This application claims priority to Italian Patent Application No. TO2004A000218 entitled “Dispositivo di sicurezza per valvola d'accension di un bruciatone a gas” filed Apr. 8, 2004, incorporated herein by reference.
The present invention relates to a safety device for a lighting valve of a gas burner, exemplary for water heaters.
More specifically, the invention relates to a safety device for a lighting valve of a gas burner, exemplary but not exclusively, for domestic water heaters, comprising a starting button, a control shutter actuatable through the starting button and a cutoff shutter controlled by the starting button, according to the introductory portions of the principal claims.
A gas water heater generally provides a control pilot light for the main burner, a regulating device for the burner controlled by manual controls and by the temperature of the water and a safety device, which prevents the flowing of the gas to the burner in the case of turning off the pilot light.
Although water heaters with burners provided of piezoelectric or electronic type lighting devices are normally on sale, water heaters having flame lighting system for the gas burners are still commonly produced.
In a safety device for a gas water heater of known type, the cutoff shutter is downstream of the control shutter and upstream of a thermostatic shutter for the main burner. The control shutter is also controlled by a holding, electromagnet, in turn fed by the current of a thermocouple heated by the pilot flame. The thermostatic shutter is adjustable through a knob, which further provides a given start position, of minimum feed, for the gas burner.
In the condition of rest, the cutoff shutter is open and the control shutter is closed. When is depressed, the starting button closes the cutoff shutter and opens the control shutter. In this condition, the user can light the pilot light whilst, for the action of the thermocouple, the electromagnet holds open the control shutter. A following lifting of the button opens the cutoff shutter and allows the flow of the gas to the burner under the control of the thermostatic shutter and its automatic lighting by the pilot light.
The known safety device is generally effective to prevent the feeding of the main burner before the lighting of the pilot light, avoiding risks of saturation of the combustion chamber and consequent bursts. Nevertheless, the phase of starting of a lighting valve can be source of problems, particularly in the cases in which the user manually lit the pilot light by means of matches, lighters and free flames. A particular risk arises when the thermostatic shutter is open and the user unintentionally releases the starting button before moving away the hand from the area of the pilot light. A sudden lighting of the main burner during the return to rest of the button can cause fear and burns in the most unfavorable cases.
However, also if a water heater provides a piezoelectric or electronic system for the lighting of the pilot light, the safety device above described can cause problems. It may depend on improper sequences in the depression/lifting operations of the starting button and/or to anomalies in the functioning of the system, with hazards of leaks of gas in the combustion chamber and consequent hazards of bursts.
An object of the invention is to accomplish a safety device for a lighting valve of gas burners, exemplary for water heaters, which assures high security standards together with easiness of operations for the user.
This object is attained by the safety device for lighting valve of a gas burner, exemplary for domestic water heaters according to the characteristic portions of the principal claims.
The characteristics of the invention will become clear from the description that follows, provided merely by way of non-restrictive example, with the aid of the accompanying drawings, in which:
a show schematic views of a water heater with a relative lighting valve and a gas burner of known type;
a-4d show perspective schematic views of details of the valve of
The lighting valve 14 is outside the water heater 12, whilst the nozzle 17 for the pilot light is accessible through a door 19 of the container 13. The gas, as methane, liquid gas etc. enters into the valve 14 through an input pipe “G” and the valve 14 feeds the nozzle 17 through a pipe “F” and the burner 16 through a pipe “B”. The valve 14 is connected with the thermocouple 18 and the thermostat through the leads of the element “T” and through the conduit “R”, respectively. In particular, the lighting valve 14 includes a starting button 21 for the feeding of the pilot light and a knob 22 for regulating the temperature of the water in the reservoir.
An inlet 37, ducts 38 and 39 and a sleeve 40 for the conduit “R” of the thermostat are evident in the valve body 33. The inlet 37 is connectable with the input pipe “G”, whilst the duct 38 is connectable with the pipe “F” for the nozzle of the pilot light and the duct 39 is connectable with the pipe “B” for the burner. Further, the valve body 23 lodges a control shutter 41, a cutoff shutter 42 and a thermostatic shutter 43 (
The inlet 37, and the ducts 38 and 39 are connected each the other through an input chamber 44, an intermediate chamber 46 and a cutoff chamber 47, respectively. The input chamber 44 is gas connected with the inlet 37; the intermediate chamber 46 is interposed between the chambers 44 and 47 and is in gas connection with the duct 38 for the nozzle of the pilot light; and the cutoff chamber 47 is gas connected with the duct 39 for the burner.
