The present disclosure relates to safety drains. The present disclosure has particular applicability to safety drains for swimming pools, fountains, hot tubs, etc. for providing a failsafe entrapment environment.
Main drains are a common feature in most water features such as pools, spas, fountains, artificial streams, rivers, ponds, etc. The drain is typically located in the bottom lowest portion of the body or sump that contains the fluid, which in most cases is water.
Such a drain is designed to allow the body of water to be pumped or gravity drained dry, if and when service is required. It is also used to remove fluid from the vessel and transport this fluid to another location for filtering or other uses. In some cases the main drain line is directly connected to the pump suction. In other cases the fluid is transported by natural differential pressure created by a difference in the fluid elevation similar to the way a garden hose is used to drain small pools or bodies of water. In general, all main drains are designed to evacuate the water or fluid from the fluid container. These drains consist of three major parts:
1. The sump which is the water tight housing that makes up the body of the drain.
2. The grating or cover which has a certain amount of open area allowing the water to pass through it into the sump. The function of the grating is to keep large debris from getting caught down in the drain and or plugging up the conduit connected to the drain by the third component called the face piping.
3. The face piping usually consists of a nipple or nipple and flange on larger diameter pipe. Under certain conditions a human body can get caught on the drain and drown.
To overcome the disadvantages discussed above, the present application is directed to a safety drain that allows for prevention of accidental drowning from being unable to escape from suction of operation of a drain.
The drain according to the present disclosure works similarly to a conventional drain in regard to its general function of removing fluid from a container. However, the present safety drain has a pressurized supply line that brings pressurized liquid from a pump that the drain is supplying back to a centrally located internal distribution fixture at the main drain sump. The internal distribution fixture directs the liquid in a useful direction over the drain cover at an accelerated rate. This generally flat curtain of liquid directly above the drain cover creates a rip tide effect in the entire drain area. The outwardly and upwardly flowing current has significantly increased velocity because it is introduced via a nozzle assembly connected to the rip tide conduit (which returns water directly from the pump that the drain is supplying).
The present safety drain provides significant benefits and features over conventional drains. Its main purpose is eliminating the possibility of human entrapment by introducing a positive current directly above the negative suction current created by the drain effluent piping. The present safety drain pressure return assembly is connected directly to the pump discharge piping without any method of shut off. Thus, if the pump is running, then the liquid rip tide nozzle is delivering liquid above the cover of the drain, so entrapment is impossible. If the pump is shut down, there is no suction on the main drain, so entrapment can not occur.
Due to the rip tide current effect created by the unique design, there is an undertow effect that helps move the water to the small opening between the finished floor surface and bottom edge of the drain. This space is created by the installation feet used to secure the drain to the floor of the container. Furthermore, the continuous current shooting out from the center of the safety drain will push any large floating objects that could cover the entire cover away from the cover with a constant force, which eliminates the possibility of substantial open area coverage.
In addition, the disclosed safety drain can be installed without draining the pool or container of liquid, and the disclosed drain is far less intrusive than many other options in practice or discussed.
One embodiment of the present disclosure is directed to an anti entrapment fail safe drain comprising a drain cover for partially covering an influent opening; a pressurized supply line; and a nozzle assembly in communication with the pressurized supply line and mounted within a drain sump. The nozzle assembly is for directing a pressurized liquid in a pattern over a surface of the drain cover when the drain cover and the nozzle are immersed in the liquid such that a portion of the liquid above the pattern or objects suspended in standing liquid can not be pulled directly toward the drain cover through an influent opening.
In another embodiment, the safety drain further comprises at least one effluent opening for connecting to the drain sump. The influent opening and effluent opening are arranged such that the liquid flows into a pipe in a first direction from the influent opening towards the effluent opening. The pressurized supply line has an outer diameter smaller than an inner diameter of the pipe. Optionally, the pressurized supply line is arranged inside the pipe for returning the liquid to the nozzle assembly in a second direction opposite the first direction.
Additional advantages and other features of the present disclosure will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from the practice of the disclosure. The advantages of the disclosure may be realized and obtained as particularly pointed out in the appended claims.
As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
Reference is made to the attached drawings, wherein elements having the same reference numeral designations represent like elements throughout, and wherein:
A safety drain of the present disclosure will now be described with reference to the drawings.
As shown in
The safety drain 10 additionally has at least one effluent opening 51 for connecting to the drain sump 90; wherein the influent opening 30 and effluent opening 51 are arranged such that the liquid flows into a pipe 50 in a first direction from the influent opening 30 towards the effluent opening 51. The pressurized supply line 70 has an outer diameter smaller than an inner diameter of the pipe 50. This allows for the pressurized supply line 70 is arranged inside the pipe 50 for returning the liquid to the nozzle assembly 40 in a second direction opposite the first direction. The pressurized supply line 70 must have continuous and uninterrupted flow from downstream of the pump to the nozzle assembly 40.
In another embodiment of the present disclosure, a liquid cycling system comprising a pump for circulating a liquid is used to circulate the liquid through the nozzle assembly 40. The conventional pump (not shown) cycles the liquid through the pipe 50 and the pressurized supply line 70 such that upon deactivating the pump, the circulation is stopped in both the pipe 50 and the pressurized supply line 70.
In another embodiment of the safety drain of the present disclosure, the drain cover 20 has a substantially curved shape.
The location and size of these openings 81 will meet all the requirements stipulated by local law and national law, for example the Virginia Graeme Baker Pool and Spa Safety Act (VGB). One significant feature of the present disclosure is that it meets all the criteria set forth by the VGB act where only one main drain exists. Installing the safety drain 80 of the present disclosure over the single existing drain resolves the issue of having two main drains required to comply with the VGB act.
The present disclosure can be practiced by employing conventional materials, methodology and equipment. Accordingly, the details of such materials, equipment and methodology are not set forth herein in detail. In the previous descriptions, numerous specific details are set forth, such as specific materials, structures, chemicals, processes, etc., in order to provide a thorough understanding of the disclosure. However, it should be recognized that the present disclosure can be practiced without resorting to the details specifically set forth. In other instances, well known processing structures have not been described in detail, in order not to unnecessarily obscure the present disclosure.
Only a few examples of the present disclosure are shown and described herein. It is to be understood that the disclosure is capable of use in various other combinations and environments and is capable of changes or modifications within the scope of the inventive concepts as expressed herein.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US2010/027834 | Mar 2010 | US | national |
This application is based upon and claims the benefit of priority from Provisional U.S. Patent Application 61/202,606 filed on Mar. 18, 2009, the entire contents of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61202606 | Mar 2009 | US |