVS ΔcapB/SARS-CoV-2 vaccines. FIG. 1A. Schematic of SARS-CoV-2 genomic region encoding four major structural proteins, Spike (S), Envelope (E), Membrane (M), and Nucleocapsid (N) protein. FIG. 1B & FIG. 1C. Diagrams of S protein and the antigen expression cassettes. SP, signal peptide for S protein; NTD, N-terminal domain; RBD, receptor binding domain; FP, fusion peptide; HR, heptad repeat; CH, central helix: CD, central domain; and TM, Transmembrane domain (1); R, ribosome entry site: Pbfr, Ft bacterioferritin (FTT1441) promoter; Pomp, F. novicida omp (FTN_1451) promoter.



FIG. 2. Expression of SARS-CoV-2 MN and S2E proteins by rLVS ΔcapB vaccines. Total bacterial lysates of 4 clones (clones #1, 2, 3, 4) of rLVS ΔcapB/SCoV2-N3F-MN (lanes 4-7) and 4 clones (clone #1, 2, 3, 4) of rLVS ΔcapB/SCoV2-N3F-S2E (lanes 9-12) were analyzed by SDS-PAGE and Western blotting with an anti-FLAG monoclonal antibody (Top panel) and an anti-SARS-CoV-1 guinea pig polyclonal antibody (BEI Resources, NR-10361) (Bottom panel). Note that the N3F-MN (lanes 4-7) was readily detected by the pAb against SARS-CoV-1 (bottom panel) but not the mAb against FLAG (top panel); in contrast, the N3F-S2E protein (lanes 9-12) was readily detected by the mAb against FLAG (top panel) but poorly detected by the pAb against SARS-CoV-1 (bottom panel). The estimated molecular weights of the full-length N3F-MN and N3F-S2E are 75- and 77-kDa, respectively. The full-length N3F-MN protein (75-kDa) and the major breakdown product, the N protein (46 kDa), are indicated by blue color-coded asterisks to the right of the bands in the lower panel. The full-length N3F-S2E protein (77-kDa) is indicated by an orange color-coded asterisk to the right of the bands in the top panel. The protein bands of the positive control of SARS-CoV1 N (lane 14) and SΔTM protein (lane 15) are also indicated by green color-coded asterisks to the right of the bands. The size of the molecular weight markers (m) are labeled to the left of the panels. Top and bottom panels: pre-stained standards are visible (lanes 2 and 8): unstained standards are not visible on the Western blot (lane 1).



FIG. 3. Expression of SARS-CoV-2 Spike protein by LVS ΔcapB vaccines. Total bacterial lysates of LVS ΔcapB vector (lane 3), 3 clones (clones #1, 2, 3,) of rLVS ΔcapB/SCoV2-N3F-S (lanes 4-6), 3 clones (clone #1, 2, 3) of rLVS ΔcapB/SCoV2-S (lanes 7-9) and 3 clones (clone #1, 2, 3) of rLVS ΔcapB/SCoV2-Sc with a C-terminal tag (lanes 10-12) were analyzed by SDS-PAGE and Western blotting with an anti-FLAG monoclonal antibody (mAb) (Top panel) and an anti-SARS-CoV-1 guinea pig polyclonal antibody (pAb) (BEI Resources, NR-10361) (Bottom panel). Note that the N3F-S protein (lanes 4-6) was detected by both the mAb against FLAG (top panel) and the pAb against SARS-CoV-1 (bottom panel): the S with a C-terminal tag (Sc) (lanes 10-12) was not detected by the mAb against FLAG (top panel) but detected by the pAb against SARS-CoV-1 (bottom panel). SARS-CoV1 proteins of M (BET Resources, NR-878, ˜27 kDa) (lane 13), N (BEI Resources, NR-699, 46 kDa) (lane 14), and SΔTM (BEI Resources, NR-722, ˜150 kDa) (lane 15) served as positive controls. Both mAb against FLAG and pAb against SARS-CoV-1 detected multiple non-specific bands from the total lysates. The estimated molecular weight of the N3F-S is 143 kDa, as indicated by red color asterisks to the right of the protein bands in lanes 4-6 and lanes 10-12. The positive control of the SARS-CoV1 SΔTM is also indicated by a red asterisk (lane 15). The sizes of the molecular weight markers (m) are labeled to the left of the panels. Top and bottom panels: pre-stained standards are visible (lane 2); unstained standards are barely visible (lane 1).



FIG. 4. Expression of SARS-CoV-2 SΔTM, S1, and S2 subunit proteins by rLVS ΔcapB vaccines. Total bacterial lysates of LVS ΔcapB vector (lane 2), 4 clones (clones #1, 2, 7, 8) of rLVS ΔcapB/SCoV2-N3F-SΔTM (lanes 3-6), 4 clones (clone #1, 2, 6, 7) of rLVS ΔcapB/SCoV2-N3F-S1 (lanes 7-10) and 4 clones (clone #2, 6, 8, 12) of rLVS ΔcapB/SCoV2-S2 (lanes 11-14) were analyzed by SDS-PAGE and Western blotting with an anti-FLAG monoclonal antibody (Top panel) and an anti-SARS-CoV-1 guinea pig polyclonal antibody (BEI Resources, NR-10361) (Bottom panel). Note that the N3F-SΔTM protein (˜138 kDa) (lanes 3-6), indicated by a red asterisk to the right of the bands, was detected by both the mAb against FLAG (top panel) and the pAb against SARS-CoV-1 (bottom panel); the N3F-S1 (lanes 7-10) with two different molecular weights, indicated by purple asterisks to the right of the protein bands (top panel), were detected by the mAb against FLAG (top panel) but not detected by the pAb against SARS-CoV-1 (bottom panel); the un-tagged S2 (65 kDa) (lanes 11-14), indicated by a blue color-coded asterisk to the right of the protein bands (bottom panel), was detected by the pAb against SARS-CoV-1 (bottom panel). The SARS-CoV1 protein of SΔTM (BEI Resources. NR-722, ˜150 kDa) (lane 15), indicated by a green asterisk to the right of the protein band (lane 15) (bottom panel), served as a positive control. Top and bottom panels: Molecular weight standards are visible (lane 1) and the sizes of the molecular weight markers (m) are labeled to the left of the panels.



FIG. 5. Schematic of Francisella tularensis subspecies holarctica Live Vaccine Strain immunogenic compositions designed to express multiple SARS-CoV-2 proteins. As shown in this schematic, in certain embodiments of the invention, one or more SARS-CoV-2 proteins (e.g., the MN proteins) are disposed on the Francisella tularensis chromosome, while other SARS-CoV-2 proteins (e.g. the SΔTM (or S or S1 or S2), are disposed on a plasmid within this microorganism.



FIGS. 6a-b. Experimental schedule and weight loss after challenge, a Experiment schedule. FIG. 6a shows a schematic of an immunization schedule where Golden Syrian hamsters (8/group, equal sex) were immunized ID or IN twice (Week 0 and 3) with rLVS ΔcapB/SCoV2 vaccines, singly and in combination (MN+SΔTM; MN+S1); challenged IN 5 weeks later (Week 8) with 105 pfu of SARS-CoV-2 (2019-nCoV/USA-WA1/2020 strain), and monitored closely for clinical signs of infection including weight loss. FIG. 6b shows graphed data from these studies. Single vaccines expressed the S, SΔTM, S1, S2, S2E, or MN proteins, as indicated. Control animals were sham-immunized (PBS) or immunized with the vector (LVS ΔcapB) only. All hamsters were assayed for oropharyngeal viral load at 1, 2, and 3 days post challenge (dpi). Half of the hamsters (n=4/group) were euthanized at 3 days post challenge for lung viral load analysis and half (n=4/group) were monitored for weight loss for 7 days and euthanized at 7 days post challenge for lung histopathology evaluation, b Weight loss after challenge. Data are mean % weight loss from 0 days post challenge. *P<0.05: **P≤0.01; ***P<0.001; ****P≤0.0001 comparing means on Day 7 post challenge by repeated measure (mixed) analysis of variance model. Sham vs. MN: P<0.0001, ID route; P<0.01, IN route. The standard errors were omitted in the graphs for clarity.



FIGS. 7a-7b. Lung histopathology on Day 7 after SARS-CoV-2 IN challenge. Hamsters (n=4, equal sex) were immunized ID or IN as described in FIG. 6 and euthanized at 7 days post challenge for histopathologic examination of their lungs. FIG. 7a shows data from studies of cranial and caudal lung histopathology post challenge in hamsters immunized ID (left) or IN (right); lungs were separately scored on a 0-5 or 0-4 scale for overall lesion extent, bronchitis, alveolitis, pneumocyte hyperplasia, vasculitis, and interstitial inflammation; the sum of the scores for each lung are shown (mean±SE). The histopathological score evaluation was performed by a single pathologist blinded to the identity of the groups. Each symbol represents one animal. Data are mean f SE. **P<0.01; ***P<0.001; ****P<0.0001 by two-way ANOVA with Tukey's multiple comparisons (GraphPad Prism 8.4.3): ns, not significant. FIG. 7b show data on the mean percentage reduction in the combined cranial and caudal lung histopathology score compared with Sham (PBS)-immunized animals calculated for each vaccine.





DETAILED DESCRIPTION OF THE INVENTION

In the description of embodiments, reference may be made to the accompanying figures which form a part hereof, and in which is shown by way of illustration a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized, and structural changes may be made without departing from the scope of the present invention.


All publications mentioned herein are incorporated by reference to disclose and describe aspects, methods and/or materials in connection with the cited publications. Many of the techniques and procedures described or referenced herein are well understood and commonly employed by those skilled in the art. Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. This application is related to U.S. patent application Ser. No. 16/319,812, filed on Jan. 22, 2019, entitled “SAFE POTENT SINGLE PLATFORM VACCINE AGAINST TIER 1 SELECT AGENTS AND OTHER PATHOGENS” the contents of which are incorporated herein by reference.


The current pandemic of COVID-19 has sickened over a hundred and fifty million people, killed over 3 million, and wreaked havoc on the world's economy. There is a tremendous need for a safe and effective COVID-19 vaccine to end the current devastating pandemic. An effective COVID-19 vaccine can end this pandemic quickly.


The invention disclosed herein utilizes a vaccine vector platform termed “LVS ΔcapB”, which is a live attenuated capB mutant of Francisella tularensis Live Vaccine Strain (LVS), itself attenuated by serial passage in the 20th century from Francisella tularensis, subsp. holarctica (see, e.g., Jia et al., Infect Immun. 78:4341-4355. (Epub 2010 07-19). PMID 20643859. PMCID: PMC2950357. doi: 10.1128/IAI.00192-10; Salomonsson et al., Infect. Immun. 77:3424-343: and Rohmer et al., Infect. Immun. 74:6895-6906: the contents of which are incorporated herein by reference).


In this context, embodiments of the invention include immunogenic (vaccine) compositions that comprise an attenuated recombinant Francisella tularensis subspecies holarctica Live Vaccine Strain (LVS) that does not express CapB protein (e.g., LVS ΔcapB), wherein this LVS further expresses one or more antigens present on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Embodiments of the invention also include methods of immunizing a susceptible host against a pathogen comprising administering to the host a vaccine that comprises an attenuated recombinant Live Vaccine Strain lacking a polynucleotide encoding CapB (LVS ΔcapB), wherein the LVS ΔcapB expresses one or more antigens expressed by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polypeptide.


One major advantage of the immunogenic vaccine compositions disclosed herein is the capacity to manufacture vaccines cheaply and quickly. The head of GAVI (the Vaccine Alliance) has pointed out how important it is that vaccines being developed for COVID-19 be available to all of the world's population and not just the privileged. The capacity to manufacture huge quantities of vaccine quickly and cheaply would allow that eventuality. Live, attenuated bacterial vaccines, such as LVS ΔcapB vectored vaccine against COVID-19 are much less expensive to manufacture, as they can be grown readily in inexpensive broth and require no purification. Vaccine cost is of critical importance in developing countries.


Another major advantage of the immunogenic vaccine compositions disclosed herein is that the vector is a more attenuated derivative of a vaccine already safely administered to people. Hence it is anticipated to be extremely safe. Another likely advantage of the immunogenic vaccine compositions disclosed herein is that as a live attenuated vaccine, it is much more likely to induce long-lasting protection than a protein/adjuvant vaccine, DNA/RNA vaccine, or non-replicating virus-vectored vaccine. Another major advantage of the immunogenic vaccine compositions disclosed herein is that the single vector platform that we are using is easily expandable to other infectious diseases. In fact, we have already employed the single platform to generate potent vaccine candidates against other pathogens. Finally, the immunogenic vaccine compositions disclosed herein is easily altered in response to mutations in the SARS-CoV-2 virus that may render initial vaccines against it no longer effective.


As there are currently no licensed vaccines against COVID-19 comprising a replicating bacterial vector, this vaccine meets a major unmet need. Previous human trials have demonstrated reasonable safety of the double-deletional parent vector (LVS). The even more attenuated but still highly immunogenic triple-deletional platform vector (LVS ΔcapB) derived from the parent is >10,000 fold less virulent in a mouse model (as measured by intranasal LD50; all animals survived highest dose tested). Because the vaccine is based upon a bacterial vector, it can be inexpensively manufactured in broth culture—no purification is necessary as in the case of viral-vectored vaccines.


Advantages of the invention disclosure herein include that there is no need for animal products, in contrast to viral-vectored vaccines grown in cell culture. In addition, there is no need for adjuvant; and the vaccine can be readily altered to accommodate mutations in the SARS-CoV-2 virus. In addition, single vector platform simplifies manufacture, regulatory approval, clinical evaluation, and vaccine administration, and would be more acceptable to people than multiple individual vaccines, and be less costly. Regarding manufacture, vaccines constructed from the same vectors can be manufactured under the same conditions. That is, the manufacture of the LVS ΔcapB vector will be the same regardless of which antigen it is expressing or overexpressing.


The invention disclosed herein has a number of embodiments. Embodiments of the invention include an immunogenic composition comprising at least one recombinant attenuated Francisella tularensis subspecies holaretica Live Vaccine Strain (LVS) having a deletion in a capB gene and an antigen expression cassette which comprises a F. tularensis promoter and which expresses at least one antigenic epitope present in a polypeptide expressed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In such compositions, the antigenic polypeptide epitope elicits an immune response in a mammalian host when the immunogenic composition is administered by at least one route of administration selected from orally (p.o.), intradermally (i.d.), subcutaneously (s.q.), intramuscularly (i.m.), intranasally (i.n.), or by inhalation to the mammalian host.


In typical embodiments of the invention, the at least one antigenic polypeptide epitope present in the polypeptide expressed by severe acute respiratory syndrome coronavirus 2 is present on: a SARS-CoV-2 large surface spike (S) glycoprotein; a SARS-CoV-2 envelope (E) protein: a SARS-CoV-2 membrane (M) glycoprotein: and/or a SARS-CoV-2 nucleocapsid (N) phosphoprotein. Optionally in these compositions, the polypeptide expressed by severe acute respiratory syndrome coronavirus 2 comprises at least two antigenic polypeptide epitopes present in: a SARS-CoV-2 large surface spike (S) glycoprotein: a SARS-CoV-2 envelope (E) protein; a SARS-CoV-2 membrane (M) glycoprotein: and/or a SARS-CoV-2 nucleocapsid (N) phosphoprotein (e.g. an epitope present on an S1 subunit of the SARS-CoV-2 large surface spike (S) glycoprotein and an epitope present on a S2 subunit of the SARS-CoV-2 large surface spike (S) glycoprotein). In certain embodiments of the invention, the antigenic polypeptide epitope is encoded in a codon optimized polynucleotide sequence. Optionally, the at least one antigenic epitope present in a polypeptide expressed by severe acute respiratory syndrome coronavirus 2 is encoded in a polynucleotide of SEQ ID NO: 1-SEQ ID NO: 9 (e.g. a polynucleotide segment in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5. SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9 that is at least 25, 50, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000 or 8000 nucleotides in length and/or is not more than 25, 50, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000 or 8000 nucleotides in length). Embodiments of the invention include Francisella tularensis subspecies holarctica Live Vaccine Strain immunogenic compositions that are designed to express multiple SARS-CoV-2 proteins from different genetic elements in this microorganism. For example, as shown in FIG. 5, in certain embodiments of the invention, one or more SARS-CoV-2 proteins (e.g. the MN proteins) are disposed on the Francisella tularensis chromosome, while other SARS-CoV-2 proteins (e.g. the SΔTM (or S or S1 or S2), are disposed on a plasmid within this microorganism.


