The present invention relates to a biosafety cabinet that is equipment for realizing a safe operation environment to handle microorganisms, pathogens, or the like, and a vibration damping mechanism for a fan filter unit which includes a rotating unit therein.
In the related art, when microorganisms, pathogens, or the like are handled, a biosafety cabinet is used to safely perform an operation by maintaining an inside purity and physically isolating the microorganisms and pathogens being handled from the human and the environment.
Techniques disclosed in Patent Documents 1 and 2 are known as the biosafety cabinet.
Patent Document 1 discloses a biosafety cabinet that exhausts air outdoors through open type duct connection, in which when there occurs a possibility that a defect occurs with an outdoor exhaust duct system and the exhaust air of the biosafety cabinet which contains a small amount of volatile noxious substances leaks from an opening portion of an open type duct to a laboratory, the biosafety cabinet issues an alarm.
Patent Document 2 discloses a technique where a display device such as a monitor screen provided in a biosafety cabinet is disposed at a position where the display device is not affected by the diffused reflection of light from a fluorescent lamp or aging by irradiation from a sterilization lamp and does not become a resistance to an airflow path when an operator performs an operation using the biosafety cabinet while checking a standard operation procedure or specimen data, the display device is also protected from a decontamination operation, and dirt is prevented from adhering to a display related part.
Patent Document 1: JP 2017-78527 A
Patent Document 2: JP 2016-165249 A
The biosafety cabinet includes a rotating unit called a fan filter unit (FFU) including a fan which is driven to rotate by a motor. The biosafety cabinet includes a built-in vibration generation source.
In the related art, in the adjustment of a pharmaceutical solution, or the like which is an operation in the biosafety cabinet, the vibration of the fan is not a major problem; however, when a microscope which is an operation object is installed in an operation space and the number of cultured tissues or cells on a Petri dish is counted, the microscope sways due to a tiny vibration, and thus an image from the microscope looks blurry, the counting cannot be accurately performed, and the like, which are new problems.
Patent Document 1 and Patent Document 2 do not disclose any technique regarding the dampening of vibration from the vibration generation source of the FFU.
An object of the present invention is to provide a biosafety cabinet that is capable of preventing a reduction in operability by vibration, and a vibration damping mechanism for a fan filter unit.
According to a preferable example of the present invention, there is provided a biosafety cabinet including: an operation stage on which an operation is performed; an operation space in which an operator performs an operation; a front plate that is disposed in a front surface of the operation space; an operation opening that is connected to the operation space; exhaust means for taking air in from the operation opening and exhausting air in the operation space outside the biosafety cabinet through air purification means; and a vibration damping mechanism.
According to another preferable example of the present invention, there is provided a vibration damping mechanism in a fan filter unit that includes a rotating unit for blowing air to an external device, and a housing, the mechanism includes a mechanism that prevents vibration from the rotating unit from being transmitted from the housing to the external device.
According to the present invention, it is possible to prevent a reduction in operability by vibration.
Hereinafter, examples will be described with reference to
An opening is provided in a central area of a housing 101 of a biosafety cabinet 100, and an operation space 104 is provided therebehind. A front plate 102 is provided on a front surface side of the operation space 104 so as to block an upper portion of the opening, an operation opening 103 is provided on a lower side thereof, and an operator inserts the hands into the operation space 104 from the operation opening 103 to perform an operation. The front plate 102 is formed of a transparent material such as glass, and the operator can see an operation through the front plate.
An operation stage 105 which is substantially planar is provided on a bottom surface of the operation space 104, and the operator performs an operation on the operation stage. An air intake port 107 leading downward is provided close to the operation opening 103 on a front side of the operation stage 105. The air intake port 107 is formed of, for example, a slit that extends along the operation opening 103 in a rightward and leftward direction of the housing 101. A back flow path 108 leading from the air intake port 107 to an upper portion of the housing 101 is provided on a back surface side of the operation space 104.
An air blow side fan filter unit (FFU) 109 is provided above the operation space 104. The air blow side FFU 109 is formed of a fan which is driven to rotate by a motor and is air blowing means, and a filter which removes microparticles, for example, a HEPA filter 109A which is air purification means. The air blow side FFU 109 blows purified air, which is free from the microparticles, into the operation space 104. An exhaust side fan filter unit (FFU) 110, which includes a fan that is driven to rotate by a motor and is air blowing means, is provided in the upper portion of the housing 101, and removes microparticles from a portion of air with the filter, for example, a HEPA filter 110A to exhaust the portion of air outside the device.