The chambers 44 and 47 lodge the control shutter 41 and the cutoff shutter 42, respectively. The output of the input chamber 44 and the input of the cutoff chamber 47 are delimited by shutter seats 48 and 49 for the disks of the shutter 41 and of the shutter 42 and these seats put the intermediate chamber 46 in gas connection with the chambers 44 and 47. The seats 48 and 49 are of circular section, parallel each the other and substantial coaxial.
The control shutter 41 is in axis with the seat 48 and comprises a gastight disk 51 and a contrast head 52 mounted on a free end of an actuating stem 56. The disk 51 normally closes the seat 48 for the action of a spring 53, whereby preventing, in the use, the flowing of the gas from the input chamber 44 to the intermediate chamber 46 and, therefore, to the pilot light nozzle 17 and to the main burner 16 (see
The valve body 33 further provides, along the duct 39 and downstream of the cutoff chamber 47, a chamber and a respective seat, not shown in the figures, for the thermostatic shutter 43. The shutter 43 is operatively connectable with the thermostat of the water heater 12 through the conduit “R” and with the control knob 34 for controlling the flowing of the gas to the burner 16 as function of the temperature of the water and the position of the knob 34, in a well known manner.
The cutoff shutter 42 can be opened solely when the pilot light is on and the starting button 36 is lifted. Specifically, the valve 23 includes an electromagnet 54 for the control shutter 41 which is electrically connectable with the thermocouple 18 through the leads of the element “T”. The electromagnet 54 is such to hold back the disk 51 in an open condition and at an end stop, against the action of the spring 53, when the pilot light heats the thermocouple according to a known technique.
In the starting button 36, the actuation stem 56 is in axis with the seat 49 and supports the cutoff shutter 42 and a return spring 57. At rest, the spring 57 maintains the starting button 36 in the lifted position and the cutoff shutter 42 in an open condition. Moreover, a free end of the stem 56 is arranged in front of the contrast head 52 of the control shutter 41. These components are dimensioned so that the complete depression of the button 36 up to the end stop of the electromagnet 54 causes the closing of the seat 49 by the shutter 42 and, in sequence, the shifting of the gastight disk 5. Thus, the shutter seat 48 will be opened for the feeding of the pilot light nozzle 17 in a condition of cutoff of the gas for the burner 16.
With the lighting of the pilot light and the button 36 depressed, the electrical current produced by the thermocouple 18 energizes the electromagnet 54. It holds open the control shutter 41, with flowing of the gas into the intermediate chamber 46 and the cutoff chamber 47. The lifting of the button 36 does not modify the state of the shutter 41 but causes the opening of the cutoff shutter 42 with flowing of the gas to the main burner under the control of the thermostatic shutter 43 and its lighting by the pilot light.
According to the invention, the safety device, depicted with 61, has such a structure to start the lighting according to an univocal procedure which ensures conditions of total protection for the user. Specifically, the depression of the starting button 36 is subordinated to a given condition of alignment, through rotation, at a predetermined angular start position. This depression causes a hooking condition, in which the cutoff shutter 42 is closed and the control shutter 41 is under the control of the thermocouple 18.
An unhooking condition, in which the starting button 36 is released for its lifting by the return spring 57 is subordinated to a further rotation of the button. In the unhooked condition, the cutoff shutter 42 is open, whilst the control shutter 41 remains under the control of the thermocouple 18.
The structure of the invention prevents any uncontrolled lighting of the gas in the chamber of combustion. In fact, also in the case in which the thermostatic shutter 43 is open and the user releases the starting button 36 before moving away the hand from the area of the pilot light, the main burner 16 is isolated from the inlet 37 in view of the hooking condition of the button. With safe, the gas can be lit only after the deliberate action of rotation by the user such to enable the releasing of the starting button 36.
In detail and with reference to the
The safety device 61 includes a pin element 67 arranged in an angularly fixed position with respect to the starting button 36 and adapted to cooperate with the hub 63 to define the above described procedure of start.
The device 61 is integrated in a starting group 68 comprising a guide sleeve 69 for the actuating stem 56 and stop elements 71 mounted adjacent to the free end of the stem 56. The cutoff shutter 42 is slidably mounted on the stem 56 and is arrested against the stop elements 71 by a holding spring 72 opposed by the guide sleeve 69.
The hub 63 of the button 36 has a cylindrical surface 73 providing a recessed terminal section 74, a longitudinal notch 76 and a transversal notch 77. The recessed section 74 is limited by an annular shoulder 78 (see
The longitudinal notch 76 is defined by two sides of guide and by a bottom that begins from the recessed section 74 and proceeds with an inclined ramp-like section toward the surface 73 and with a descending step section 81 to which follows a basis section 82 adjacent to the step section 81. The inclined section is such that the distance from the longitudinal axis starting button 36 increases in the sense of depression of the button.