In certain embodiments of the invention, the LVS is engineered to express at least two antigenic polypeptide epitopes present on severe acute respiratory syndrome coronavirus 2 including: at least one peptide epitope present in SARS-CoV-2 membrane (M) glycoprotein; at least one peptide epitope present in SARS-CoV-2 nucleocapsid (N) phosphoprotein. In certain embodiments of the invention, the LVS is transformed with a polynucleotide encoding polypeptide epitopes found on SARS-CoV-2 membrane (M)glycoprotein, with such polynucleotide sequences being coupled to a polynucleotide encoding a polypeptide linker, with this (encoded) linker also being coupled to a polynucleotide encoding polypeptide epitopes found on a SARS-CoV-2 nucleocapsid (N) phosphoprotein. In such embodiments, the genetically engineered LVS ΔcapB thereby expresses a MN fusion protein that is presented to immune cells. In illustrative working embodiments of the invention disclosed herein, the at least two antigenic polypeptide epitopes present on a severe acute respiratory syndrome coronavirus 2 polypeptide are encoded by a sequence found in SEQ ID NO: 1 (which is a polynucleotide sequence encoding a fusion protein comprising SARS-CoV-2 membrane (M) glycoprotein coupled in frame via an encoded polypeptide linker to a SARS-CoV-2 nucleocapsid (N) phosphoprotein). In certain embodiments, the antigenic polypeptides can be encoded in a codon optimized polynucleotide sequence.


Embodiments of the invention include concurrent administration of one vaccine embodiment of the invention along with one or more other vaccine embodiments using the same vector. Furthermore, a single vector platform vaccine also has the advantage that different vaccines comprising the same vector but expressing different antigens can be safely and effectively administered at the same time. That is, individual LVS ΔcapB vaccines expressing Burkholderia pseudomallei (Bp) antigens. Francisella tularensis subsp. tularensis (Ft) antigens, Bacillus anthracis (Ba) antigens, Yersinia pestis (Yp) antigens, SARS-CoV-2 antigens, and the antigens of other pathogens, can be administered together.


As discussed in detail below, nine COVID-19 immunogenic vaccine compositions have been constructed and demonstrated to express the relevant SARS-CoV-2 proteins singly and in combination. Embodiments of the invention include an immunogenic composition comprising a recombinant attenuated Francisella tularensis subspecies holarctica Live Vaccine Strain (LVS) having a deletion in a capB gene and which comprises a heterologous promoter that expresses a fusion protein comprising an antigenic polypeptide epitope present in a SARS-CoV-2 virus polypeptide. It is desirable to include large segments of SARS-CoV-2 virus polypeptides in this invention in order to present a large number of immunoreactive epitopes to the mammalian immune system. Optionally the LVS expresses two or more antigenic polypeptide epitopes present in a SARS-CoV-2 virus polypeptide. In this context, illustrative embodiments of the invention include vaccine combinations or combinations of proteins in a single vaccine. Such illustrative combinations include (SARS-CoV-2 proteins bolded):


1. rLVS ΔcapB/SCoV2 (SΔTM)+rLVS ΔcapB/SCoV2 (MN)


2. rLVS ΔcapB/SCoV2 (S1)+rLVS ΔcapB/SCoV2 (MN)


3. rLVS ΔcapB/SCoV2 (S)+rLVS ΔcapB/SCoV2 (MN)


4. rLVS ΔcapB/SCoV2 (S2)+rLVS ΔcapB/SCoV2 (MN)


5. rLVS ΔcapB/SCoV2 (S2E)+rLVS ΔcapB/SCoV2 (MN)


6. rLVS ΔcapB/SCoV2 (S1)+rLVS ΔcapB/S2 (S2)


7. rLVS ΔcapB/SCoV2 (S1)+rLVS ΔcapB/SCoV2 (S2E)


Another embodiment of the invention is a method of generating an immune response in a mammal comprising administering one or more of immunogenic compositions disclosed herein to the mammal so that an immune response is generated to the one or more antigenic polypeptide epitopes present in a SARS-CoV-2 virus polypeptide. In one such embodiment, the method comprises administering an LVS immunogenic composition disclosed herein in a primary vaccination; and administering the same immunogenic composition of LVS immunogenic composition disclosed herein in a subsequent homologous booster vaccination. Typically, the method consists essentially of administering the immunogenic composition of an LVS immunogenic composition disclosed herein in a primary vaccination; and administering the immunogenic composition of LVS immunogenic composition disclosed herein in a subsequent homologous booster vaccination. Optionally, the method comprises administering the immunogenic composition to the mammal less than 4 times.


In another embodiment of the invention, the method comprises administering an LVS composition as disclosed herein in a primary vaccination; and administering a second heterologous immunogenic composition comprising the antigenic polypeptide epitope present in a SARS-CoV-2 virus in a subsequent booster vaccination. Optionally, the second immunogenic composition comprises an attenuated strain of Listeria monocytogenes expressing the antigenic polypeptide epitope. In certain embodiments, the method comprises administering LVS immunogenic composition disclosed herein and a second immunogenic composition to the mammal less than a total of four times. Optionally for example, the method comprises administering a single dose of a first LVS immunogenic composition disclosed herein, and one or more doses of a second immunogenic composition disclosed herein.


Studies illustrating aspects and properties of the invention are published in Jia et al., NPJ Vaccines. 2021 Mar. 30; 6(1):47. doi: 10.1038/s41541-021-00321-8, the contents of which are incorporated by reference. FIG. 2 in this publication shows that only the MN expressing vaccines protected against severe weight loss, whether administered intradermally (ID) or intranasally (IN), whereas none of the S protein vaccines protected against severe weight loss. FIG. 3 in this publication shows that only the MN expressing vaccines protected against severe lung histopathology, as scored by a pathologist blinded to the identity of the vaccines, whether the vaccines were administered intradermally (ID) or intranasally (IN), whereas none of the S protein vaccines protected against severe lung histopathology. FIG. 5 in this publication shows that only the MN expressing vaccines preserved a high percentage of alveolar air space, whether administered intradermally (ID) or intranasally (IN), whereas none of the S protein vaccines preserved a high percentage of alveolar air space, and that the percent alveolar air space correlated inversely with the histopathological score. FIG. 7 in this publication shows that anti-N antibody is induced only by the MN expressing vaccines, as expected, whether administered intradermally (ID) or intranasally (IN), and that it strongly correlates with protection against lung histopathology. This was unexpected because anti-N antibody is not neutralizing antibody (i.e. it does not neutralize virus infection of mammalian cells) and hence would not be expected to be protective. Without being bound by a specific theory or mechanism of action, it is believed that the anti-N antibody is correlated with induction of T cell responses to the N protein and that it is these T cell responses that are highly protective.


EXAMPLES

Construction and Characterization of Recombinant LVS ΔcapB Expressing SARS-CoV-2 Antigens


SARS-CoV-2 Antigen Selection.

The complete genome sequence of SARS-CoV-2 and the polypeptides encoded by this genome are known in the art. See, e.g. “Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Isolated in Nepal”, Sah et al., Microbiology Resource Announcements March 2020.9 (11) e00169-20; DOI: 10.1128/MRA.00169-20, the contents of which are incorporated by reference; and SARS-CoV-2 sequenced genomes are available at GenBank (e.g. MN988668 and NC_045512, the contents of which are incorporated by reference). See also Zhou P, Yang X L, Wang X G, Hu B. Zhang L, Zhang W, Si H R, Zhu Y, Li B, Huang C L, Chen H D, Chen J, Luo Y. Guo H, Jiang R D, Liu M Q, Chen Y, Shen X R, Wang X, Zheng X S, Zhao K, Chen Q J, Deng F, Liu L L, Yan B. Zhan F X, Wang Y Y, Xiao G F, Shi Z L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-3. Epub 2020/02/06. doi: 10.1038/s41586-020-2012-7. PubMed PMID: 32015507. See also Wu et al, Nature volume 579, pages 265-269 (2020) and Genebank MT152824 (US), the contents of which are incorporated by reference, for the complete genomic sequence which was used herein for gene optimization.


Similar to other coronaviruses, including SARS-CoV and MERS-CoV. SARS-CoV-2 encodes 4 structural proteins: a large surface spike (S) glycoprotein (1273 aa) (1, 3); an envelope (E) protein (75 aa); a membrane (M) glycoprotein (222 aa); and a nucleocapsid (N) phosphoprotein (419 aa) (FIG. 1A). The S protein is synthesized as a single-chain inactive precursor of 1,273 residues with a signal peptide (residue 1-15) and processed by a furin-like host proteinase into the S1 (75 kDa) subunit that binds to host receptor angiotensin converting enzyme II (ACE2) (4), and the S2 (64 kDa) subunit that mediates the fusion of the viral and host cell membranes. The S1 subunit contains host receptor binding domain (RBD) and the S2 subunit contains the fusion peptide (FP), two heptad repeats (HR), and a transmembrane domain (TM) (FIG. 1B). We constructed nine pFNL-derived shuttle plasmids and nine corresponding rLVS ΔcapB-vectored vaccines expressing 1) the S protein with or without an N-terminal tag (S); 2) S protein with a deleted transmembrane domain with an N-terminal tag (SΔTM); 3) the S1 subunit with an N-terminal tag (S1); 4) S2 subunit (S2); 5) S2 protein fused to the E protein with or without an N-terminal tag (S2-E); and 6) the M protein fused to the N protein with or without an N-terminal tag (MN) (FIG. 1C, bottom panels). The expression of the SARS-CoV-2 proteins is driven by a strong Ft promoter (pbfr or pomp) that we have used for vaccines against Ft, Ba. Yp, and Bp. We have tested the efficacy of each vaccine candidate in animals. On the basis of the efficacy results, we shall select the best antigens and construct a final vaccine that expresses the most protective protein antigen(s).


Construction and Verification of rLVS ΔcapB Prime Vaccines Expressing Immunogenic SARS-CoV-2 Antigens.


1A. Construct rLVS ΔcapB Vaccines Expressing SARS-CoV-2 Antigens (rLVS ΔcapB/SCoV2).


We previously have successfully constructed rLVS ΔcapB vaccines expressing shuttle plasmid-encoded Ft, Ba, Yp, and Bp antigens and demonstrated potent protection by the rLVS ΔcapB vaccines against lethal respiratory challenge with the relevant pathogens. We now have used a similar approach to construct vaccines against SARS-CoV-2. For expression of the S protein (protein id QIH55221.1), a gene encoding full-length SARS-CoV-2 S (Genebank MT152824) with two stabilizing proline substitutions at the S2 fusion machinery (K986P and V987P) (1, 5) was codon-optimized for expression in LVS ΔcapB and synthesized by Atum.com. Similarly, genes encoding SARS-CoV-2 E, M, N proteins were also codon-optimized and synthesized by Atum.com. The synthesized genes encoding the full-length S protein (145 kDa), the fusion proteins of S2-E (72 kDa), and the fusion protein of MN (71 kDa) linked by flexible linker (GGSG) were cloned separately into a pFNL-derived expression shuttle plasmid downstream of the pbfr promoter by the Electra Cloning System (ATUM) and traditional molecular cloning methods (6). Subsequently we performed a deletional mutagenesis of the codon-optimized gene for full-length S protein to generate pFNL-derived expression shuttle plasmids for SΔTM. S1 and S2 subunits. We shall also construct a pFNL-derived shuttle plasmid carrying expression cassettes for both S1 and S2 subunits driven by the Francisella omp and bfr promoter, respectively, as indicated in FIG. 1C, top panels. Each antigen expression cassette in the shuttle plasmid is composed of the following elements: Ft bfr or Fn omp promoter followed by a ribosomal entry site (Shine-Dalgarno sequence), 6 nucleotide spacer, and the nucleotide sequences encoding the SARS-CoV-2 proteins. The expression shuttle plasmid, carrying a kanamycin-resistance gene, was verified by restriction analysis and/or nucleotide sequencing and electroporated into LVS ΔcapB electro-competent cells; recombinant clones (rLVS ΔcapB expressing S, SΔTM, S1, S2, S2-E, and MN) were selected on chocolate agar plates supplemented with kanamycin; kanamycin-resistant clones were verified for expression of the targeted proteins and by restriction analysis of the shuttle plasmids isolated from the vaccine strain.


As expected, the fusion protein of MN with or without N-terminal tags were abundantly expressed by the LVS ΔcapB vector and recognized by the guinea pig polyclonal antibody to SARS CoV (NR-10361, BEI Resources). Surprisingly, the full-length Spike protein (145 kDa) was also abundantly expressed by the LVS ΔcapB vector and recognized by the guinea pig polyclonal antibody to SARS CoV (NR-10361, BEI Resources). This is the largest protein we have successfully expressed from the LVS ΔcapB vector. The SΔTM, S1, and S2 were also expressed by the LVS ΔcapB vector as demonstrated by Western blotting analysis by using the monoclonal antibody to the N-terminal tag (FLAG) and by using the polyclonal antibody to SARS CoV.


1B. Characterize rLVS ΔcapB Vaccines In Vitro, Including Protein Expression and Growth Kinetics in Broth and in Macrophages, and Genetic Stability of the Integrated Antigen Expression Cassette.


1B1. Protein Expression by rLVS ΔcapB/SCoV2 Vaccine Grown on Agar Plates.


Heterologous protein expression by rLVS ΔcapB/SCoV2 vaccines on Chocolate agar plates were analyzed by Western blotting using polyclonal antibody to SARS-CoV or monoclonal antibodies to the N-terminal tags of the SCoV2 protein, as described by us previously (7-9).


In studies of embodiments of the invention disclosed herein, a major unexpected finding was that only the vaccines expressing the Membrane (M) and Nucleocapsid (N) proteins (e.g. the MN fusion protein of SEQ ID NO: 1) were protective (either when administered alone or with vaccines expressing other proteins), whereas all of the vaccines expressing only the S protein (or a part of the S protein i.e. SΔTM, S1, or S2) or the S2 protein fused to the Envelope (E) protein (S2E) were not protective. It was also unexpected that the MN fusion protein expressing vaccines worked just as well when administered by the intranasal route as by the intradermal route. Specifically, we used the LVS ΔcapB vector platform to construct six COVID-19 vaccines expressing one or more of all four structural proteins of SARS-CoV-2 and tested the vaccines for efficacy, administered intradermally (ID) or intranasally (IN), against a high dose SARS-CoV-2 respiratory challenge in hamsters. These studies showed that the LVS ΔcapB vaccine expressing COVID-19 MN proteins, but not the vaccines expressing the S protein or its subunits in various configurations, is highly protective against severe COVID-19-like disease including weight loss and lung pathology, and also that protection is highly correlated with serum anti-N antibody levels. See FIGS. 6 and 7.


CONCLUSION

This concludes the description of embodiments of the present invention. The foregoing description of one or more embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching.


REFERENCES



  • 1. Wrapp D, Wang N, Corbett K S, Goldsmith J A, Hsieh C L, Abiona O, Graham B S, McLellan J S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483):1260-3. Epub 2020/02/23. doi: 10.1126/science.abb2507. PubMed PMID: 32075877.

  • 2. Limmathurotsakul D, Golding N, Dance D A, Messina J P, Pigott D M, Moyes C L, Rolim D B, Bertherat E, Day N P, Peacock S J, Hay S I. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nature microbiology. 2016; 1:15008. doi: 10.1038/nmicrobiol.2015.8. PubMed PMID: 27571754.

  • 3. Walls A C, Park Y J, Tortorici M A, Wall A. McGuire A T, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020. Epub 2020/03/11. doi: 10.1016/j.cell.2020.02.058. PubMed PMID: 32155444.

  • 4. Zhou P, Yang X L, Wang X G, Hu B, Zhang L, Zhang W, Si H R, Zhu Y, Li B, Huang C L, Chen H D, Chen J, Luo Y, Guo H, Jiang R D, Liu M Q, Chen Y, Shen X R, Wang X, Zheng X S, Zhao K, Chen Q J, Deng F, Liu L L, Yan B, Zhan F X, Wang Y Y, Xiao G F, Shi Z L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-3. Epub 2020/02/06. doi: 10.1038/s41586-020-2012-7. PubMed PMID: 32015507.

  • 5. Pallesen J, Wang N, Corbett K S, Wrapp D, Kirchdoerfer R N, Turner H L, Cottrell C A, Becker M M, Wang L, Shi W, Kong W P, Andres E L, Kettenbach A N, Denison M R, Chappell J D, Graham B S, Ward A B, McLellan J S. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci USA. 2017:114(35):E7348-E57. Epub 2017/08/16. doi: 10.1073/pnas.1707304114. PubMed PMID: 28807998; PMCID: PMC5584442.

  • 6. Jia Q, Bowen R, Dillon B J, Maslesa-Galic S, Chang B T, Kaidi A C, Horwitz M A. Single vector platform vaccine protects against lethal respiratory challenge with Tier 1 select agents of anthrax, plague, and tularemia. Scientific reports. 2018; 8(1):7009. Epub 2018/05/05. doi: 10.1038/s41598-018-24581-y. PubMed PMID: 29725025; PMCID: PMC5934503.

  • 7. Lee B Y, Horwitz M A, Clemens D L. Identification, recombinant expression, immunolocalization in macrophages, and T-cell responsiveness of the major extracellular proteins of Francisella tularensis. Infect Immun. 2006; 74(7):4002-13. doi: 10.1128/IAI.00257-06. PubMed PMID: 16790773: PMCID: 1489726.