In
At the time, if only an air flow denoted by reference sign 92 is blown into the operation space 104, air in the operation space leaks outside, which is a concern. For this reason, the exhaust side FFU 110 is provided, and a portion of air is discharged outside through the HEPA filter 110A. Therefore, a pressure in the operation space 104 decreases, and an air flow 94 to be introduced from outside to inside through the operation opening 103 in a lower part of the front plate 102 is formed. If the air flow 94 flows directly into the operation space 104, the purity of the operation space decreases.
However, since all of the air 94 flowing in from the operation opening 103 and the majority of the air 92 blown into the operation space 104 are taken in from the air intake port 107 by properly controlling the air volume of the air flow 92 which is blown into the operation space 104 from the air blow side FFU 109 and the air volume of an air flow 93 which is exhausted outside from the exhaust side FFU 110, owing to the air flow 92 blown into the operation space 104, an atmospheric barrier (air barrier) is formed to prevent the air 94 from flowing into the operation space 104 from the operation opening 103.
Therefore, it is possible to realize an equilibrium where the operation space 104 is not contaminated by air from outside and no air leaks outside before the inside is purified. In addition, therefore, even though the operator inserts the hands into the operation space 104 through the operation opening 103 to perform an operation, it is possible to realize the maintenance of the purity and the prevention of contamination.
Example 1 is an example where a microscope 50 which is an operation object is floated from the operation stage 105 of the biosafety cabinet. In Example 1, the configuration where this floating is performed by air will be described.
The microscope is floated as in the air hockey by ejecting air from an air ejection port toward the microscope 50 which is placed on a floatation table 40 disposed on the operation stage 105.
Since the air is required to have a high pressure, when the microscope 50 is used, purified air may be introduced from a high pressure tank and ejected.
A floatation air 60 is purified air which is introduced from a floatation air pipe 61. It is possible to allow the floatation air 60 to flow between side surfaces of the floatation table 40 and the horizontal movement restriction members 62, and it is possible to impart the effect of restricting vibration in a rightward and leftward direction to the floatation air 60 by setting the distance between the horizontal movement restriction members 62 to be larger than the width of the floatation table 40. Since the floatation air 60 is required to have a high pressure, only when the microscope 50 is used, purified air may be introduced from the high pressure tank and ejected.
In
Current is controlled to flow to a coil of the electromagnet 73 such that the polarities of the electromagnet 73 and the permanent magnet (A) 71 which face each other become the same polarity.
When the operation stops, the current attenuates gradually. The gradual attenuation is performed to prevent that the floatation force dissipates rapidly and an impact is applied to the microscope 50.
In addition, an impact absorption member having flexibility may be provided between the floatation table 40 and the operation stage 105 to be separated therefrom during floating and come into contact therewith during descending. The impact absorption member is provided to prevent an impact from being applied to the microscope 50.
As illustrated in
In this case, since the right and left magnets are not required to support the weight of the floatation table 40 or the microscope 50, it is possible to use the right and left magnets which have smaller sizes or weaker magnetic forces than that of the permanent magnet (A) 71 or the permanent magnet (B) 72 for floatation. The same applies to a case where as illustrated in
A connection member 81 which is a deformable material such as rubber is disposed in a surrounding region of the operation stage 105. In a case where the operation stage 80 which is separated is floated by air or magnets, it is possible to further improve the vibration damping performance.
In addition, both of the air blow side FFU 109 and the exhaust side FFU 110 may be suspended by the wire 30 or the like. In addition to the configuration where both are suspended by the wires 30 which are independent from each other, as illustrated in
In Example 5, with a simple mechanism, it is possible to better dampen vibration which is transmitted to the operation stage 105 than a case where the operation object is floated.
In the above-described examples, the vibration damping mechanisms targeted for the biosafety cabinet have been described, and there are a semiconductor production device and the like as target devices to which air is blown from the FFU. In order to prevent vibration from the FFU which is a vibration generation source, as will be described below, a vibration damping mechanism is configured to prevent vibration from being transmitted from the rotating unit of the fan filter unit (FFU) to an external device.
For example, a mechanism which floats the rotating unit in a housing accommodating the FFU is provided. In this case, since it is difficult to obtain air, it is preferable that this floating is performed by magnetism.
Subsequently, the rotating unit in the housing of the FFU is suspended by a wire. The housing itself of the FFU or the rotating unit therein may be configured to be suspended from outside by the wire. As described above, the installation to the support arm, the suspension from the ceiling, or the like is applicable as a suspension method.
Number | Date | Country | Kind |
---|---|---|---|
2018-083429 | Apr 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/047826 | 12/26/2018 | WO | 00 |