The present invention relates generally to safety devices and, more particularly, to a safety device for use with window coverings that are operated by a control loop.
Vertical and horizontal shades or blinds are conventional decorative window coverings that provide comfort by filtering the sunlight entering a room through a window. There are various styles of vertical and horizontal shades or blinds, such as rollers with a single panel construction or Roman or Venetian blinds having multiple panel or slat constructions. Many styles of window shades or blinds are retractable while other styles, such as Venetian blinds, may also be retractable and have rotatable slats for filtering light.
With many types of vertical and horizontal shades or blinds, a control loop, such as a control chain or cord, may be used for operating the window shade or blind. The control loop, or multiple control loops when multiple window shades or blinds are operated on the same window, often extends vertically adjacent one side of the window shade or blind for ready access by an operator. Each control loop has two vertical runs so that an operator can pull on one run to cause the shade or blind to retract or open, and pull on the other run to cause the shade or blind to lower or close.
For those styles of window shades or blinds with rotatable slats, adjustments are made to control the amount of light entering a room through the window by rotating each slat. In a fully open orientation of the slats, the maximum amount of light passes into the room through the window. Conversely, by rotating the slats to a fully closed orientation, the minimum amount of light passes into the room through the window as the light is essentially blocked. Rotation of the slats may occur by way of another control loop, such as a control chain or cord. The control loop for controlling rotation of the slats may also extend vertically on one side of the window shade or blind and have two vertical runs for ready access by an operator.
Known control loops typically form a continuous loop adjacent one or both sides of the window, with the control loop having two vertical runs and an end loop located at the lower end of the control loop. While this configuration for the control loop provides for easy operation of the window shade or blind by an operator, the control loop may pose a threat to small children since the children may become entangled with or strangled by the control loop when they place their heads between the pair of vertical runs. On the other hand, older children, i.e., those typically beyond the toddler years, typically have sufficient strength and coordination to detangle themselves from a control loop should that accidentally occur.
While several known control loop safety devices have been developed in the past in an attempt to reduce the threat associated with these types of control loops, there are still problems and drawbacks with these known safety devices that need to be addressed and better solutions proffered.
The present invention overcomes the foregoing and other shortcomings and drawbacks of control loop safety devices heretofore known. While the invention will be described in connection with certain embodiments, it will be understood that the invention is not limited to these embodiments. On the contrary, the invention includes all alternatives, modifications, and equivalents as may be included within the spirit and scope of the present invention.
The present invention is directed to a safety device for use with a control loop of a window covering. The control loop has a pair of vertical runs and an end loop, and is connected to a control assembly mounted in a headrail of the window covering.
In one embodiment, the safety device includes a rigid elongated housing that is configured to be mounted in a fixed vertical orientation adjacent one side of the window covering. The elongated housing defines a longitudinal channel therein that is configured to receive portions of the pair of vertical runs and the end loop of the control loop within the channel.
A tension member is mounted within the channel and fixed in vertical location relative to the elongated housing. The tension member is configured to engage the end loop of the control loop to effectively provide tension to the control loop.
The upper end of the safety device includes an access opening through which the control loop extends into the channel. The length of the elongated housing may vary as needed to position the access opening at a height within the range of about 48 inches to about 60 inches above the floor so that the access opening is located above the head of most small children. In this way, the safety device encloses the control loop within the elongated housing so that the vertical runs of the control loop are only accessible by an operator, such as an adult or older child, above the access opening at the height in the range of about 48 inches and about 60 inches above the floor. This significantly reduces the likelihood that small children could become entangled with or strangled by the control loop since access to the control loop is prevented below the access opening.
In an alternative embodiment, a safety device for use with a control loop of a window covering includes a first rigid elongated housing that is configured to be mounted in a fixed vertical orientation adjacent one side of the window covering. The first elongated housing defines a first longitudinal channel therein configured to receive portions of the pair of vertical runs of the control loop within the first channel. The safety device further includes a second rigid elongated housing configured to be mounted in a fixed vertical orientation adjacent the one side of the window covering. The second elongated housing defines a second longitudinal channel therein that is configured to receive other portions of the pair of vertical runs and the end loop of the control loop within the second channel.