  • 8. Jia Q, Lee B Y, Clemens D L, Bowen R A, Horwitz M A. Recombinant attenuated Listeria monocytogenes vaccine expressing Francisella tularensis Ig1C induces protection in mice against aerosolized Type A F. tularensis. Vaccine. 2009; 27(8):1216-29. Epub 2009/01/08. doi: 10.1016/j.vaccine.2008.12.014. PubMed PMID: 19126421: PMCID: 2654553.

  • 9. Jia Q, Bowen R, Lee B Y, Dillon B J, Maslesa-Galic S, Horwitz M A. Francisella tularensis Live Vaccine Strain deficient in capB and overexpressing the fusion protein of Ig1A, Ig1B, and Ig1C from the bfr promoter induces improved protection against F. tularensis respiratory challenge. Vaccine. 2016; 34(41):4969-78. doi: 10.1016/j.vaccine.2016.08.041. PubMed PMID: 27577555; PMCID: 5028307.

  • 10. Jia Q, Lee B Y, Bowen R, Dillon B J, Som S M, Horwitz M A. A Francisella tularensis Live Vaccine Strain (LVS) mutant with a deletion in capB, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against F. tularensis challenge. Infect Immun. 2010; 78(10):4341-55. Epub 2010/07/21. doi: 10.1128/IAI.00 192-10. PubMed PMID: 20643859; PMCID: 2950357.



SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-COV-2) POLYNUCLEOTIDE SEQUENCES USEFUL IN EMBODIMENTS OF THE INVENTION














1. SCoV2 MN (1938 bp)


ATGGCTGATAGCAATGGAACGATTACAGTAGAAGAGTTAAAAAAACTTCTAGAGCAATGGAATCT


TGTAATTGGCTTTCTATTTCTAACATGGATATGTCTATTACAGTTTGCTTATGCCAATAGAAATA


GATTTCTTTATATAATAAAACTTATCTTTCTATGGCTATTATGGCCTGTTACATTAGCTTGTTTC


GTTCTAGCTGCTGTTTATAGAATAAATTGGATAACCGGTGGAATTGCAATTGCTATGGCCTGGTT


AGTCGGACTTATGTGGCTTTCATATTTTATTGCCTCATTTCGATTATTCGCTAGAACACGCTCGA


TGTGGAGCTTTAATCCAGAAACTAATATATTATTAAATGTGCCATTACATGGTACAATTTTGACT


AGACCTCTTTTAGAAAGCGAATTAGTTATAGGTGCAGTTATCCTACGTGGACATTTAAGAATTGC


TGGCCACCATCTTGGTAGATGTGATATCAAAGATTTACCAAAAGAAATAACTGTAGCAACATCTA


GAACATTATCATATTATAAATTGGGTGCTTCACAGAGAGTGGCGGGTGATTCAGGTTTTGCAGCT


TATTCTAGGTATAGGATTGGTAACTATAAATTGAATACGGATCACAGTTCCTCAAGTGATAATAT


TGCACTTCTTGTACAGGGTGGTAGCGGTATGTCAGATAACGGTCCTCAAAATCAAAGAAATGCTC


CTAGAATAACTTTTGGTGGCCCAAGTGATAGTACTGGTAGTAATCAGAACGGTGAGAGAAGTGGA


GCAAGATCTAAGCAACGCAGACCGCAAGGGCTACCTAATAATACTGCGTCATGGTTTACTGCTTT


AACACAACATGGTAAAGAAGATTTAAAGTTTCCTCGCGGTCAGGGTGTTCCAATTAATACTAATA


GTTCGCCAGATGATCAAATTGGTTATTATCGTCGTGCTACTAGACGAATTCGTGGTGGCGACGGA


AAAATGAAAGATCTATCTCCACGTTGGTACTTTTACTATTTAGGTACCGGTCCAGAGGCTGGTTT


ACCTTATGGTGCTAACAAAGACGGGATAATATGGGTCGCTACCGAGGGTGCACTTAATACGCCAA


AAGATCATATCGGAACTCGTAACCCAGCAAATAACGCTGCTATTGTTTTACAATTACCTCAAGGT


ACTACACTGCCTAAAGGTTTCTATGCAGAGGGCTCTAGGGGTGGAAGCCAAGCATCAAGTCGTTC


AAGTTCTCGTAGCAGAAACTCTTCTAGAAATAGTACTCCTGGCTCATCACGTGGAACAAGTCCAG


CGAGAATGGCTGGTAATGGCGGGGATGCAGCATTAGCATTGTTACTTTTAGATAGATTAAATCAG


CTTGAATCTAAAATGTCTGGCAAAGGGCAACAACAACAGGGTCAAACAGTAACTAAGAAATCAGC


AGCAGAGGCTTCGAAGAAACCTAGACAGAAGAGAACTGCTACAAAAGCGTACAATGTTACGCAAG


CATTTGGCCGCAGAGGACCAGAACAGACTCAAGGGAATTTTGGTGATCAAGAATTAATTCGTCAA


GGTACAGATTATAAACATTGGCCCCAGATAGCTCAATTTGCTCCATCTGCATCTGCATTCTTTGG


AATGTCAAGAATTGGTATGGAAGTTACTCCTAGTGGAACTTGGCTAACTTATACTGGTGCTATAA


AGCTCGATGATAAAGATCCTAATTTTAAAGATCAAGTAATTTTGTTAAACAAGCATATAGATGCA


TATAAAACATTTCCTCCTACTGAACCAAAAAAAGATAAAAAGAAAAAAGCTGACGAAACACAAGC


TCTACCGCAAAGGCAAAAGAAACAACAGACAGTAACATTATTGCCAGCTGCTGATTTAGATGATT


TTTCAAAACAACTTCAACAATCTATGAGTAGCGCAGATAGTACTCAAGCATAA (SEQ ID NO:


1)





2. SCoV2 S2-E (1998 bp)


ATGTCTGTAGCGAGTCAATCAATAATAGCATATACAATGTCATTAGGCGCAGAAAATAGTGTGGC


TTATTCTAATAATTCTATCGCAATCCCTACCAATTTCACTATAAGTGTTAGAACCGAAATCTTAG


CAGTTAGTATGACAAAGACAAGTGTTGATTGTACTATGTATATATGTGGCGATTCTACTGAGTGT


TCTAATCTCTTATTACAATATGGTTCGTTTTGTACTCAGTTAAATCGAGCTCTTACAGGTATAGC


TGTCGAGCAAGATAAGAATACCCAGGAAGTCTTTGCACAGGTTAAACAAATTTATAAAACTCCAC


CAATCAAAGATTTTGGTGGGTTTAACTTTTCTCAAATACTACCTGATCCATCTAAACCCTCTAAA


CGTAGTTTTATTGAAGATTTACTTTTTAATAAAGTAACTCTAGCTGATGCTGGTTTCATTAAACA


ATACGGCGATTGTTTGGGTGATATAGCGGCACGTGATTTAATATGCGCACAGAAATTCAACGGTC


TGACAGTCCTACCTCCATTATTGACAGATGAAATGATTGCTCAATATACATCAGCATTGCTTGCT


GGCACTATCACGAGTGGATGGACTTTTGGTGCTGGCGCTGCTTTACAAATTCCATTTGCCATGCA


AATGGCTTATAGATTTAATGGTATTGGTGTTACACAAAATGTTTTATATGAGAATCAAAAGTTAA


TAGCTAACCAATTTAACTCTGCAATTGGCAAGATTCAGGATTCATTATCTAGTACAGCGAGTGCT


TTAGGTAAACTACAAGATGTAGTGAATCAGAATGCTCAAGCACTCAATACTTTGGTTAAACAATT


AAGTTCAAATTTTGGTGCAATTTCAAGTGTACTAAATGATATTCTAAGTCGCTTAGATAAAGTTG


AGGCTGAAGTACAAATCGATAGACTAATTACAGGTAGATTACAGTCATTACAAACTTATGTTACT


CAACAGTTAATTAGAGCTGCAGAAATAAGAGCATCTGCAAATTTGGCAGCCACTAAGATGAGTGA


GTGTGTCCTTGGACAATCAAAACGTGTAGATTTTTGCGGAAAGGGATATCACTTAATGTCATTTC


CGCAATCTGCACCTCATGGTGTCGTGTTTCTTCATGTTACTTACGTTCCGGCTCAAGAGAAAAAC


TTCACTACGGCTCCAGCGATTTGTCATGATGGTAAAGCTCATTTTCCTCGTGAGGGTGTATTTGT


ATCAAATGGAACACATTGGTTTGTTACTCAAAGAAATTTTTATGAGCCACAAATAATAACTACAG


ATAATACTTTTGTTAGCGGTAACTGTGACGTAGTTATAGGAATCGTAAACAACACAGTGTATGAT


CCATTACAACCAGAGTTAGATTCTTTTAAAGAAGAACTTGATAAGTATTTCAAAAATCATACTAG


CCCTGATGTTGACCTTGGTGACATATCAGGCATAAATGCATCAGTTGTTAATATTCAAAAAGAAA


TAGATAGGCTTAATGAAGTTGCTAAAAATCTTAATGAATCTTTAATAGATCTACAAGAACTTGGA


AAATACGAACAATATATAAAATGGCCTTGGTATATATGGTTAGGGTTTATTGCTGGTCTTATTGC


TATTGTAATGGTAACTATTATGCTATGTTGTATGACATCATGCTGTAGCTGTCTAAAGGGTTGTT


GTAGTTGTGGTTCATGTTGCAAATTTGATGAAGATGATAGTGAGCCAGTTCTTAAAGGTGTAAAA


TTGGGGGGATCTGGAATGTACAGCTTTGTGTCAGAAGAAACCGGTACACTAATTGTTAATAGCGT


TTTACTTTTTCTGGCTTTTGTTGTGTTTCTTCTAGTAACATTGGCCATCTTGACTGCACTAAGAC


TTTGTGCTTATTGCTGTAATATTGTTAATGTTTCATTAGTAAAACCTAGCTTTTATGTTTATTCG


AGAGTCAAAAACCTAAATTCCAGTAGAGTACCTGATTTATTAGTATAA (SEQ ID NO: 2)





3. SCov2 S2P (3822 bp)


ATGTTTGTGTTTTTAGTTCTTTTACCGTTAGTTTCAAGTCAATGTGTGAACTTAACTACACGCAC


ACAACTTCCTCCAGCATATACAAATAGTTTTACTAGAGGTGTATATTATCCTGATAAAGTATTCC


GTAGTTCTGTTCTACATTCTACACAAGATTTGTTTTTACCGTTTTTCAGTAATGTCACTTGGTTC


CATGCTATTCATGTTTCTGGGACAAACGGTACAAAAAGATTTGATAACCCTGTTTTACCATTTAA


TGATGGTGTATATTTTGCTTCAACTGAGAAAAGCAATATAATTAGAGGTTGGATTTTCGGAACTA


CCCTGGATAGCAAGACGCAAAGTTTATTGATCGTAAACAATGCTACAAACGTCGTAATTAAAGTA


TGTGAATTTCAATTTTGTAATGACCCTTTTTTAGGAGTCTATTATCATAAAAATAATAAATCTTG


GATGGAGTCTGAATTTAGAGTTTATTCTAGCGCTAATAACTGTACATTTGAATATGTTTCACAAC


CTTTTTTAATGGATCTAGAAGGTAAACAGGGTAATTTTAAAAATCTTCGTGAGTTTGTTTTTAAG


AACATAGATGGATATTTCAAAATATATTCAAAACATACTCCTATTAATCTAGTTAGAGATCTTCC


ACAAGGCTTTTCTGCTCTAGAACCATTAGTTGATTTACCAATAGGTATAAATATAACTCGTTTCC


AAACTTTACTAGCCCTTCACCGTTCGTACTTAACGCCTGGGGATTCTTCTAGTGGTTGGACTGCT


GGCGCTGCAGCATATTATGTTGGATATCTACAACCTAGAACATTTTTATTGAAATACAACGAAAA


CGGAACTATAACTGACGCTGTTGATTGTGCACTTGATCCATTAAGTGAGACTAAATGTACTCTAA


AAAGTTTTACTGTTGAAAAGGGAATTTATCAAACATCAAATTTTCGCGTTCAACCAACGGAAAGT


ATTGTACGTTTTCCGAACATAACCAATTTATGTCCTTTCGGTGAGGTATTTAACGCAACTCGTTT


TGCGAGCGTATATGCTTGGAATAGAAAAAGAATTAGCAATTGTGTTGCTGATTATTCGGTCTTAT


ACAATAGTGCTTCGTTTAGCACTTTTAAATGTTACGGAGTAAGTCCAACAAAGTTAAATGATCTA


TGTTTCACTAATGTGTATGCTGATTCTTTTGTTATTAGAGGTGATGAAGTTCGACAAATTGCTCC


AGGTCAAACTGGCAAAATTGCGGACTATAATTATAAGCTACCTGATGATTTTACTGGCTGTGTGA


TTGCATGGAATAGTAATAATCTAGATTCGAAAGTCGGTGGGAATTATAATTATCTTTATAGACTA


TTTAGAAAATCTAATTTGAAACCATTTGAGAGAGATATATCAACAGAAATTTACCAGGCTGGCAG


CACACCTTGCAACGGCGTAGAAGGTTTTAATTGTTATTTTCCACTACAAAGTTATGGTTTTCAAC


CAACTAATGGCGTCGGGTATCAACCATATAGAGTTGTCGTACTTTCCTTTGAATTACTTCATGCA


CCAGCTACCGTTTGTGGGCCAAAGAAATCAACTAATCTTGTAAAGAATAAATGCGTCAATTTTAA


TTTTAATGGCCTTACAGGCACTGGAGTTTTAACAGAATCCAATAAAAAATTTTTACCTTTTCAGC


AATTTGGTAGAGATATAGCTGATACTACTGATGCTGTAAGAGATCCTCAAACTCTAGAGATTTTA


GATATTACCCCGTGTTCATTTGGAGGCGTAAGCGTTATAACTCCAGGCACGAACACATCAAATCA


AGTTGCTGTACTATATCAAGATGTTAATTGCACAGAAGTGCCTGTTGCCATTCATGCAGATCAAC


TTACTCCTACATGGCGTGTATATTCTACCGGATCAAATGTATTTCAGACTAGAGCTGGTTGTTTA


ATAGGCGCAGAACATGTAAATAATAGTTATGAGTGTGATATACCAATTGGTGCAGGAATATGTGC


ATCATATCAGACACAGACAAATAGTCCTCGTCGCGCAAGATCAGTAGCATCACAATCGATTATAG


CTTATACAATGTCTTTAGGTGCGGAAAATAGTGTGGCTTATTCTAATAATTCTATCGCAATCCCT


ACCAATTTCACTATAAGTGTTACAACCGAAATCTTACCAGTTAGTATGACAAAGACAAGTGTTGA


TTGTACTATGTATATATGTGGCGATTCTACTGAGTGTTCTAATCTCTTATTACAATATGGTTCGT


TTTGTACTCAGTTAAATCGAGCTCTTACAGGTATAGCTGTCGAGCAAGATAAGAATACCCAGGAA


GTCTTTGCACAGGTTAAACAAATTTATAAAACTCCACCAATCAAAGATTTTGGTGGGTTTAACTT


TTCTCAAATACTACCTGATCCATCTAAACCCTCTAAACGTAGTTTTATTGAAGATTTACTTTTTA


ATAAAGTAACTCTAGCTGATGCTGGTTTCATTAAACAATACGGCGATTGTTTGGGTGATATAGCG


GCACGTGATTTAATATGCGCACAGAAATTCAACGGTCTGACAGTCCTACCTCCATTATTGACAGA


TGAAATGATTGCTCAATATACATCAGCATTGCTTGCTGGCACTATCACGAGTGGATGGACTTTTG


GTGCTGGCGCTGCTTTACAAATTCCATTTGCCATGCAAATGGCTTATAGATTTAATGGTATTGGT


GTTACACAAAATGTTTTATATGAGAATCAAAAGTTAATAGCTAACCAATTTAACTCTGCAATTGG


CAAGATTCAGGATTCATTATCTAGTACAGCGAGTGCTTTAGGTAAACTACAAGATGTAGTGAATC


AGAATGCTCAAGCACTCAATACTTTGGTTAAACAATTAAGTTCAAATTTTGGTGCAATTTCAAGT


GTACTAAATGATATTCTAAGTCGCTTAGATCCTCCAGAGGCTGAAGTACAAATCGATAGACTAAT


TACAGGTAGATTACAGTCATTACAAACTTATGTTACTCAACAGTTAATTAGAGCTGCAGAAATAA


GAGCATCTGCAAATTTGGCAGCCACTAAGATGAGTGAGTGTGTCCTTGGACAATCAAAACGTGTA


GATTTTTGCGGAAAGGGATATCACTTAATGTCATTTCCGCAATCTGCACCTCATGGTGTCGTGTT


TCTTCATGTTACTTACGTTCCGGCTCAAGAGAAAAACTTCACTACGGCTCCAGCGATTTGTCATG


ATGGTAAAGCTCATTTTCCTCGTGAGGGTGTATTTGTATCAAATGGAACACATTGGTTTGTTACT


CAAAGAAATTTTTATGAGCCACAAATAATAACTACAGATAATACTTTTGTTAGCGGTAACTGTGA


CGTAGTTATAGGAATCGTAAACAACACAGTGTATGATCCATTACAACCAGAGTTAGATTCTTTTA


AAGAAGAACTTGATAAGTATTTCAAAAATCATACTAGCCCTGATGTTGACCTTGGTGACATATCA


GGCATAAATGCATCAGTTGTTAATATTCAAAAAGAAATAGATAGGCTTAATGAAGTTGCTAAAAA


TCTTAATGAATCTTTAATAGATCTACAAGAACTTGGAAAATACGAACAATATATAAAATGGCCTT


GGTATATATGGTTAGGGTTTATTGCTGGTCTTATTGCTATTGTAATGGTAACTATTATGCTATGT


TGTATGACATCATGCTGTAGCTGTCTAAAGGGTTGTTGTAGTTGTGGTTCATGTTGCAAATTTGA


TGAAGATGATAGTGAGCCAGTTCTTAAAGGTGTAAAATTGCATTACACATGA (SEQ ID NO:


