1. Field of the Invention
The technical scope of the invention is that of safety and arming devices for projectiles, using micro-electromechanical technology.
2. Description of the Related Art
It is known to produce mechanical Safety and Arming Devices (SAD) that are incorporated into projectile fuses of any caliber. Today, these devices are sought to be made using MEMS (Micro Electro Mechanical Systems) technology enabling them to be considerably miniaturized making them able to be integrated into medium caliber projectiles, for example.
The purpose of safety and arming devices (SAD) is to isolate the detonator and explosive load of a projectile and to enable these two components of the pyrotechnic train to communicate only (according to present-day standards such as STANAG 4157) when at least two distinct firing environment conditions appear. The isolation between the detonator and the explosive load is more often than not made in the form of a plate, also called a screen, slider or barrier, which obstructs the slot by which these two components of the pyrotechnic train are made to communicate.
The firing environment conditions retained to allow the slide to be retracted are often as illustrated in EP-2077431 firstly the acceleration along the firing axis, and secondly, the spin acceleration of the projectile around its axis due to its spin-stabilization (firing from a rifled barrel).
Patent EP-2077431 uses these two loads in order, firstly, to release an inertial lock with a counterweight thanks to the acceleration along the firing axis then, secondly, to make the slider move transversally into a position in which it releases the slot thanks to the spin acceleration.
As it is presented in EP-2077431, the device suffers two drawbacks.
Firstly, the slider is hooked only to the inertial lock. The transversal stresses received by the slider further to impacts on the device (for example during the logistic phases or when the projectile is being rammed into position in the weapon) are thus communicated by the slider to the lock which risks being deviated and blocked and not being able to be released during firing.
Secondly, the lock's counterweight is subjected after unlocking to the transversal stresses due to the projectile's spin. These transversal stresses push the counterweight towards the slider and can cause it to unlock or even to be positioned in front of the slot, thereby disturbing priming.
By FR-2932561 a safety and arming device is also known that comprises a mobile screen immobilized by an inertial lock. The screen is armed by means of a gas generator. Such a device is not implemented in a projectile subjected to spin acceleration and the problem the invention is trying to overcome does not arise in this device. Note that the implementation of a gas generator to move the screen is a complicated and costly solution made necessary because of the absence of sufficient centrifugal inertia.
The invention proposes to overcome the problems encountered in a device such as that described in EP-2077431 firstly by making the lock integral with the body of the device and secondly by guiding the lock's counterweight on its trajectory.
The invention thus relates to a safety and arming device for projectiles, using micro-electromagnetic technology, such device incorporating a slider made mobile by the effect of the centrifugal acceleration with respect to the body of the device and immobilized in a safety position by at least one inertial lock, such lock incorporating at least one means to ensure its blocking in the unlocked position, device wherein the inertial lock incorporates a counterweight having at least one straight groove whose longitudinal axis is parallel to the lock's direction of movement, groove in which a fixed guiding pin integral with the safety and arming device is positioned, since the groove is of sufficient length to allow the displacement of the counterweight with respect to the pin, the slider in its safety position being made integral with the body of the safety and arming device by means of hooking means integral with the counterweight.
Advantageously, the hooking means incorporate at least one spigot matching at least a first hook shape integral with the slider and at least a second spigot matching at least a second hook shape integral with the body of the safety and arming device, the first and second spigots being oriented in the same direction, the ends of the spigots being oriented in the opposite direction to the direction of movement that unlocks the counterweight.
According to another characteristic of the invention, the guiding pin may incorporate a rectangular section substantially occupying the full width of the groove.
Advantageously, the counterweight is suspended between at least two springs whose principal strain axis is parallel to the lock's direction of movement.
The invention will become more apparent from the following additional description made in reference to the appended drawings, in which:
According to
The safety and arming device 1 is made, as that described in patent EP-2077431, using MEMS technology (device micro-machined or micro-engraved on a substrate).
It thus comprises a body 2 (or substrate) onto which a slider 4 is mounted that ensures the interruption of the pyrotechnic train.
The body 2 incorporates two holes 3 arranged on either side of the slider 4. The axis 21 of these holes 3, thus the pyrotechnic train's (D-E) direction of action is thus substantially parallel to the plane of the slider 4.