The transversal notch 77 includes two guide margins and a bottom which is defined by the basis section 82 and by two inclined sections 83a and 83b, ascending to the surface 73. Thus, the distance of the bottom from the longitudinal axis of the button 36 along the transversal notch increases, with the increasing of the distance from the axis of the longitudinal notch 76. In turn, the guide margin close to the reduced section 74 is substantially coplanar with the step section 81.
A seat 84 of the sleeve 69 (see
In an initial condition, corresponding to the lifted position of the starting button 36, the inside end 86 of the pin 67 projects from the seat 84 and engages the recessed terminal section 74 of the hub 63 in front of the annular shoulder 78. It prevents the depression of the button 36 as represented in the configuration “I” shown in
The rotation of the starting button 36 up to a reference start position causes the longitudinal notch 76 to be arranged in front of the pin element 67, as shown in the configuration “II” of
Now, depressing the starting button 36, the pin element 67 is forced to reenter in the seat 84 by the ascending section of the notch 76 against the action of the radially acting spring 88, up to the step section 81. The depression continuing, the spring 88 snap moves the pin element 67, positioning the inside end 86 on the basis section 82 and, in sequence, on the final section 79 of the longitudinal notch 76, according to the configuration “III” of
The following release of the starting button 36 causes a short lifting of the button 36 under the action of the return spring 57 (to see
A limited rotation of the starting button 36 in the hooking condition, out of the angular start position, causes the pin element 67 to reenter partially in the seat 84 for the action of the ascending section 83a or 83b. Anyway, it has no effect in the releasing of the button, in view of the remaining contrast on the pin element 67 practiced by the margin of the notch 77 coplanar to the step section 81. The rotation continuing over the extension of the transversal notch 77, the end 86 of the pin element 67 engages the cylindrical surface 73 according to the configurations “V” of
In the starting group 68 (FIGS. 3 and 7-10), the guide sleeve 69 is constituted by a cylindrical body 90 with a first annular notch 89 in which the seat 84 for the pin element 67 is also defined. The radially acting spring 88 is defined by a resilient annular leaf, shaped as a cut ring, lodged in the notch 89 and having a fold 91 engaged in a hole of the annular notch 89 and an operational section which urges the outside end 87 of the pin element 67.
The guide sleeve 69 is locked in a cylindrical hollow 92 of the valve body 33, whilst an “O” ring 93, in resilient material, interposed between a second annular notch of the body 90 and the cylindrical hollow 92, assures the gas seal. The sleeve 69 has a substantially frusto-conical terminal section 94 projecting from the body 90 and a cylindrical vane 96 formed in the body 90. The terminal section 94 defines the guide for the sliding of the stem 56 and the vane 96 is provided for guiding and receiving a portion of the hub 63.
The return spring 57 is partially lodged in the vane 96 (
The cutoff shutter 42 includes a gastight disk 99, also in resilient material, and a spring holding disk 101. The gastight disk 99 has a surface opposed by the stop elements 71 and a hub 102 (see
The disk 101 is shaped for receiving an end of the holding spring 72 and is provided of a hole in which the hub 102 of the disk 99 is lodged. The intermediate portion of the spring 72 is arranged around the frusto-conical section 94 and the other end of the spring 72 is lodged in an annular seat at the base of the section 94.
The operation of the valve 23 and of the relative safety device 61 will result evident from the
In the safety device 61, as shown in
In
b shows the components of the device 61 of
The stroke of the starting button 36 continuing, the actuating stem 56 withdraws the gastight disk 51 from the seat 48 through the head 52. It puts in communication the intermediate chamber 46 with the input chamber 44, whilst the spring 72 maintains the gas seal of the disk 99 with the seat 49. The depression of the button 36 is limited by the end stop condition of the holding electromagnet 64. Now, the gas feeds the nozzle 17 through the duct 38 and the user can proceed to the lighting of the pilot light in the safe condition of cutoff of the main burner. As consequence of the lighting, the thermocouple energizes the electromagnet 54 with holding of its mobile portion and maintenance of the open condition of the control shutter 41.
In
In
Naturally, the principle of the invention remaining the same, the embodiments and the details of construction of the safety device for a lighting valve can be widely varied with respect to what has been described and illustrated, by way of non-limitative example, without by this departing from the ambit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
TO2004A0218 | Apr 2004 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
2297856 | Ames | Oct 1942 | A |
4081235 | van der Veer | Mar 1978 | A |
4242080 | Tabei | Dec 1980 | A |
4442853 | Gort | Apr 1984 | A |
6886581 | Harniet | May 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050233273 A1 | Oct 2005 | US |