3)





4. pFNLdAp-b£r-N3F8H-SCoV2_(MN) (8340 bp)


ggtacctggttactattgccatcatcacaatattaaaattaattttcttcatttatttttcttaa


atattattattaaaaatagtaaatttaacttatctaaaaatagcataatatcatttttattaaaa


tatctaggttgaattcttagatattttgatatataattagatactaaattgataacttataaaga


attaaattttcttttgtatgctaacttgattgctaatatgaattatactagttagtatgttgatt


ataataattaaaattttaaataataaaaataacaataaaaaatacataataaattataaaaatca


cgatggtgattacaaagaccatgatatagattataaggatgacgatgataagcatcatcatcacc


accatcatcatggaggtggttcaATGGCTGATAGCAATGGAACGATTACAGTAGAAGAGTTAAAA


AAACTTCTAGAGCAATGGAATCTTGTAATTGGCTTTCTATTTCTAACATGGATATGTCTATTACA


GTTTGCTTATGCCAATAGAAATAGATTTCTTTATATAATAAAACTTATCTTTCTATGGCTATTAT


GGCCTGTTACATTAGCTTGTTTCGTTCTAGCTGCTGTTTATAGAATAAATTGGATAACCGGTGGA


ATTGCAATTGCTATGGCCTGCTTAGTCGGACTTATGTGGCTTTCATATTTTATTGCCTCATTTCG


ATTATTCGCTAGAACACGCTCGATGTGGAGCTTTAATCCAGAAACTAATATATTATTAAATGTGC


CATTACATGGTACAATTTTGACTAGACCTCTTTTAGAAAGCGAATTAGTTATAGGTGCAGTTATC


CTACGTGGACATTTAAGAATTGCTGGCCACCATCTTGGTAGATGTGATATCAAAGATTTACCAAA


AGAAATAACTGTAGCAACATCTAGAACATTATCATATTATAAATTGGGTGCTTCACAGAGAGTGG


CGGGTGATTCAGGTTTTGCAGCTTATTCTAGGTATAGGATTGGTAACTATAAATTGAATACGGAT


CACAGTTCCTCAAGTGATAATATTGCACTTCTTGTACAGGGTGGTAGCGGTATGTCAGATAACGG


TCCTCAAAATCAAAGAAATGCTCCTAGAATAACTTTTGGTGGCCCAAGTGATAGTACTGGTAGTA


ATCAGAACGGTGAGAGAAGTGGAGCAAGATCTAAGCAACGCAGACCGCAAGGGCTACCTAATAAT


ACTGCGTCATGGTTTACTGCTTTAACACAACATGGTAAAGAAGATTTAAAGTTTCCTCGCGGTCA


GGGTGTTCCAATTAATACTAATAGTTCGCCAGATGATCAAATTGGTTATTATCGTCGTGCTACTA


GACGAATTCGTGGTGGCGACGGAAAAATGAAAGATCTATCTCCACGTTGGTACTTTTACTATTTA


GGTACCGGTCCAGAGGCTGGTTTACCTTATGGTGCTAACAAAGACGGGATAATATGGGTCGCTAC


CGAGGGTGCACTTAATACGCCAAAAGATCATATCGGAACTCGTAACCCAGCAAATAACGCTGCTA


TTGTTTTACAATTACCTCAAGGTACTACACTGCCTAAAGGTTTCTATGCAGAGGGCTCTAGGGGT


GGAAGCCAAGCATCAAGTCGTTCAAGTTCTCGTAGCAGAAACTCTTCTAGAAATAGTACTCCTGG


CTCATCACGTGGAACAAGTCCAGCGAGAATGGCTGGTAATGGCGGGGATGCAGCATTAGCATTGT


TACTTTTAGATAGATTAAATCAGCTTGAATCTAAAATGTCTGGCAAAGGGCAACAACAACAGGGT


CAAACAGTAACTAAGAAATCAGCAGCAGAGGCTTCGAAGAAACCTAGACAGAAGAGAACTGCTAC


AAAAGCGTACAATGTTACGCAAGCATTTGGCCGCAGAGGACCAGAACAGACTCAAGGGAATTTTG


GTGATCAAGAATTAATTCGTCAAGGTACAGATTATAAACATTGGCCCCAGATAGCTCAATTTGCT


CCATCTGCATCTGCATTCTTTGGAATGTCAAGAATTGGTATGGAAGTTACTCCTAGTGGAACTTG


GCTAACTTATACTGGTGCTATAAAGCTCGATGATAAAGATCCTAATTTTAAAGATCAAGTAATTT


TGTTAAACAAGCATATAGATGCATATAAAACATTTCCTCCTACTGAACCAAAAAAAGATAAAAAG


AAAAAAGCTGACGAAACACAAGGTGTACGGCAAAGGGAAAAGAAACAACAGACAGTAACATTATT


GCCAGCTGCTGATTTAGATGATTTTTCAAAACAACTTCAACAATCTATGAGTAGCGCAGATAGTA


CTCAAGCATAAggttaaggatccactagctcgtttcaaattaccgatgatatoggaccgttccaa


cttaccgaccagttcggcaggtatgtatttgcgtgcattcctatccaaaaaaacatcaagccaaa


agcttgaaaaaacttacaacacagctcaacagagctagattgtaaaaccctgctttgttaagcag


aacgcaaaaattgaatgacttatagtcatatcgcttcgaccctogtagattagtagccttgagct


attaactggttgaaacacttaccaaataaagattaaaagcgataaaaatgaaagataaagcagct


aaaaacagagattttagaaagactattttatcagtgttacaacgcaataaagatggctcttttgc


tacgcaagcaaatagaaagtctattctgttgcaggcaactaaagaccttaaaaaggtagggttta


gcaaggttacagccgaaaacttoggtaataagcattgctatgcacttagagaccattggagagcc


caaggattagctacagcaacgataaaaaatcgtttagcttgtctaaggtggttaggcgagaaaat


gggcaaagaactacccgataatcgaaaattagagattgagaacaggaagtatagcgataattcaa


tcaataaagcccaagaaatcgattttaaggcgatttctgccttaactgataggcaagccctagca


atacaattacagcgcgaatttgggcttcgtagagaagaaagtttgaagtttcagcctagttatgc


aatcaaagagcataaaatcgagcttaaaagctcttggacaaagggtggaagaccacgagaaatcc


caattttgaatgaaaaacagagagaattgttagaaaaagtaaaagaggtagcaggtaaaggctct


ctaattgagagcgaaaagtcttataagcaagcaatggaacatttcacgactogctgtcaaagagc


agggattaagaatgttcatggctttagacatgcgtatgctcaagatagatataggcaattaacag


ggcgtgagtgtcctaaaaatggtggattaacatctaagcagctaacacctgagcaaaagcaacaa


gactatgaagctagaatgactattagtgaagagttaggtcatggtagagaagatgtaacagtcaa


ctacttaggcagataaaaagcaatatagctatagaagaaaagaaagctattttacatagtagatc


gactcttcttagggattttatattttttgataaatcatctattttgctagttaaatcatcaaatt


tatcatcttgttgtttgactaaatctaagaatctattctcttttttaaaatcgttcatgcaaacc


gcctatagctttcttctttttctgaaattatttgtcttcacaccataattaaattcccattttta


taagtaaagtcttttaaaagcttgtcagtctcttctctagaaatgtaccaaattttacctatttt


aggatacttttcatgaagTtcttctatttttccccagtcctttaatagtctacctttagagtctc


gtaaatagttatctttgtgacaggggcctcttttatcttttttaatgtaactatatgttattcca


acgtcactattactattatccaaatcttttttagcatgccagtaagaactttcataacttaactc


tatctttcgacctctttgatatacaacaataaagctatagccagtagtaacaacctgttttactt


ttgttaaatctattaacttcttatttatttttttatgtttttttgaaaatttaaatatttctata


ttcattcctacacttcctcaaatccaaatggtagcttatgattctcttctggtttcttttctaat


ttttttatatttgcaataaaaactctttttctatctttgatttttttattgtcccaattcctcca


agtatcatcacaaaccctttcaatatcatgtaaatgatgatgtctaaatattgatctgacataat


acagatctaggtctagttcatcacttaacacaacttctctaagtctttcagatgcttcgattggt


atgtaatcctctttatttttagtatctaaaagcttttgcttaaattcttcttctgtctctgctac


cttactaactgtaaacttgatatttgtaatcttacgaccatgttttctgtgatgatccttgtcat


cataggttacaaaaatatccgataattgattaatctcttctagtgctggtaataggaacttattt


ttaaaatttgaatatctgttgctgtaacttttaggtaaatcaaaatcattaatcatatcatcgac


atacaatacgcaatcaactatattagcataccctgcttgttcgcctaatttgcttttgagaagta


agtataatctgcttgaatacttacttttaaatgaaaatagtaactgtctttctgctttagtaaag


tactcttgtagttgtatcatgtgtggcattaatgaccaatgaaactogcaaattaaagcactgct


tttagggtctgcttcaatatatgcaaaccagttagctatcttcgtttgttctttattcagccata


ctggcttagacattattgagtgcattaattgcttcaatctcactctgttatgcttaacccctgta


gctttttcaagatcagataggcttatcttatacctgtgaaactctttatcttctcttttaaccat


tgaggcaactaagaatattaagttttgttcttcttttgtaaggctatactttcctgcaacaagag


tattagacatagctatttctttgccagcatttacatttttaacttctttcatagaactagagtca


ttatctcgatatacaaattctataaaacttctattagtaaaacaactacttcataaaaaaaagta


gttttaacgatacaaaaagtagttttaaattcaaaaagtgatacaaaaagtagttttaaattcaa


aaagtgatacaaaaagtagttttaaattttttaaaaaagtgcttcaaagccttatgtagcaatac


ttacagaggattaaaaaaaaatctgacaatatataaagagaatatataaagagaatatcttaggg


gattttaaaaaaatcccacagactcaaagacttttttgactttttaaatcctagaaactatactt


taagtacttatttaagtacatggatttagattatgcaaaccgttaattattcaacttttagaaat


gaactatctgattcaatggatagagtaacaaaaaatcatagtcctatgattgtaactagaggttc


aaaaaaagaagcagttgttatgatgtcgttagaggattcttcccttcctttctcgccacgttcgc


cggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggc


acctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacg


gtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaac


aacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctatt


ggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaattcagggcgcaagg


gctgctaaaggaagcggaacacgtagaaagccagtccgcagaaacggtgctgaccccggatgaat


gtcagctactgggctatctggacaagggaaaacgcaagcgcaaagagaaagcaggtagcttgcag


tgggcttacatggcgatagctagactgggcggttttatggacagcaagcgaaccggaattgccag


ctggggcgccctctggtaaggttgggaagccctgcaaagtaaactggatggctttcttgccgcca


aggatctgatggcgcaggggatcaagatctgatcaagagacaggatgaggatcgtttcgcatgat


tgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgact


gggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccg


gttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggct


atcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaa


gggactggctgctattgggcgaagtgccggggcaggatctcctgtcatcccaccttgctcctgcc


gagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgccc


attcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcg


atcaggatgatctggacgaagaAcatcaggggctcgcgccagccgaactgttcgccaggctcaag


gcgcgcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcat


ggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatc


aggacatagcgttggctacccgtgatattgctgaagaActtggcggcgaatgggctgaccgcttc


ctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacga


gttcttctgaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttt


taatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtga


gttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatccttttt


ttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccg


gatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatac


tgttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacc


tcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttg


gactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacaca


gcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcg


ccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagag


cgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacct


ctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagca


acgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgtta


tcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccg


aacgaccgagcgcagcgagtcagtgagcgaggaagcggaaAagcgcccaatacgcaaaccgcctc


tccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggc


agtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttat


gcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatg


accatgattacgccaagctt (SEQ ID NO: 4)