The first and second elongated housings are spaced vertically from each other so as to be separated by a gap. The gap is configured to expose the pair of vertical runs of the control loop between the first and second elongated housings.
The gap may have a gap width in the range of about 12 inches and 18 inches so that the control loop may be accessed by a disabled operator at a height of about 36 inches above the floor. The width of the gap is selected so that a smaller child cannot place his or her head within the gap or otherwise pull the control loop out of the gap so as to become entangled with or strangled by the control loop.
The access opening of the upper elongated housing is located at a height in a range of about 48 inches and about 60 inches above the floor so as an adult or older child can readily access the control loop above the access opening while smaller children are protected against accidental entanglement with or strangulation by the control loop.
The above and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.
Referring now to the figures, and to
It will be appreciated that while a roller shade 10 is shown in the exemplary embodiment, the window covering may comprise any type of vertical or horizontal blind or shade that may be vertically raised or lowered, or moved horizontally, through operation of a control loop as known to those of ordinary skill in the art.
As shown in
In accordance with the principles of the present invention, and according to one embodiment, a control loop safety device 24 is mounted in a vertical orientation to one of the mullions 20 to prevent small children, such as a child 23 (
The safety device 24 comprises in one embodiment a rigid elongated housing 26 having a rectangular cross-sectional profile and defining a single channel 28 (
In one embodiment, the elongated housing 26 may be constructed as an extruded aluminum tube having the desired cross-sectional profile. In the exemplary embodiment of the safety device 24 shown in
As shown in
The length “h1” of the elongated housing 26 may vary as needed to position the access opening 30 at a height “h2” from a floor 22. Generally “h2” is selected such that the access opening 30 is located within the range of about 48 inches to about 60 inches above the floor 22 so that the access opening 30 is located above the head of most small children. If the base 22 of the mullions 20 has a height “h3” above the floor 22, then the length “h1” of the elongated housing 26 would equal “h2” minus “h3” (for example, 60 inches minus “h3”). Alternatively, it will be appreciated that if the safety device 24 is installed above a window sill (not shown), the length “h1” of the elongated housing 26 would equal “h2” minus the height of the window sill above the floor 22.
With continued reference to
In one embodiment as shown in
The tubular sleeve 46 may comprise a plastic sleeve and have a length generally corresponding to the internal cross-width dimension of the channel 28. In one embodiment, the tubular sleeve 46 has a length between about 1⅝ inches and about 1¾ inches, an inside diameter of about ¼ inch and an outside diameter of about ⅜ inch. The tubular sleeve 46 may be dimensioned so as to be mounted for rotation on the cross-shaft 44. Of course, other dimensions of the tubular sleeve 46 are possible as well.
When the control loop 18 is installed in the elongated housing 26 of the safety device 24 as shown in
As shown in
Referring now to
The tubular sleeve 56, similar to the tubular sleeve 46, may comprise a plastic sleeve and have a length generally corresponding to the internal cross-width dimension of the channel 28. In one embodiment, the tubular sleeve 56 has a length between about 1⅝ inches and about 1¾ inches, an inside diameter of about ¼ inch and an outside diameter of about ⅜ inch. The tubular sleeve 56 may be dimensioned so as to be non-rotatable on the cross-shaft 54. Of course, other dimensions of the tubular sleeve 56 are possible as well.
When the control loop 18 is installed in the elongated housing 26 of the safety device 24 as shown in
In accordance with the principles of the present invention, the safety device 24 is mounted to the mullion 20 via the pair of fasteners 40 so that the access opening 30 is located between about 48 inches and about 60 inches above the floor 22. The control loop 18 is installed in the elongated housing 26 of the safety device 24 so that the pair of vertical runs 19a and 19b extend on opposite sides of the alignment member 52 and the tension member 42 and are connected to the control assembly (not shown) provided in the headrail 14. In this way, the safety device 24 encloses the control loop 18 within the elongated housing 26 so that the vertical runs 19a and 19b of the control loop 18 are only accessible by an operator, such as an adult or older child, above the access opening 30 at a height in the range of about 48 inches and about 60 inches above the floor 22. This significantly reduces the likelihood that small children could become entangled with or strangled by the control loop 18 since access to the control loop 18 is prevented below a height in the range of about 48 inches and about 60 inches above the floor 22.