Such an arrangement of a pyrotechnic train shutter wherein the direction of the pyrotechnic train lies opposite the thickness of the slider 4 and not perpendicular to the plane of the slider (as in usual MEMS devices) is known namely by patent EP-1780496.
The person skilled in the art will refer to this patent which describes the general characteristics of such a type of priming chain and of the slider associated with it.
Note also that the detonator D must of the minimal size enabling it to ensure functioning and that it is coupled with an explosive charge or suitable pyrotechnic relay E. It has been verified that by implementing a detonator incorporating an output stage of 10 milligrams of Hexogen coupled with a very insensitive relay, for example, of HNS (hexanotrostilbene), it is possible to produce holes 3 (or transmission channels) of less than 1 mm2 in section (diameter of the channel of around 1 mm) whilst guaranteeing the initiation transmission required.
It is thus possible for the pyrotechnic effect to be interrupted by a silicon slider with a length L of 3 mm, which is perfectly possible using MEMS technology. This length of the silicon of around 3 mm thus corresponds here to the dimension L of the slider 4 referenced in
The body 2 is substantially parallelepipedic in shape. The body 2 is pierced on either side of the slider 4 by aligned holes 3 that form a slot through the body 2 constituting a direction of action 21 for the pyrotechnic train. The interior of the body 2 incorporates the slider 4 that is positioned substantially at the centre of the device 1 and an inertial lock 20 arranged to one side of the body. The slider 4 incorporates a hook 5 on its rear side opposite the lock 20 as well as two notches 6 on two other sides opposite the edges of the body 2 carrying the holes 3.
The interior of the body 2 also incorporates two elastic lugs 7 micro-machined with the body 2, lugs which are inclined in the direction of movement of the slider and which are facing one another. These lugs 7 have substantially the same orientation as the notches 6 of the slider 4. They are deformed by the passage of the slider 4 and thereafter come to lodge in the notches 6.
In the safety position shown in
The counterweight 9 is positioned laterally to the slider so as to move in the same plane as the slider 4 but in a perpendicular direction to the movement of the slider 4. Thus, the assembly remains compact, the thickness of the device not being increased by the stroke of the counterweight 9.
The counterweight 9 is retained at each of its ends and along the same longitudinal axis 22 by two springs 15 and 16. The counterweight 9 incorporates a groove 13 oriented along a longitudinal axis 22. This groove 13 passes through the counterweight 9 transversally. Inside the groove 13 there is a fixed guiding pin 14 integral with the body 2 by a bottom wall 23 on which the body 2 is positioned as well as the different mobile parts (slider 4, counterweight 9, . . . ).
The lower part of the counterweight 9 incorporates a pair of tongues 17. On either side of the lower spring 16 there are two body walls that incorporate notches 18 to receive the tongues 17. The assembly formed by the tongues 17 and the notches 18 constitutes means to block the inertial lock 20 in its unlocked position.
Still according to
The upper spring is thus extended whereas the lower spring 16 is compressed. Such an assembly of the counterweight 9 between two springs 15 and 16 mounted in opposition to one another helps to limit any buckling of the compressed spring, to improve guiding accuracy and above all to control the stiffness required for the inertial lock.
During its translation, the counterweight 9 is guided by the pin 14 positioned in the groove 13, aligned with axis 22 that is also that of the springs and of the inertial stress P. At the end of its stroke as seen in
From then on the slider 4 is free to translate and under the effect of the centrifugal acceleration R due to the projectile's spin it is able to slide to the end of the body 2 of the device positioned opposite the inertial lock 20.
For safety reasons, the safety and arming device 1 should not be in the armed position before the projectile has left the gun barrel. For this, braking means which are not shown but which are described in patent EP2077431 will slow down the stroke of the slider 4 so that the latter only reaches its position at the end of its stroke in contact with a limit stop 25 once the projectile has exited the barrel.
The lugs 7 are engaged in the notches 6 and lock the slider 4 in its armed position. The holes 3 are thus released and the initiation of the detonator D will be able to cause the detonation of the explosive load E.
Number | Date | Country | Kind |
---|---|---|---|
10 02825 | Jul 2010 | FR | national |