5. PFNLdAp-bfr-N3F8H-SCoV2_(S(2P)) (10224 bp}


ggtacctggttactattgccatcatcacaatattaaaattaattttcttcatttatttttcttaa


atattattattaaaaatagtaaatttaacttatctaaaaatagcataatatcatttttattaaaa


tatctaggttgaattcttagatattttgatatataattagatactaaattgataacttataaaga


attaaattttcttttgtatgctaacttgattgctaatatgaattatactagttagtatgttgatt


ataatgattagagttttaaataatggaggtaacaataggaggtacgtaatggattataaagatca


cgatggtgattacaaagaccatgatatagattataaggatgacgatgataagcatcatcatcacc


accatcatcatggaggtggttcaATGTTTGTGTTTTTAGTTCTTTTACCGTTAGTTTCAAGTCAA


TGTGTGAACTTAACTACACGCACACAACTTCCTCCAGCATATACAAATAGTTTTACTAGAGGTGT


ATATTATCCTGATAAAGTATTCCGTAGTTCTGTTCTACATTCTACACAAGATTTGTTTTTACCGT


TTTTCAGTAATGTCACTTGGTTCCATGCTATTCATGTTTCTGGGACAAACGGTACAAAAAGATTT


GATAACCCTGTTTTACCATTTAATGATGGTGTATATTTTGCTTCAACTGAGAAAAGCAATATAAT


TAGAGGTTGGATTTTCGGAACTACCCTGGATAGCAAGACGCAAAGTTTATTGATCGTAAACAATG


CTACAAACGTCGTAATTAAAGTATGTGAATTTCAATTTTGTAATGACCCTTTTTTAGGAGTCTAT


TATCATAAAAATAATAAATCTTGGATGGAGTCTGAATTTAGAGTTTATTCTAGCGCTAATAACTG


TACATTTGAATATGTTTCACAACCTTTTTTAATGGATCTAGAAGGTAAACAGGGTAATTTTAAAA


ATCTTCGTGAGTTTGTTTTTAAGAACATAGATGGATATTTCAAAATATATTCAAAAGATACTCCT


ATTAATCTAGTTAGAGATCTTCCACAAGGCTTTTCTGCTCTAGAACCATTAGTTGATTTACCAAT


AGGTATAAATATAACTCGTTTCCAAACTTTACTAGCCCTTCACCGTTCGTACTTAACGCCTGGGG


ATTCTTCTAGTGGTTGGACTGCTGGCGCTGCAGCATATTATGTTGGATATCTACAACCTAGAACA


TTTTTATTGAAATACAACGAAAACGGAACTATAACTGACGCTGTTGATTGTGCACTTGATCCATT


AAGTGAGACTAAATGTACTCTAAAAAGTTTTACTGTTGAAAAGGGAATTTATCAAACATCAAATT


TTCGCGTTCAACCAACGGAAAGTATTGTACGTTTTCCGAACATAAGCAATTTATGTCCTTTCGGT


GAGGTATTTAACGCAACTCGTTTTGCGAGCGTATATGCTTGGAATAGAAAAAGAATTAGCAATTG


TGTTGCTGATTATTCGGTCTTATACAATAGTGCTTCGTTTAGCACTTTTAAATGTTACGGAGTAA


GTCCAACAAAGTTAAATGATCTATGTTTCACTAATGTGTATGCTGATTCTTTTGTTATTAGAGGT


GATGAAGTTCGACAAATTGCTCCAGGTCAAACTGGCAAAATTGCGGACTATAATTATAAGCTACC


TGATGATTTTACTGGCTGTGTGATTGCATGGAATAGTAATAATCTAGATTCGAAAGTCGGTGGGA


ATTATAATTATCTTTATAGACTATTTAGAAAATCTAATTTGAAACCATTTGAGAGAGATATATGA


ACAGAAATTTACCAGGCTGGCAGCACACCTTGCAACGGCGTAGAAGGTTTTAATTGTTATTTTCC


ACTACAAAGTTATGGTTTTCAACCAACTAATGGCGTCGGGTATCAACCATATAGAGTTGTCGTAC


TTTCCTTTGAATTACTTCATGCACCAGCTACCGTTTGTGGGCCAAAGAAATCAACTAATCTTGTA


AAGAATAAATGCGTCAATTTTAATTTTAATGGCCTTACAGGCACTGGAGTTTTAACAGAATCCAA


TAAAAAATTTTTACCTTTTCAGCAATTTGGTAGAGATATAGCTGATACTACTGATGCTGTAAGAG


ATCCTCAAACTCTAGAGATTTTAGATATTACCCCGTGTTCATTTGGAGGCGTAAGCGTTATAACT


CCAGGCACGAACACATCAAATCAAGTTGCTGTACTATATCAAGATGTTAATTGCACAGAAGTGCC


TGTTGCCATTCATGCAGATCAACTTACTCCTACATGGCGTGTATATTCTACCGGATCAAATGTAT


TTCAGACTAGAGCTGGTTGTTTAATAGGCGCAGAACATGTAAATAATAGTTATGAGTGTGATATA


CCAATTGGTGCAGGAATATGTGCATCATATCAGACACAGACAAATAGTCCTCGTCGCGCAAGATC


AGTAGCATCACAATCGATTATAGCTTATACAATGTCTTTAGGTGCGGAAAATAGTGTGGCTTATT


CTAATAATTCTATCGCAATCCCTACCAATTTCACTATAAGTGTTACAACCGAAATCTTACCAGTT


AGTATGACAAAGACAAGTGTTGATTGTACTATGTATATATGTGGCGATTCTACTGAGTGTTCTAA


TCTCTTATTACAATATGGTTCGTTTTGTACTCAGTTAAATCGAGCTCTTACAGGTATAGCTGTCG


AGCAAGATAAGAATACCCAGGAAGTCTTTGCACAGGTTAAACAAATTTATAAAACTCCACCAATC


AAAGATTTTGGTGGGTTTAACTTTTCTCAAATACTACCTGATCCATCTAAACCCTCTAAACGTAG


TTTTATTGAAGATTTACTTTTTAATAAAGTAACTCTAGCTGATGCTGGTTTCATTAAACAATACG


GCGATTGTTTGGGTGATATAGCGGCACGTGATTTAATATGCGCACAGAAATTCAACGGTCTGACA


GTCCTACCTCCATTATTGACAGATGAAATGATTGCTCAATATACATCAGCATTGCTTGCTGGCAC


TATCACGAGTGGATGGACTTTTGGTGCTGGCGCTGCTTTACAAATTCCATTTGCCATGCAAATGG


CTTATAGATTTAATGGTATTGGTGTTACACAAAATGTTTTATATGAGAATCAAAAGTTAATAGCT


AACCAATTTAACTCTGCAATTGGCAAGATTCAGGATTCATTATCTAGTACAGCGAGTGCTTTAGG


TAAACTACAAGATGTAGTGAATCAGAATGCTCAAGCACTCAATACTTTGGTTAAACAATTAAGTT


CAAATTTTGGTGCAATTTCAAGTGTACTAAATGATATTCTAAGTCGCTTAGATCCTCCAGAGGCT


GAAGTACAAATCGATAGACTAATTAGAGGTAGATTAGAGTCATTACAAACTTATGTTAGTCAACA


GTTAATTAGAGCTGCAGAAATAAGAGCATCTGCAAATTTGGCAGCCACTAAGATGAGTGAGTGTG


TCCTTGGACAATCAAAACGTGTAGATTTTTGCGGAAAGGGATATCACTTAATGTCATTTCCGCAA


TCTGCACCTCATGGTGTCGTGTTTCTTCATGTTACTTACGTTCCGGCTCAAGAGAAAAACTTCAC


TACGGCTCCAGCGATTTGTCATGATGGTAAAGCTCATTTTCCTCGTGAGGGTGTATTTGTATCAA


ATGGAACACATTGGTTTGTTACTCAAAGAAATTTTTATGAGCCACAAATAATAACTACAGATAAT


ACTTTTGTTAGCGGTAACTGTGACGTAGTTATAGGAATCGTAAACAACACAGTGTATGATCCATT


ACAACCAGAGTTAGATTCTTTTAAAGAAGAACTTGATAAGTATTTCAAAAATCATACTAGCCCTG


ATGTTGACCTTGGTGACATATCAGGCATAAATGCATCAGTTGTTAATATTCAAAAAGAAATAGAT


AGGCTTAATGAAGTTGCTAAAAATCTTAATGAATCTTTAATAGATCTACAAGAACTTGGAAAATA


CGAACAATATATAAAATGGCCTTGGTATATATGGTTAGGGTTTATTGCTGGTCTTATTGCTATTG


TAATGGTAACTATTATGCTATGTTGTATGACATCATGCTGTAGCTGTCTAAAGGGTTGTTGTAGT


TGTGGTTCATGTTGCAAATTTGATGAAGATGATAGTGAGCCAGTTCTTAAAGGTGTAAAATTGCA


TTACACATGAggttaaggatccactagctcgtttcaaattaccgatgatatcggaccgttccaac


ttaccgaccagttcggcaggtatgtatttgcgtgcattcctatccaaaaaaacatcaagccaaaa


gcttgaaaaaacttacaacacagctcaacagagctagattgtaaaaccctgctttgttaagcaga


acgcaaaaattgaatgacttatagtcatatogcttcgaccctcgtagattagtagccttgagcta


ttaactggttgaaacacttaccaaataaagattaaaagcgataaaaatgaaagataaagcagcta


aaaacagagattttagaaagactattttatcagtgttacaacgcaataaagatggctcttttgct


acgcaagcaaatagaaagtctattctgttgcaggcaactaaagaccttaaaaaggtagggtttag


caaggttacagccgaaaacttoggtaataagcattgctatgcacttagagaccattggagagccc


aaggattagctacagcaacgataaaaaatcgtttagcttgtctaaggtggttaggcgagaaaatg


ggcaaagaactacccgataatcgaaaattagagattgagaacaggaagtatagcgataattcaat


caataaagcccaagaaatcgattttaaggcgatttctgccttaactgataggcaagccctagcaa


tacaattacagcgcgaatttgggcttcgtagagaagaaagtttgaagtttcagcctagttatgca


atcaaagagcataaaatcgagcttaaaagctcttggacaaagggtggaagaccacgagaaatccc


aattttgaatgaaaaacagagagaattgttagaaaaagtaaaagaggtagcaggtaaaggctctc


taattgagagcgaaaagtcttataagcaagcaatggaacatttcacgactcgctgtcaaagagca


gggattaagaatgttcatggctttagacatgcgtatgctcaagatagatataggcaattaacagg


gcgtgagtgtcctaaaaatggtggattaacatctaagcagctaacacctgagcaaaagcaacaag


actatgaagctagaatgactattagtgaagagttaggtcatggtagagaagatgtaacagtcaac


tacttaggcagataaaaagcaatatagctatagaagaaaagaaagctattttacatagtagatcg


actcttcttagggattttatattttttgataaatcatctattttgctagttaaatcatcaaattt


atcatcttgttgtttgactaaatctaagaatctattctcttttttaaaatcgttcatgcaaaccg


cctatagctttcttctttttctgaaattatttgtcttcacaccataattaaattcccatttttat


aagtaaagtcttttaaaagcttgtcagtctcttctctagaaatgtaccaaattttacctatttta


ggatacttttcatgaagTtcttctatttttccccagtcctttaatagtctacctttagagtctcg


taaatagttatctttgtgacaggggcctcttttatcttttttaatgtaactatatgttattccaa


cgtcactattactattatccaaatcttttttagcatgccagtaagaactttcataacttaactct


atctttcgacctctttgatatacaacaataaagctatagccagtagtaacaacctgttttacttt


tgttaaatctattaacttcttatttatttttttatgtttttttgaaaatttaaatatttctatat


tcattcctacacttcctcaaatccaaatggtagcttatgattctcttctggtttcttttctaatt


tttttatatttgcaataaaaactctttttctatctttgatttttttattgtcccaattcctccaa


gtatcatcacaaaccctttcaatatcatgtaaatgatgatgtctaaatattgatctgacataata


cagatctaggtctagttcatcacttaacacaacttctctaagtctttcagatgcttcgattggta


tgtaatcctctttatttttagtatctaaaagcttttgcttaaattcttcttctgtctctgctacc


ttactaactgtaaacttgatatttgtaatcttacgaccatgttttctgtgatgatccttgtcatc


ataggttacaaaaatatccgataattgattaatctcttctagtgctggtaataggaacttatttt


taaaatttgaatatctgttgctgtaacttttaggtaaatcaaaatcattaatcatatcatcgaca


tacaatacgcaatcaactatattagcataccctgcttgttogcctaatttgcttttgagaagtaa


gtataatctgcttgaatacttacttttaaatgaaaatagtaactgtctttctgctttagtaaagt


actcttgtagttgtatcatgtgtggcattaatgaccaatgaaactcgcaaattaaagcactgctt


ttagggtctgcttcaatatatgcaaaccagttagctatcttcgtttgttctttattcagccatac


tggcttagacattattgagtgcattaattgcttcaatctcactctgttatgcttaacccctgtag


ctttttcaagatcagataggcttatcttatacctgtgaaactctttatcttctcttttaaccatt


gaggcaactaagaatattaagttttgttcttcttttgtaaggctatactttcctgcaacaagagt


attagacatagctatttctttgccagcatttacatttttaacttctttcatagaactagagtcat


tatctcgatatacaaattctataaaacttctattagtaaaacaactacttcataaaaaaaagtag


ttttaacgatacaaaaagtagttttaaattcaaaaagtgatacaaaaagtagttttaaattcaaa


aagtgatacaaaaagtagttttaaattttttaaaaaagtgcttcaaagccttatgtagcaatact


tacagaggattaaaaaaaaatctgacaatatataaagagaatatataaagagaatatcttagggg


attttaaaaaaatcccacagactcaaagacttttttgactttttaaatcctagaaactatacttt


aagtacttatttaagtacatggatttagattatgcaaaccgttaattattcaacttttagaaatg


aactatctgattcaatggatagagtaacaaaaaatcatagtcctatgattgtaactagaggttca


aaaaaagaagcagttgttatgatgtcgttagaggattcttcccttcctttctogccacgttcgcc


ggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggca


cctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacgg


tttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaaca


acactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattg


gttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaattcagggogcaaggg


ctgctaaaggaagcggaacacgtagaaagccagtccgcagaaacggtgctgaccccggatgaatg


tcagctactgggctatctggacaagggaaaacgcaagcgcaaagagaaagcaggtagc11gcagt


gggcttacatggcgatagctagactgggcggttttatggacagcaagcgaaccggaattgccagc


tggggcgccctctggtaaggttgggaagccctgcaaagtaaactggatggctttcttgccgccaa


ggatctgatggcgcaggggatcaagatctgatcaagagacaggatgaggatcgtttcgcatgatt


gaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactg


ggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccgg


ttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggcta


tcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaag


ggactggctgctattgggcgaagtgccggggcaggatctcctgtcatcccaccttgctcctgccg


agaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgccca


ttcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcga


tcaggatgatctggacgaagaAcatcaggggctcgcgccagccgaactgttcgccaggctcaagg


cgcgcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatg


gtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatca


ggacatagcgttggctacccgtgatattgctgaagaActtggcggcgaatgggctgaccgcttcc


tcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgag


ttcttctgaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcattttt


aatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgag


ttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttt


tctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccgg


atcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatact


gttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacct


cgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttgg


actcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacag


cccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgc


cacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagc


gcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctc


tgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaa


cgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttat


cccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccga


acgaccgagcgcagcgagtcagtgagcgaggaagcggaaAagcgcccaatacgcaaaccgcctct


ccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggca


gtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatg


cttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatga


ccatgattacgccaagctt (SEQ ID NO: 5)





6. pFNLdAp-bfr-N3F8H-SCoV2_(S1) (8460 bp)