While not shown, it will be appreciated that a dual version of the safety device 24 is possible having an elongated housing 26 defining a single elongated channel 28 therein, a pair of horizontally spaced apart alignment members 52 located in the upper end of the elongated housing 26 and a pair of horizontally spaced apart tension members 42 located in the lower end of the elongated housing 26. Each alignment member 52 and tension member 42 of a respective pair operates with a respective control loop 18 in the manner described in detail above so that the safety device 24 is able to accommodate a pair of control loops 18 when two window coverings are present covering a single window, or the window covering includes one control loop 18 for raising and lowering the window covering and another control loop 18 to rotate slats of the window covering variably between open and closed positions.
In an alternative embodiment of the safety device 24 as shown in
Referring now to
As shown in
While the mounting of the safety device 124 to the mullion 20 differs from that of the safety device 24, once installed, the safety device 124 operates in a similar manner to the safety device 24 for enclosing the control loop 18 within the elongated housing 126 so that the vertical runs 19a and 19b of the control loop 18 are only accessible by an operator, such as an adult or older child, above the access opening 30 at a height in the range of about 48 inches and about 60 inches above the floor 22.
While the control loop safety devices 24 and 124 as fully described above provide the benefit of limiting a small child's access to the control loop 18, the particular embodiments of the safety devices 24 and 124 may not be readily suitable for operators who are disabled. For example, an operator who is restricted to a wheelchair may not be capable of reaching the control loop 18 at a height in the range of about 48 inches and about 60 inches above the floor 22. However, an alternative embodiment of a safety device 224 as shown in
In the safety device 224 of
The upper elongated housing 226a includes an alignment member (not shown) in the upper end of its channel but does not include a tension member in a lower end of its channel. The upper elongated housing 226a includes an access opening at its upper end, shown covered by the cap 32, so that portions of the vertical runs 19a and 19b of the control loop 18 are received within its channel.
In this embodiment, the access opening (not shown) of the upper elongated housing 226a is located at a height in a range of about 48 inches and about 60 inches above the floor 22 such that an adult or older child can readily access the control loop 18 above the access opening while smaller children are protected against accidental entanglement with or strangulation by the control loop 18. Due to the gap 227 provided between the upper and lower elongated housings 226a, 226b, the control loop 18 is also accessible by a disabled operator at a height of about 36 inches above the floor 22 according to one embodiment.
The lower elongated housing 226b may include an alignment member (not shown) in an upper end of its channel and a tension member (not shown) in a lower end of its channel so that other portions of the vertical runs 19a and 19b and the end loop 19c of the control loop 18 are received within its channel.
While not shown, it will be appreciated that a second cap may be mounted at the upper end of the elongated housing 226b to prevent the deposit and/or accumulation of undesirable items within the elongated housing 226b.
In an alternative embodiment, the gap 227 may be formed by forming a notch in the elongated housing 26 shown in
As will be readily appreciated, the various embodiments of the safety devices 24, 124 and 224 are relatively simple to manufacture and reduce the potential hazard to small children associated with loose control loops used to operate window coverings. The safety devices 24, 124 and 224 do not interfere with easy operation of the window covering, can be readily installed, and can be constructed to be easily operated by a disabled operator.
While the present invention has been illustrated by description of various embodiments and while those embodiments have been described in considerable detail, it is not the intention of applicant to restrict or in any way limit the scope of the appended claims to such details. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicants' invention.
This application claims the filing benefit of co-pending U.S. Provisional Application Ser. No. 61/255,602, filed Oct. 28, 2009, entitled ENCLOSURE FOR ROLLER SHADE DRIVE CHAIN, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61255602 | Oct 2009 | US |