TGAggttaaggatccactagctcgtttcaaattaccgatgatatcggaccgttccaacttaccga


ccagttcggcaggtatgtatttgcgtgcattcctatccaaaaaaacatcaagccaaaagcttgaa


aaaacttacaacacagctcaacagagctagattgtaaaaccctgctttgttaagcagaacgcaaa


aattgaatgacttatagtcatatcgcttcgaccctcgtagattagtagccttgagctattaactg


gttgaaacacttaccaaataaagattaaaagcgataaaaatgaaagataaagcagctaaaaacag


agattttagaaagactattttatcagtgttacaacgcaataaagatggctcttttgctacgcaag


caaatagaaagtctattctgttgcaggcaactaaagaccttaaaaaggtagggtttagcaaggtt


acagccgaaaacttcggtaataagcattgctatgcacttagagaccattggagagcccaaggatt


agctacagcaacgataaaaaatcgtttagcttgtctaaggtggttaggcgagaaaatgggcaaag


aactacccgataatcgaaaattagagattgagaacaggaagtatagcgataattcaatcaataaa


gcccaagaaatcgattttaaggcgatttctgccttaactgataggcaagccctagcaatacaatt


acagcgcgaatttgggcttcgtagagaagaaagtttgaagtttcagcctagttatgcaatcaaag


agcataaaatcgagcttaaaagctcttggacaaagggtggaagaccacgagaaatcccaattttg


aatgaaaaacagagagaattgttagaaaaagtaaaagaggtagcaggtaaaggctctctaattga


gagcgaaaagtcttataagcaagcaatggaacatttcacgactcgctgtcaaagagcagggatta


agaatgttcatggctttagacatgcgtatgctcaagatagatataggcaattaacagggcgtgag


tgtcctaaaaatggtggattaacatctaagcagctaacacctgagcaaaagcaacaagactatga


agctagaatgactattagtgaagagttaggtcatggtagagaagatgtaacagtcaactacttag


gcagataaaaagcaatatagctatagaagaaaagaaagctattttacatagtagatcgactcttc


ttagggattttatattttttgataaatcatctattttgctagttaaatcatcaaatttatcatct


tgttgtttgactaaatctaagaatctattctcttttttaaaatcgttcatgcaaaccgcctatag


ctttcttctttttctgaaattatttgtcttcacaccataattaaattcccatttttataagtaaa


gtcttttaaaagcttgtcagtctcttctctagaaatgtaccaaattttacctattttaggatact


tttcatgaagTtcttctatttttccccagtcctttaatagtctacctttagagtctcgtaaatag


ttatctttgtgacaggggcctcttttatcttttttaatgtaactatatgttattccaacgtcact


attactattatccaaatcttttttagcatgccagtaagaactttcataacttaactctatctttc


gacctctttgatatacaacaataaagctatagccagtagtaacaacctgttttacttttgttaaa


tctattaacttcttatttatttttttatgtttttttgaaaatttaaatatttctatattcattcc


tacacttcctcaaatccaaatggtagcttatgattctcttctggtttcttttctaatttttttat


atttgcaataaaaactctttttctatctttgatttttttattgtcccaattcctccaagtatcat


cacaaaccctttcaatatcatgtaaatgatgatgtctaaatattgatctgacataatacagatct


aggtctagttcatcacttaacacaacttctctaagtctttcagatgcttcgattggtatgtaatc


ctctttatttttagtatctaaaagcttttgcttaaattcttcttctgtctctgctaccttactaa


ctgtaaacttgatatttgtaatcttacgaccatgttttctgtgatgatccttgtcatcataggtt


acaaaaatatccgataattgattaatctcttctagtgctggtaataggaacttatttttaaaatt


tgaatatctgttgctgtaacttttaggtaaatcaaaatcattaatcatatcatcgacatacaata


cgcaatcaactatattagcataccctgcttgttcgcctaatttgcttttgagaagtaagtataat


ctgcttgaatacttacttttaaatgaaaatagtaactgtctttctgctttagtaaagtactcttg


tagttgtatcatgtgtggcattaatgaccaatgaaactcgcaaattaaagcactgcttttagggt


ctgcttcaatatatgcaaaccagttagctatcttogtttgttctttattcagccatactggctta


gacattattgagtgcattaattgcttcaatctcactctgttatgcttaacccctgtagctttttc


aagatcagataggcttatcttatacctgtgaaactctttatcttctcttttaaccattgaggcaa


ctaagaatattaagttttgttcttcttttgtaaggctatactttcctgcaacaagagtattagac


atagctatttctttgccagcatttacatttttaacttctttcatagaactagagtcattatctcg


atatacaaattctataaaacttctattagtaaaacaactacttcataaaaaaaagtagttttaac


gatacaaaaagtagttttaaattcaaaaagtgatacaaaaagtagttttaaattcaaaaagtgat


acaaaaagtagttttaaattttttaaaaaagtgcttcaaagccttatgtagcaatacttacagag


gattaaaaaaaaatctgacaatatataaagagaatatataaagagaatatcttaggggattttaa


aaaaatcccacagactcaaagacttttttgactttttaaatcctagaaactatactttaagtact


tatttaagtacatggatttagattatgcaaaccgttaattattcaacttttagaaatgaactatc


tgattcaatggatagagtaacaaaaaatcatagtcctatgattgtaactagaggttcaaaaaaag


aagcagttgttatgatgtcgttagaggattcttcccttcctttctogccacgttcgccggctttc


cccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgac


cccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttog


ccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactca


accctatctcggtctattcttttgatttataagggattttgccgatttoggcctattggttaaaa


aatgagctgatttaacaaaaatttaacgcgaattttaacaaaattcagggcgcaagggctgctaa


aggaagcggaacacgtagaaagccagtccgcagaaacggtgctgaccccggatgaatgtcagcta


ctgggctatctggacaagggaaaacgcaagcgcaaagagaaagcaggtagcttgcagtgggctta


catggcgatagctagactgggcggttttatggacagcaagcgaaccggaattgccagctggggcg


ccctctggtaaggttgggaagccctgcaaagtaaactggatggctttcttgccgccaaggatctg


atggcgcaggggatcaagatctgatcaagagacaggatgaggatcgtttcgcatgattgaacaag


atggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaa


cagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttt


tgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggctatcgtggc


tggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactgg


ctgctattgggcgaagtgccggggcaggatctcctgtcatcccaccttgctcctgccgagaaagt


atccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgacc


accaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggat


gatctggacgaagaAcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcat


gcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaa


atggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacata


gcgttggctacccgtgatattgctgaagaActtggcggcgaatgggctgaccgcttcctcgtgct


ttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttct


gaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaa


aaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgt


tccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgc


gtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaaga


gctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttc


tagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctg


ctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaag


acgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagct


tggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgctt


cccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgag


ggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttg


agcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcc


tttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctga


ttctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccg


agcgcagcgagtcagtgagcgaggaagcggaaAagcgcccaatacgcaaaccgcctctccccgcg


cgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcg


caacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccgg


ctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgat


tacgccaagcttggtacctggttactattgccatcatcacaatattaaaattaattttcttcatt


tatttttcttaaatattattattaaaaatagtaaatttaacttatctaaaaatagcataatatca


tttttattaaaatatctaggttgaattcttagatattttgatatataattagatactaaattgat


aacttataaagaattaaattttcttttgtatgctaacttgattgctaatatgaattatactagtt


agtatgttgattataatgattagagttttaaataatggaggtaacaataggaggtacgtaatgga


ttataaagatcacgatggtgattacaaagaccatgatatagattataaggatgacgatgataagc


atcatcatcaccaccatcatcatggaggtggttcaATGTTTGTGTTTTTAGTTCTTTTACCGTTA


GTTTCAAGTCAATGTGTGAACTTAACTACACGCACACAACTTCCTCCAGCATATACAAATAGTTT


TACTAGAGGTGTATATTATCCTGATAAAGTATTCCGTAGTTCTGTTCTACATTCTACACAAGATT


TGTTTTTACCGTTTTTCAGTAATGTCACTTGGTTCCATGCTATTCATGTTTCTGGGACAAACGGT


ACAAAAAGATTTGATAACCCTGTTTTACCATTTAATGATGGTGTATATTTTGCTTCAACTGAGAA


AAGCAATATAATTAGAGGTTGGATTTTCGGAACTACCCTGGATAGCAAGACGCAAAGTTTATTGA


TCGTAAACAATGCTACAAACGTCGTAATTAAAGTATGTGAATTTCAATTTTGTAATGACCCTTTT


TTAGGAGTCTATTATCATAAAAATAATAAATCTTGGATGGAGTCTGAATTTAGAGTTTATTCTAG


CGCTAATAACTGTACATTTGAATATGTTTCACAACCTTTTTTAATGGATCTAGAAGGTAAACAGG


GTAATTTTAAAAATCTTCGTGAGTTTGTTTTTAAGAACATAGATGGATATTTCAAAATATATTCA


AAACATACTCCTATTAATCTAGTTAGAGATCTTCCACAAGGCTTTTCTGCTCTAGAACCATTAGT


TGATTTACCAATAGGTATAAATATAACTCGTTTCCAAACTTTACTAGCCCTTCACCGTTCGTACT


TAACGCCTGGGGATTCTTCTAGTGGTTGGACTGCTGGCGCTGCAGCATATTATGTTGGATATCTA


CAACCTAGAACATTTTTATTGAAATACAACGAAAACGGAACTATAACTGACGCTGTTGATTGTGC


ACTTGATCCATTAAGTGAGACTAA+TGTACTCTAAAA+GTTTTACTGTTGAAA+GGGAATTTATC


AAACATCAAATTTTCGCGTTCAACCAACGGAAAGTATTGTACGTTTTCCGAACATAACCAATTTA


TGTCCTTTCGGTGAGGTATTTAACGCAACTCGTTTTGCGAGCGTATATGCTTGGAATAGAAAAAG


AATTAGCAATTGTGTTGCTGATTATTCGGTCTTATACAATAGTGCTTCGTTTAGCACTTTTAAAT


GTTACGGAGTAAGTCCAACAAAGTTAAATGATCTATGTTTCACTAATGTGTATGCTGATTCTTTT


GTTATTAGAGGTGATGAAGTTCGACAAATTGCTCCAGGTCAAACTGGCAAAATTGCGGACTATAA


TTATAAGCTACCTGATGATTTTACTGGCTGTGTGATTGCATGGAATAGTAATAATCTAGATTCGA


AAGTCGGTGGGAATTATAATTATCTTTATAGACTATTTAGAAAATCTAATTTGAAACCATTTGAG


AGAGATATATCAACAGAAATTTACCAGGCTGGCAGCACACCTTGCAACGGCGTAGAAGGTTTTAA


TTGTTATTTTCCACTACAAAGTTATGGTTTTCAACCAACTAATGGCGTCGGGTATCAACCATATA


GAGTTGTCGTACTTTCCTTTGAATTACTTCATGCACCAGCTACCGTTTGTGGGCCAAAGAAATCA


ACTAATCTTGTAAAGAATAAATGCGTCAATTTTAATTTTAATGGCCTTACAGGCACTGGAGTTTT


AACAGAATCCAATAAAAAATTTTTACCTTTTCAGCAATTTGGTAGAGATATAGCTGATACTACTG


ATGCTGTAAGAGATCCTCAAACTCTAGAGATTTTAGATATTACCCCGTGTTCATTTGGAGGCGTA


AGCGTTATAACTCCAGGCACGAACACATCAAATCAAGTTGCTGTACTATATCAAGATGTTAATTG


CACAGAAGTGCCTGTTGCCATTCATGCAGATCAACTTACTCCTACATGGCGTGTATATTCTACCG


GATCAAATGTATTTCAGACTAGAGCTGGTTGTTTAATAGGCGCAGAACATGTAAATAATAGTTAT


GAGTGTGATATACCAATTGGTGCAGGAATATGTGCATCATATCAGACACAGACAAATAGTCCTCG


TCGCGCAAGA (SEQ ID NO: 6)





7. pFNLdAp-bfr-N3F8H-SCov2_(S2) (8067 bp)


TCAGTAGCATCACAATCGATTATAGCTTATACAATGTCTTTAGGTGCGGAAAATAGTGTGGCTTA


TTCTAATAATTCTATCGCAATCCCTACCAATTTCACTATAAGTGTTACAACCGAAATCTTACCAG


TTAGTATGACAAAGACAAGTGTTGATTGTACTATGTATATATGTGGCGATTCTACTGAGTGTTCT


AATCTCTTATTACAATATGGTTCGTTTTGTACTCAGTTAAATCGAGCTCTTACAGGTATAGCTGT


CGAGCAAGATAAGAATACCCAGGAAGTCTTTGCACAGGTTAAACAAATTTATAAAACTCCACCAA


TCAAAGATTTTGGTGGGTTTAACTTTTCTCAAATACTACCTGATCCATCTAAACCCTCTAAACGT


AGTTTTATTGAAGATTTACTTTTTAATAAAGTAACTCTAGCTGATGCTGGTTTCATTAAACAATA


CGGCGATTGTTTGGGTGATATAGCGGCACGTGATTTAATATGCGCACAGAAATTCAACGGTCTGA


CAGTCCTACCTCCATTATTGACAGATGAAATGATTGCTCAATATACATCAGCATTGCTTGCTGGC


ACTATCACGAGTGGATGGACTTTTGGTGCTGGCGCTGCTTTACAAATTCCATTTGCCATGCAAAT


GGCTTATAGATTTAATGGTATTGGTGTTACACAAAATGTTTTATATGAGAATCAAAAGTTAATAG


CTAACCAATTTAACTCTGCAATTGGCAAGATTCAGGATTCATTATCTAGTACAGCGAGTGCTTTA


GGTAAACTACAAGATGTAGTGAATCAGAATGCTCAAGCACTCAATACTTTGGTTAAACAATTAAG


TTCAAATTTTGGTGCAATTTCAAGTGTACTAAATGATATTCTAAGTCGCTTAGATCCTCCAGAGG


CTGAAGTACAAATCGATAGACTAATTACAGGTAGATTACAGTCATTACAAACTTATGTTACTCAA


CAGTTAATTAGAGCTGCAGAAATAAGAGCATCTGCAAATTTGGCAGCCACTAAGATGAGTGAGTG


TGTCCTTGGACAATCAAAACGTGTAGATTTTTGCGGAAAGGGATATCACTTAATGTCATTTCCGC


AATCTGCACCTCATGGTGTCGTGTTTCTTCATGTTACTTACGTTCCGGCTCAAGAGAAAAACTTC


ACTACGGCTCCAGCGATTTGTCATGATGGTAAAGCTCATTTTCCTCGTGAGGGTGTATTTGTATC


AAATGGAACACATTGGTTTGTTACTCAAAGAAATTTTTATGAGCCACAAATAATAACTACAGATA


ATACTTTTGTTAGCGGTAACTGTGACGTAGTTATAGGAATCGTAAACAACACAGTGTATGATCCA


TTACAACCAGAGTTAGATTCTTTTAAAGAAGAACTTGATAAGTATTTCAAAAATCATACTAGCCC


TGATGTTGACCTTGGTGACATATCAGGCATAAATGCATCAGTTGTTAATATTCAAAAAGAAATAG


ATAGGCTTAATGAAGTTGCTAAAAATCTTAATGAATCTTTAATAGATCTACAAGAACTTGGAAAA


TACGAACAATATATAAAATGGCCTTGGTATATATGGTTAGGGTTTATTGCTGGTCTTATTGCTAT


TGTAATGGTAACTATTATGCTATGTTGTATGACATCATGCTGTAGCTGTCTAAAGGGTTGTTGTA


GTTGTGGTTCATGTTGCAAATTTGATGAAGATGATAGTGAGCCAGTTCTTAAAGGTGTAAAATTG


CATTACACATGAggttaaggatccactagctcgtttcaaattaccgatgatatcggaccgttcca


acttaccgaccagttcggcaggtatgtatttgcgtgcattcctatccaaaaaaacatcaagccaa


aagcttgaaaaaacttacaacacagctcaacagagctagattgtaaaaccctgctttgttaagca


gaacgcaaaaattgaatgacttatagtcatategcttcgaccctcgtagattagtagccttgagc


tattaactggttgaaacacttaccaaataaagattaaaagcgataaaaatgaaagataaagcagc


taaaaacagagattttagaaagactattttatcagtgttacaacgcaataaagatggctcttttg


ctacgcaagcaaatagaaagtctattctgttgcaggcaactaaagaccttaaaaaggtagggttt


agcaaggttacagccgaaaacttcggtaataagcattgctatgcacttagagaccattggagagc


ccaaggattagctacagcaacgataaaaaatcgtttagcttgtctaaggtggttaggcgagaaaa


tgggcaaagaactacccgataatcgaaaattagagattgagaacaggaagtatagcgataattca


atcaataaagcccaagaaatcgattttaaggcgatttctgccttaactgataggcaagccctagc


aatacaattacagcgcgaatttgggcttcgtagagaagaaagtttgaagtttcagcctagttatg


caatcaaagagcataaaatcgagcttaaaagctcttggacaaagggtggaagaccacgagaaatc


ccaattttgaatgaaaaacagagagaattgttagaaaaagtaaaagaggtagcaggtaaaggctc


tctaattgagagcgaaaagtcttataagcaagcaatggaacatttcacgactcgctgtcaaagag


cagggattaagaatgttcatggctttagacatgcgtatgctcaagatagatataggcaattaaca


gggcgtgagtgtcctaaaaatggtggattaacatctaagcagctaacacctgagcaaaagcaaca


agactatgaagctagaatgactattagtgaagagttaggtcatggtagagaagatgtaacagtca


actacttaggcagataaaaagcaatatagctatagaagaaaagaaagctattttacatagtagat


cgactcttcttagggattttatattttttgataaatcatctattttgctagttaaatcatcaaat


ttatcatcttgttgtttgactaaatctaagaatctattctcttttttaaaatcgttcatgcaaac


cgcctatagctttcttctttttctgaaattatttgtcttcacaccataattaaattcccattttt


ataagtaaagtcttttaaaagcttgtcagtctcttctctagaaatgtaccaaattttacctattt


taggatacttttcatgaagTtcttctatttttccccagtcctttaatagtctacctttagagtct


cgtaaatagttatctttgtgacaggggcctcttttatcttttttaatgtaactatatgttattcc


aacgtcactattactattatccaaatcttttttagcatgccagtaagaactttcataacttaact


ctatctttcgacctctttgatatacaacaataaagctatagccagtagtaacaacctgttttact


tttgttaaatctattaacttcttatttatttttttatgtttttttgaaaatttaaatatttctat


attcattcctacacttcctcaaatccaaatggtagcttatgattctcttctggtttcttttctaa


tttttttatatttgcaataaaaactctttttctatctttgatttttttattgtcccaattcctcc


aagtatcatcacaaaccctttcaatatcatgtaaatgatgatgtctaaatattgatctgacataa


tacagatctaggtctagttcatcacttaacacaacttctctaagtctttcagatgcttcgattgg


tatgtaatcctctttatttttagtatctaaaagcttttgcttaaattcttcttctgtctctgcta


ccttactaactgtaaacttgatatttgtaatcttacgaccatgttttctgtgatgatccttgtca


tcataggttacaaaaatatccgataattgattaatctcttctagtgctggtaataggaacttatt


tttaaaatttgaatatctgttgctgtaacttttaggtaaatcaaaatcattaatcatatcatcga


catacaatacgcaatcaactatattagcataccctgcttgttcgcctaatttgcttttgagaagt


aagtataatctgcttgaatacttacttttaaatgaaaatagtaactgtctttctgctttagtaaa


gtactcttgtagttgtatcatgtgtggcattaatgaccaatgaaactcgcaaattaaagcactgc


ttttagggtctgcttcaatatatgcaaaccagttagctatcttcgtttgttctttattcagccat


actggcttagacattattgagtgcattaattgcttcaatctcactctgttatgcttaacccctgt


agctttttcaagatcagataggcttatcttatacctgtgaaactctttatcttctcttttaacca


ttgaggcaactaagaatattaagttttgttcttcttttgtaaggctatactttcctgcaacaaga


gtattagacatagctatttctttgccagcatttacatttttaacttctttcatagaactagagtc


attatctcgatatacaaattctataaaacttctattagtaaaacaactacttcataaaaaaaagt


agttttaacgatacaaaaagtagttttaaattcaaaaagtgatacaaaaagtagttttaaattca


aaaagtgatacaaaaagtagttttaaattttttaaaaaagtgcttcaaagccttatgtagcaata


cttacagaggattaaaaaaaaatctgacaatatataaagagaatatataaagagaatatcttagg


ggattttaaaaaaatcccacagactcaaagacttttttgactttttaaatcctagaaactatact


ttaagtacttatttaagtacatggatttagattatgcaaaccgttaattattcaacttttagaaa


tgaactatctgattcaatggatagagtaacaaaaaatcatagtcctatgattgtaactagaggtt


caaaaaaagaagcagttgttatgatgtcgttagaggattcttcccttcctttctegccacgttcg


ccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacgg


cacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccategccctgatagac


ggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaa


caacactcaaccctatcteggtctattcttttgatttataagggattttgccgatttcggcctat


tggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaattcagggcgcaag


ggctgctaaaggaagcggaacacgtagaaagccagtccgcagaaacggtgctgaccccggatgaa


tgtcagctactgggctatctggacaagggaaaacgcaagcgcaaagagaaagcaggtagcttgca


gtgggcttacatggcgatagctagactgggcggttttatggacagcaagcgaaccggaattgcca


gctggggcgccctctggtaaggttgggaagccctgcaaagtaaactggatggctttcttgccgcc


aaggatctgatggcgcaggggatcaagatctgatcaagagacaggatgaggatcgtttcgcatga


ttgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgac


tgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgccc


ggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggc


tategtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcggga


agggactggctgctattgggcgaagtgccggggcaggatctcctgtcatcccaccttgctcctgc


cgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcc


cattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtc


gatcaggatgatctggacgaagaAcatcaggggctcgcgccagccgaactgttcgccaggctcaa


ggcgcgcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatca


tggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctat


caggacatagcgttggctacccgtgatattgctgaagaActtggcggcgaatgggctgaccgctt


cctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacg


agttcttctgaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcattt


ttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtg


agttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttt


tttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgcc


ggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaata


ctgttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatac


ctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggtt


ggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacac


agcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagc


gccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggaga


gcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacc


tctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagc


aacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgtt


atcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagcc


gaacgaccgagcgcagcgagtcagtgagcgaggaagcggaaAagcgcccaatacgcaaaccgcct


ctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcggg


cagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacacttta


tgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctat


gaccatgattacgccaagcttggtacctggttactattgccatcatcacaatattaaaattaatt


ttcttcatttatttttcttaaatattattattaaaaatagtaaatttaacttatctaaaaatagc


ataatatcatttttattaaaatatctaggttgaattcttagatattttgatatataattagatac


taaattgataacttataaagaattaaattttcttttgtatgctaacttgattgctaatatgaatt


atactagttagtatgttgattataatgattagagttttaaataatggaggtaacaataggaggta


cgtaatg (SEQ ID NO: 7)





8. pFNLdAp-bfr-N3F8H-SCoV2_(S2E) (8400 bp)


ggtacctggttactattgccatcatcacaatattaaaattaattttcttcatttatttttcttaa


atattattattaaaaatagtaaatttaacttatctaaaaatagcataatatcatttttattaaaa


tatctaggttgaattcttagatattttgatatataattagatactaaattgataacttataaaga


attaaattttcttttatatactaacttaattactaatataaattatactaattaatatattaatt


ataatgattagagttttaaataatggaggtaacaataggaggtacgtaatggattataaagatca


cgatggtgattacaaagaccatgatatagattataaggatgacgatgataagcatcatcatcacc


accatcatcatggaggtggttcaATGTCTGTAGCGAGTCAATCAATAATAGCATATACAATGTCA


TTAGGCGCAGAAAATAGTGTGGCTTATTCTAATAATTCTATCGCAATCCCTACCAATTTCACTAT


AAGTGTTACAACCGAAATCTTACCAGTTAGTATGACAAAGACAAGTGTTGATTGTACTATGTATA


TATGTGGCGATTCTACTGAGTGTTCTAATCTCTTATTACAATATGGTTCGTTTTGTACTCAGTTA


AATCGAGCTCTTACAGGTATAGCTGTCGAGCAAGATAAGAATACCCAGGAAGTCTTTGCACAGGT


TAAACAAATTTATAAAACTCCACCAATCAAAGATTTTGGTGGGTTTAACTTTTCTCAAATACTAC


CTGATCCATCTAAACCCTCTAAACGTAGTTTTATTGAAGATTTACTTTTTAATAAAGTAACTCTA


GCTGATGCTGGTTTCATTAAACAATACGGCGATTGTTTGGGTGATATAGCGGCACGTGATTTAAT


ATGCGCACAGAAATTCAACGGTCTGACAGTCCTACCTCCATTATTGACAGATGAAATGATTGCTC


AATATACATCAGCATTGCTTGCTGGCACTATCACGAGTGGATGGACTTTTGGTGCTGGCGCTGCT


TTACAAATTCCATTTGCCATGCAAATGGCTTATAGATTTAATGGTATTGGTGTTACACAAAATGT


TTTATATGAGAATCAAAAGTTAATAGCTAACCAATTTAACTCTGCAATTGGCAAGATTCAGGATT


CATTATCTAGTACAGCGAGTGCTTTAGGTAAACTACAAGATGTAGTGAATCAGAATGCTCAAGCA


CTCAATACTTTGGTTAAACAATTAAGTTCAAATTTTGGTGCAATTTCAAGTGTACTAAATGATAT


TCTAAGTCGCTTAGATAAAGTTGAGGCTGAAGTACAAATCGATAGACTAATTACAGGTAGATTAC


AGTCATTACAAACTTATGTTACTCAACAGTTAATTAGAGCTGCAGAAATAAGAGCATCTGCAAAT


TTGGCAGCCACTAAGATGAGTGAGTGTGTCCTTGGACAATCAAAACGTGTAGATTTTTGCGGAAA


GGGATATCACTTAATGTCATTTCCGCAATCTGCACCTCATGGTGTCGTGTTTCTTCATGTTACTT


ACGTTCCGGCTCAAGAGAAAAACTTCACTACGGCTCCAGCGATTTGTCATGATGGTAAAGCTCAT


TTTCCTCGTGAGGGTGTATTTGTATCAAATGGAACACATTGGTTTGTTACTCAAAGAAATTTTTA


TGAGCCACAAATAATAACTACAGATAATACTTTTGTTAGCGGTAACTGTGACGTAGTTATAGGAA


TCGTAAACAACACAGTGTATGATCCATTACAACCAGAGTTAGATTCTTTTAAAGAAGAACTTGAT


AAGTATTTCAAAAATCATACTAGCCCTGATGTTGACCTTGGTGACATATCAGGCATAAATGCATC


AGTTGTTAATATTCAAAAAGAAATAGATAGGCTTAATGAAGTTGCTAAAAATCTTAATGAATCTT


TAATAGATCTACAAGAACTTGGAAAATACGAACAATATATAAAATGGCCTTGGTATATATGGTTA


GGGTTTATTGCTGGTCTTATTGCTATTGTAATGGTAACTATTATGCTATGTTGTATGACATCATG


CTGTAGCTGTCTAAAGGGTTGTTGTAGTTGTGGTTCATGTTGCAAATTTGATGAAGATGATAGTG


AGCCAGTTCTTAAAGGTGTAAAATTGGGGGGATCTGGAATGTACAGCTTTGTGTCAGAAGAAACC


GGTACACTAATTGTTAATAGCGTTTTACTTTTTCTGGCTTTTGTTGTGTTTCTTCTAGTAACATT


GGCCATCTTGACTGCACTAAGACTTTGTGCTTATTGCTGTAATATTGTTAATGTTTCATTAGTAA


AACCTAGCTTTTATGTTTATTCGAGAGTCAAAAACCTAAATTCCAGTAGAGTACCTGATTTATTA


GTATAAggttaaggatccactagctcgtttcaaattaccgatgatatcggaccgttccaacttac


cgaccagttcggcaggtatgtatttgcgtgcattcctatccaaaaaaacatcaagccaaaagctt


gaaaaaacttacaacacagctcaacagagctagattgtaaaaccctgctttgttaagcagaacgc


aaaaattgaatgacttatagtcatategcttcgaccctegtagattagtagccttgagctattaa


ctggttgaaacacttaccaaataaagattaaaagcgataaaaatgaaagataaagcagctaaaaa


cagagattttagaaagactattttatcagtgttacaacgcaataaagatggctcttttgctacgc


aagcaaatagaaagtctattctgttgcaggcaactaaagaccttaaaaaggtagggtttagcaag


gttacagccgaaaacttcggtaataagcattgctatgcacttagagaccattggagagcccaagg


attagctacagcaacgataaaaaatcgtttagcttgtctaaggtggttaggcgagaaaatgggca


aagaactacccgataatcgaaaattagagattgagaacaggaagtatagcgataattcaatcaat


aaagcccaagaaatcgattttaaggcgatttctgccttaactgataggcaagccctagcaataca


attacagcgcgaatttgggcttcgtagagaagaaagtttgaagtttcagcctagttatgcaatca


aagagcataaaatcgagcttaaaagctcttggacaaagggtggaagaccacgagaaatcccaatt


ttgaatgaaaaacagagagaattgttagaaaaagtaaaagaggtagcaggtaaaggctctctaat


tgagagcgaaaagtcttataagcaagcaatggaacatttcacgactcgctgtcaaagagcaggga


ttaagaatgttcatggctttagacatgcgtatgctcaagatagatataggcaattaacagggcgt


gagtgtcctaaaaatggtggattaacatctaagcagctaacacctgagcaaaagcaacaagacta


tgaagctagaatgactattagtgaagagttaggtcatggtagagaagatgtaacagtcaactact


taggcagataaaaagcaatatagctatagaagaaaagaaagctattttacatagtagatcgactc


ttcttagggattttatattttttgataaatcatctattttgctagttaaatcatcaaatttatca


tcttgttgtttgactaaatctaagaatctattctcttttttaaaatcgttcatgcaaaccgccta


tagctttcttctttttctgaaattatttgtcttcacaccataattaaattcccatttttataagt


aaagtcttttaaaagcttgtcagtctcttctctagaaatgtaccaaattttacctattttaggat


acttttcatgaagTtcttctatttttccccagtcctttaatagtctacctttagagtctcgtaaa


tagttatctttgtgacaggggcctcttttatcttttttaatgtaactatatgttattccaacgtc


actattactattatccaaatcttttttagcatgccagtaagaactttcataacttaactctatct


ttcgacctctttgatatacaacaataaagctatagccagtagtaacaacctgttttacttttgtt


aaatctattaacttcttatttatttttttatgtttttttgaaaatttaaatatttctatattcat


tcctacacttcctcaaatccaaatggtagcttatgattctcttctggtttcttttctaatttttt


tatatttgcaataaaaactctttttctatctttgatttttttattgtcccaattcctccaagtat


catcacaaaccctttcaatatcatgtaaatgatgatgtctaaatattgatctgacataatacaga


tctaggtctagttcatcacttaacacaacttctctaagtctttcagatgcttcgattggtatgta


atcctctttatttttagtatctaaaagcttttgcttaaattcttcttctgtctctgctaccttac


taactgtaaacttgatatttgtaatcttacgaccatgttttctgtgatgatccttgtcatcatag


gttacaaaaatatccgataattgattaatctcttctagtgctggtaataggaacttatttttaaa


atttgaatatctgttgctgtaacttttaggtaaatcaaaatcattaatcatatcatcgacataca


atacgcaatcaactatattagcataccctgcttgttegcctaatttgcttttgagaagtaagtat


aatctgcttgaatacttacttttaaatgaaaatagtaactgtctttctgctttagtaaagtactc


ttgtagttgtatcatgtgtggcattaatgaccaatgaaactcgcaaattaaagcactgcttttag


ggtctgcttcaatatatgcaaaccagttagctatcttcgtttgttctttattcagccatactggc


ttagacattattgagtgcattaattgcttcaatctcactctgttatgcttaacccctgtagcttt


ttcaagatcagataggcttatcttatacctgtgaaactctttatcttctcttttaaccattgagg


caactaagaatattaagttttgttcttcttttgtaaggctatactttcctgcaacaagagtatta


gacatagctatttctttgccagcatttacatttttaacttctttcatagaactagagtcattatc


tcgatatacaaattctataaaacttctattagtaaaacaactacttcataaaaaaaagtagtttt


aacgatacaaaaagtagttttaaattcaaaaagtgatacaaaaagtagttttaaattcaaaaagt


gatacaaaaagtagttttaaattttttaaaaaagtgcttcaaagccttatgtagcaatacttaca


gaggattaaaaaaaaatctgacaatatataaagagaatatataaagagaatatcttaggggattt


taaaaaaatcccacagactcaaagacttttttgactttttaaatcctagaaactatactttaagt


acttatttaagtacatggatttagattatgcaaaccgttaattattcaacttttagaaatgaact


atctgattcaatggatagagtaacaaaaaatcatagtcctatgattgtaactagaggttcaaaaa


aagaagcagttgttatgatgtcgttagaggattcttcccttcctttctcgccacgttcgccggct


ttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctc


gaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttt


tcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacac


tcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggtta


aaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaattcagggcgcaagggctgc


taaaggaagcggaacacgtagaaagccagtccgcagaaacggtgctgaccccggatgaatgtcag


ctactgggctatctggacaagggaaaacgcaagcgcaaagagaaagcaggtagcttgcagtgggc


ttacatggcgatagctagactgggcggttttatggacagcaagcgaaccggaattgccagctggg


gcgccctctggtaaggttgggaagccctgcaaagtaaactggatggctttcttgccgccaaggat


ctgatggcgcaggggatcaagatctgatcaagagacaggatgaggatcgtttcgcatgattgaac


aagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggca


caacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttct


ttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggctatcgt


ggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggac


tggctgctattgggcgaagtgccggggcaggatctcctgtcatcccaccttgctcctgccgagaa


agtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcg


accaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcag


gatgatctggacgaagaAcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcc


catgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtgg


aaaatggccgcttttctggattcatcgactgtggccggctaggtgtggcggaccgctatcaggac


ataccattcgctacccataatattcctaaacaActtcccaccaaatggcctaaccacttcctcat


gctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttct


tctaaactatcacaccaaatttactcatatatactttacattaatttaaaacttcatttttaatt


taaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagtttt


cgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctg


cgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttatttgccggatca


agagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttc


ttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgct


ctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactc


aagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagccca


gcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacg


cttcccgaagggagaaaggcggacaggtatccggtaagcggcaggatcggaacaggagagcgcac


gagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgac


ttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcc


gcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccc


tgattctgtggataaccgtattaccgcctttgagtgagctgataccactcgccgcagccgaacga


ccgagcgcagcgagtcagtgagcgaggaagcggaaAagcgcccaatacgcaaaccgcctctcccc


gcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtga


gcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttc


cggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccat


gattacgccaagctt (SEQ ID NO: 8)





9. pFNLdAp-bfr-N3F8H-SCcV2_(SdTM) (10029 bp)


TGAggttaaggatccactagctcgtttcaaattaccgatgatatcggaccgttccaacttaccga


ccagttcggcaggtatgtatttgcgtgcattcctatccaaaaaaacatcaagccaaaagcttgaa


aaaacttacaacacagctcaacagagctagattgtaaaaccctgctttgttaagcagaacgcaaa


aattgaatgacttatagtcatatcgcttcgaccctcgtagattagtagccttgagctattaactg


gttgaaacacttaccaaataaagattaaaagcgataaaaatgaaagataaagcagctaaaaacag


agattttagaaagactattttatcagtgttacaacgcaataaagatggctcttttgctacgcaag


caaatagaaagtctattctgttgcaggcaactaaagaccttaaaaaggtagggtttagcaaggtt


acagccgaaaacttcggtaataagcattgctatgcacttagagaccattggagagcccaaggatt


agctacagcaacgataaaaaatcgtttagcttgtctaaggtggttaggcgagaaaatgggcaaag


aactacccgataatcgaaaattagagattgagaacaggaagtatagcgataattcaatcaataaa


gcccaagaaatcgattttaaggcgatttctgccttaactgataggcaagccctagcaatacaatt


acagcgcgaatttgggcttcgtagagaagaaagtttgaagtttcagcctagttatgcaatcaaag


agcataaaatcgagcttaaaagctcttggacaaagggtggaagaccacgagaaatcccaattttg


aatgaaaaacagagagaattgttagaaaaagtaaaagaggtagcaggtaaaggctctctaattga


gagcgaaaagtcttataagcaagcaatggaacatttcacgactcgctgtcaaagagcagggatta


agaatgttcatggctttagacatgcgtatgctcaagatagatataggcaattaacagggcgtgag


tgtcctaaaaatggtggattaacatctaagcagctaacacctgagcaaaagcaacaagactatga


agctagaatgactattagtgaagagttaggtcatggtagagaagatgtaacagtcaactacttag


gcagataaaaagcaatatagctatagaagaaaagaaagctattttacatagtagatcgactcttc


ttagggattttatattttttgataaatcatctattttgctagttaaatcatcaaatttatcatct


tgttgtttgactaaatctaagaatctattctcttttttaaaatcgttcatgcaaaccgcctatag


ctttcttctttttctgaaattatttgtcttcacaccataattaaattcccatttttataagtaaa


gtcttttaaaagcttgtcagtctcttctctagaaatgtaccaaattttacctattttaggatact


tttcatgaagTtcttctatttttccccagtcctttaatagtctacctttagagtctcgtaaatag


ttatctttgtgacaggggcctcttttatcttttttaatgtaactatatgttattccaacgtcact


attactattatccaaatcttttttagcatgccagtaagaactttcataacttaactctatctttc


gacctctttgatatacaacaataaagctatagccagtagtaacaacctgttttacttttgttaaa


tctattaacttcttatttatttttttatgtttttttgaaaatttaaatatttctatattcattcc


tacacttcctcaaatccaaatggtagcttatgattctcttctggtttcttttctaatttttttat


atttgcaataaaaactctttttctatctttgatttttttattgtcccaattcctccaagtatcat


cacaaaccctttcaatatcatgtaaatgatgatgtctaaatattgatctgacataatacagatct


aggtctagttcatcacttaacacaacttctctaagtctttcagatgcttcgattggtatgtaatc


ctctttatttttagtatctaaaagcttttgcttaaattcttcttctgtctctgctaccttactaa


ctgtaaacttgatatttgtaatcttacgaccatgttttctgtgatgatccttgtcatcataggtt


acaaaaatatccgataattgattaatctcttctagtgctggtaataggaacttatttttaaaatt


tgaatatctgttgctgtaacttttaggtaaatcaaaatcattaatcatatcatcgacatacaata


cgcaatcaactatattagcataccctgcttgttcgcctaatttgcttttgagaagtaagtataat


ctgcttgaatacttacttttaaatgaaaatagtaactgtctttctgctttagtaaagtactcttg


tagttgtatcatgtgtggcattaatgaccaatgaaactcgcaaattaaagcactgcttttagggt


ctgcttcaatatatgcaaaccagttagctatcttcgtttgttctttattcagccatactggctta


gacattattgagtgcattaattgcttcaatctcactctgttatgcttaacccctgtagctttttc


aagatcagataggcttatcttatacctgtgaaactctttatcttctcttttaaccattgaggcaa


ctaagaatattaagttttgttcttcttttgtaaggctatactttcctgcaacaagagtattagac


atagctatttctttgccagcatttacatttttaacttctttcatagaactagagtcattatctcg


atatacaaattctataaaacttctattagtaaaacaactacttcataaaaaaaagtagttttaac


gatacaaaaagtagttttaaattcaaaaagtgatacaaaaagtagttttaaattcaaaaagtgat


acaaaaagtagttttaaattttttaaaaaagtgcttcaaagccttatgtagcaatacttacagag


gattaaaaaaaaatctgacaatatataaagagaatatataaagagaatatcttaggggattttaa


aaaaatcccacagactcaaagacttttttgactttttaaatcctagaaactatactttaagtact


tatttaagtacatggatttagattatgcaaaccgttaattattcaacttttagaaatgaactatc


tgattcaatggatagagtaacaaaaaatcatagtcctatgattgtaactagaggttcaaaaaaag


aagcagttgttatgatgtcgttagaggattcttcccttcctttctcgccacgttcgccggctttc


cccgtcaagctctaaatcgggggctccctttagggttccgatttagtgctttacggcacctcgac


cccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccctgatagacggtttttcg


ccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactca


accctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaa


aatgagctgatttaacaaaaatttaacgcgaattttaacaaaattcagggcgcaagggctgctaa


aggaagcggaacacgtagaaagccagtccgcagaaacggtgctgaccccggatgaatgtcagcta


ctgggctatctggacaagggaaaacgcaagcgcaaagagaaagcaggtagcttgcagtgggctta


catggcgatagctagactgggcggttttatggacagcaagcgaaccggaattgccagctggggcg


ccctctggtaaggttgggaagccctgcaaagtaaactggatggctttcttgccgccaaggatctg


atggcgcaggggatcaagatctgatcaagagacaggatgaggatcgtttcgcatgattgaacaag


atggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaa


cagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttt


tgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggctatcgtggc


tggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactgg


ctgctattgggcgaagtgccggggcaggatctcctgtcatcccaccttgctcctgccgagaaagt


atccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccattcgacc


accaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggat


gatctggacgaagaAcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcat


gcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatggtggaaa


atggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacata


gcgttggctacccgtgatattgctgaagaActtggcggcgaatgggctgaccgcttcctcgtgct


ttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgagttcttct


gaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaa


aaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgt


tccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgc


gtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaaga


gctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttc


tagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctg


ctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaag


acgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagct


tggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgctt


cccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgag


ggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttg


agcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcc


tttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctga


ttctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccg


agcgcagcgagtcagtgagcgaggaagcggaaAagcgcccaatacgcaaaccgcctctccccgcg


cgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcg


caacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccgg


ctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgat


tacgccaagcttggtacctggttactattgccatcatcacaatattaaaattaattttcttcatt


tatttttcttaaatattattattaaaaatagtaaatttaacttatctaaaaatagcataatatca


tttttattaaaatatctaggttgaattcttagatattttgatatataattagatactaaattgag


aacttataaagaattaaattttcttttgtatgctaacttgattgctaatatgaattatactagtt


agtatgttgattataatgattagagttttaaataatggaggtaacaataggaggtacgtaatgga


ttataaagatcacgatggtgattacaaagaccatgatatagattataaggatgacgatgataagc


atcatcatcaccaccatcatcatggaggtggttcaATGTTTGTGTTTTTAGTTCTTTTACCGTTA


GTTTCAAGTCAATGTGTGAACTTAACTACACGCACACAACTTCCTCCAGCATATACAAATAGTTT


TACTAGAGGTGTATATTATCCTGATAAAGTATTCCGTAGTTCTGTTCTACATTCTACACAAGATT


TGTTTTTACCGTTTTTCAGTAATGTCACTTGGTTCCATGCTATTCATGTTTCTGGGACAAACGGT


ACAAAAAGATTTGATAACCCTGTTTTACCATTTAATGATGGTGTATATTTTGCTTCAACTGAGAA


AAGCAATATAATTAGAGGTTGGATTTTCGGAACTACCCTGGATAGCAAGACGCAAAGTTTATTGA


TCGTAAACAATGCTACAAACGTCGTAATTAAAGTATGTGAATTTCAATTTTGTAATGACCCTTTT


TTAGGAGTCTATTATCATAAAAATAATAAATCTTGGATGGAGTCTGAATTTAGAGTTTATTCTAG


CGCTAATAACTGTACATTTGAATATGTTTCACAACCTTTTTTAATGGATCTAGAAGGTAAACAGG


GTAATTTTAAAAATCTTCGTGAGTTTGTTTTTAAGAACATAGATGGATATTTCAAAATATATTCA


AAACATACTCCTATTAATCTAGTTAGAGATCTTCCACAAGGCTTTTCTGCTCTAGAACCATTAGT


TGATTTACCAATAGGTATAAATATAACTCGTTTCCAAACTTTACTAGCCCTTCACCGTTCGTACT


TAACGCCTGGGGATTCTTCTAGTGGTTGGACTGCTGGCGCTGCAGCATATTATGTTGGATATCTA


CAACCTAGAACATTTTTATTGAAATACAACGAAAACGGAACTATAACTGACGCTGTTGATTGTGC


ACTTGATCCATTAAGTGAGACTAAATGTACTCTAAAAAGTTTTACTGTTGAAAAGGGAATTTATC


AAACATCAAATTTTCGCGTTCAACCAACGGAAAGTATTGTACGTTTTCCGAACATAACCAATTTA


TGTCCTTTCGGTGAGGTATTTAACGCAACTCGTTTTGCGAGCGTATATGCTTGGAATAGAAAAAG


AATTAGCAATTGTGTTGCTGATTATTCGGTCTTATACAATAGTGCTTCGTTTAGCACTTTTAAAT


GTTACGGAGTAAGTCCAACAAAGTTAAATGATCTATGTTTCACTAATGTGTATGCTGATTCTTTT


GTTATTAGAGGTGATGAAGTTCGACAAATTGCTCCAGGTCAAACTGGCAAAATTGCGGACTATAA


TTATAAGCTACCTGATGATTTTACTGGCTGTGTGATTGCATGGAATAGTAATAATCTAGATTCGA


AAGTCGGTGGGAATTATAATTATCTTTATAGACTATTTAGAAAATCTAATTTGAAACCATTTGAG


AGAGATATATCAACAGAAATTTACCAGGCTGGCAGCACACCTTGCAACGGCGTAGAAGGTTTTAA


TTGTTATTTTCCACTACAAAGTTATGGTTTTCAACCAACTAATGGCGTCGGGTATCAACCATATA


GAGTTGTCGTACTTTCCTTTGAATTACTTCATGCACCAGCTACCGTTTGTGGGCCAAAGAAATCA


ACTAATCTTGTAAAGAATAAATGCGTCAATTTTAATTTTAATGGCCTTACAGGCACTGGAGTTTT


AACAGAATCCAATAAAAAATTTTTACCTTTTCAGCAATTTGGTAGAGATATAGCTGATACTACTG


ATGCTGTAAGAGATCCTCAAACTCTAGAGATTTTAGATATTACCCCGTGTTCATTTGGAGGCGTA


AGCGTTATAACTCCAGGCACGAACACATCAAATCAAGTTGCTGTACTATATCAAGATGTTAATTG


CACAGAAGTGCCTGTTGCCATTCATGCAGATCAACTTACTCCTACATGGCGTGTATATTCTACCG


GATCAAATGTATTTCAGACTAGAGCTGGTTGTTTAATAGGCGCAGAACATGTAAATAATAGTTAT


GAGTGTGATATACCAATTGGTGCAGGAATATGTGCATCATATCAGACACAGACAAATAGTCCTCG


TCGCGCAAGATCAGTAGCATCACAATCGATTATAGCTTATACAATGTCTTTAGGTGCGGAAAATA


GTGTGGCTTATTCTAATAATTCTATCGCAATCCCTACCAATTTCACTATAAGTGTTACAACCGAA


ATCTTACCAGTTAGTATGACAAAGACAAGTGTTGATTGTACTATGTATATATGTGGCGATTCTAC


TGAGTGTTCTAATCTCTTATTACAATATGGTTCGTTTTGTACTCAGTTAAATCGAGCTCTTACAG


GTATAGCTGTCGAGCAAGATAAGAATACCCAGGAAGTCTTTGCACAGGTTAAACAAATTTATAAA


ACTCCACCAATCAAAGATTTTGGTGGGTTTAACTTTTCTCAAATACTACCTGATCCATCTAAACC


CTCTAAACGTAGTTTTATTGAAGATTTACTTTTTAATAAAGTAACTCTAGCTGATGCTGGTTTCA


TTAAACAATACGGCGATTGTTTGGGTGATATAGCGGCACGTGATTTAATATGCGCACAGAAATTC


AACGGTCTGACAGTCCTACCTCCATTATTGACAGATGAAATGATTGCTCAATATACATCAGCATT


GCTTGCTGGCACTATCACGAGTGGATGGACTTTTGGTGCTGGCGCTGCTTTACAAATTCCATTTG


CCATGCAAATGGCTTATAGATTTAATGGTATTGGTGTTACACAAAATGTTTTATATGAGAATCAA


AAGTTAATAGCTAACCAATTTAACTCTGCAATTGGCAAGATTCAGGATTCATTATCTAGTACAGC


GAGTGCTTTAGGTAAACTACAAGATGTAGTGAATCAGAATGCTCAAGCACTCAATACTTTGGTTA


AACAATTAAGTTCAAATTTTGGTGCAATTTCAAGTGTACTAAATGATATTCTAAGTCGCTTAGAT


CCTCCAGAGGCTGAAGTACAAATCGATAGACTAATTACAGGTAGATTACAGTCATTACAAACTTA


TGTTACTCAACAGTTAATTAGAGCTGCAGAAATAAGAGCATCTGCAAATTTGGCAGCCACTAAGA


TGAGTGAGTGTGTCCTTGGACAATCAAAACGTGTAGATTTTTGCGGAAAGGGATATCACTTAATG


TCATTTCCGCAATCTGCACCTCATGGTGTCGTGTTTCTTCATGTTACTTACGTTCCGGCTCAAGA


GAAAAACTTCACTACGGCTCCAGCGATTTGTCATGATGGTAAAGCTCATTTTCCTCGTGAGGGTG


TATTTGTATCAAATGGAACACATTGGTTTGTTACTCAAAGAAATTTTTATGAGCCACAAATAATA


ACTACAGATAATACTTTTGTTAGCGGTAACTGTGACGTAGTTATAGGAATCGTAAACAACACAGT


GTATGATCCATTACAACCAGAGTTAGATTCTTTTAAAGAAGAACTTGATAAGTATTTCAAAAATC


ATACTAGCCCTGATGTTGACCTTGGTGACATATCAGGCATAAATGCATCAGTTGTTAATATTCAA


AAAGAAATAGATAGGCTTAATGAAGTTGCTAAAAATCTTAATGAATCTTTAATAGATCTACAAGA


ACTTGGAAAATACGAACAA (SEQ ID NO: 9)








Claims
  • 1. An immunogenic composition comprising: a Francisella tularensis subspecies holarctica Live Vaccine Strain (LVS): having a deletion in a capB gene; andexpressing at least one antigenic polypeptide epitope present in a polypeptide expressed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2);wherein: the antigenic polypeptide epitope elicits an immune response to SARS-CoV-2 in a mammalian host when the immunogenic composition is administered orally (p.o.), intradermally (i.d.), subcutaneously (s.q.), intramuscularly (i.m.), intranasally (i.n.) or by inhalation to the mammalian host.
  • 2. The immunogenic composition of claim 1, wherein the at least one antigenic polypeptide epitope present in the polypeptide expressed by severe acute respiratory syndrome coronavirus 2 is present on SARS-CoV-2 membrane (M) glycoprotein; and/or SARS-CoV-2 nucleocapsid (N) phosphoprotein.
  • 3. The immunogenic composition of claim 2, wherein the LVS expresses a fusion protein comprising at least one peptide epitope present in SARS-CoV-2 membrane (M) glycoprotein and at least one peptide epitope present in SARS-CoV-2 nucleocapsid (N) phosphoprotein.
  • 4. The immunogenic composition of claim 3, wherein the fusion protein is encoded by SEQ ID NO: 1.
  • 5. The immunogenic composition of claim 3, wherein the at least two antigenic polypeptide epitopes are encoded by a polynucleotide sequence that is at least 50, 100, 200, 300 or 400 nucleotides in length.
  • 6. The immunogenic composition of claim 2, wherein the antigenic polypeptide epitope is encoded by a codon optimized polynucleotide sequence.
  • 7. The immunogenic composition of claim 1, further comprising a pharmaceutical excipient adapted for oral administration.
  • 8. A method of making an immunogenic composition, the method comprising: introducing a polynucleotide encoding at least one antigenic epitope present in a polypeptide expressed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into a recombinant attenuated Francisella tularensis subspecies holarctica Live Vaccine Strain (LVS), wherein:the LVS has a deletion in a capB gene; andthe antigenic polypeptide epitope encoded by the polynucleotide elicits an immune response to SARS-CoV-2 in a mammalian host when the immunogenic composition is administered intranasally to the mammalian host.
  • 9. The method of claim 8, wherein the at least one antigenic polypeptide epitope present in the polypeptide expressed by severe acute respiratory syndrome coronavirus 2 is present on SARS-CoV-2 membrane (M) glycoprotein; or SARS-CoV-2 nucleocapsid (N) phosphoprotein.
  • 10. The method of claim 9, wherein the LVS expresses at least two antigenic polypeptide epitopes including: at least one peptide epitope present in SARS-CoV-2 membrane (M) glycoprotein; at least one peptide epitope present in SARS-CoV-2 nucleocapsid (N) phosphoprotein.
  • 11. The method of claim 10, wherein the at least two antigenic polypeptide epitopes present on a severe acute respiratory syndrome coronavirus 2 polypeptide are encoded by SEQ ID NO: 1.
  • 12. The method of claim 11, wherein the at least two antigenic polypeptide epitopes present on a severe acute respiratory syndrome coronavirus 2 polypeptide are encoded by a polynucleotide sequence that is at least 50, 100, 200, 300 or 400 nucleotides in length.
  • 13. The method of claim 8, wherein the antigenic polypeptide is encoded in a codon optimized polynucleotide sequence.
  • 14. The method of claim 8, further comprising combining the LVS with a pharmaceutical excipient adapted for oral or intranasal administration.
  • 15. A method of generating an immune response in a mammal comprising administering the immunogenic composition of any one of claim 1 to the mammal so that an immune response is generated to the antigenic polypeptide epitope present in a severe acute respiratory syndrome coronavirus 2 polypeptide.
  • 16. The method of claim 15, wherein the method comprises administering the immunogenic composition of claim 1 in a primary vaccination; and administering the immunogenic composition of claim 1 in a subsequent homologous booster vaccination one or more times.
  • 17. The method of claim 15, wherein method comprises administering a single dose of the composition of claim 1, and one or more doses of a second immunogenic composition.
  • 18. The method of claim 15, wherein the immunogenic composition is administered orally.
  • 19. The method of claim 15, wherein the immunogenic composition is administered intranasally.
  • 20. Use of the immunogenic composition of any one of claim 1 for the inducing immunity to SARS-CoV-2.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. Section 119(e) of co-pending and commonly-assigned U.S. Provisional Patent Application Ser. No. 63/026,480, filed on May 18, 2020, and U.S. Provisional Patent Application Ser. No. 63/182,111, filed on Apr. 30, 2021, which applications are incorporated by reference herein.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with Government support under grant number AI141390, awarded by the National Institutes of Health. The Government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US21/32203 5/13/2021 WO
Provisional Applications (2)
Number Date Country
63182111 Apr 2021 US
63026480 May 2020 US