Over 4000 motorcycles deaths occur per year in the US. In many cases a driver hits a motorcyclist that he did not see, or did not see soon enough. Motorcyclists and inventors have come up with a variety of ways to improve the visibility of motorcyclists.
In patent U.S. Pat. No. 4,328,533 Paredes describes an illuminated safety garment. Indeed, the prior art includes a large number of “safety vests” designed to improve the visibility of motorcycle riders. Paredes teaches a complex and cumbersome vest that supports flashing light bulbs on the shoulders. This invention has a first weakness in being a garment, in this case a vest, which must be worn over other clothing. A motorcyclist may not wish to wear a particular article of clothing for a variety of reasons: it may not fit properly; it may interfere with movement; it may not be comfortable; or it may not be compatible with the appearance the biker wishes to project. Paredes' illuminated safety garment suffers from a second weakness in that it is not visible from all directions; and a third weakness that its flashing light bulbs are not visually unique on a visually complex roadway; and a fourth weakness that it requires batteries to operate.
In patent U.S. Pat. No. 4,709,307 Branom describes clothing with a message or pattern. Branon's clothing is primarily for advertising, not for safety. Branom teaches a multi-layer garment with holes through which LEDs may shine. This garment suffers from a fixed message that is not sufficient to assure the attention of other motorists. In addition, this clothing is not legal wear for motorcyclists in all locations.
In patent U.S. Pat. No. 6,517,214 Mitchell et al. describe a vest for hunting. A first weakness of this device is that it is not visible from all directions. A second weakness is that, as a vest, it is an article of clothing that must be worn outermost. A third weakness is that this article is not resistant to abrasion from falls. As described, this vest does not provide sufficient visibility for daytime use.
In patent U.S. Pat. No. 6,611,244 Guritz describes an item that may be either jewelry or a safety device, which produces a pattern of light. Guritz teaches a “small” device that may be worn as “a bracelet, necklace rings, earrings or other relatively small decorative jewelry item,” and is thus not suitable for visibly and uniquely identifying a motorcyclist to another driver in the daytime.
In U.S. Pat. No. 6,997,573 Maese teaches a luminescent vest. This invention suffers from a first weakness as an article of clothing that must be worn outermost. It suffers from a second weakness that it must be wired to the motorcycle. It suffers a third weakness that it is not particularly visible in the daytime.
Motorcyclists are not the only users of open conveyances who risk injury or death because of low visibility. Over 50,000 bicyclists are injured each year.
This invention overcomes many of the weaknesses of prior art. It may be easily worn by the users of a variety of open conveyances, not just motorcyclists. It does not require a connection to the electrical system of the host vehicle. It is not a garment, and thus it does not interfere with the comfort and appearance of a biker. It is waterproof and abrasion resistant, and thus suitable for extended use by a motorcycle rider. It is bright and provides unique visible light patterns and sequences, providing clear, unique visibility to a motorcycle rider in the daytime. It is visible from all sides.
In one embodiment, this invention comprises a long, flexible light-emitting source, such as a strip of multi-color LEDs, placed inside a rugged, flexible, transparent tube. Two such light-emitting strips may be used back-to-back to assure visibility from all sides, or, a single strip may be folded in half so that each half is back-to-back in the tube. The tube is capped at the ends and placed around the torso and over the shoulders such that is both comfortable and highly visible from all sides. The ends of the tube are fastened together near the chest, then a second fastener secures the connected ends to the center of the tube in the front of the torso, creating a fit on the torso sufficiently firm to keep the tube from flapping in use, yet loose enough to allow easy movement. Connection to a controller and power source is provided via one of the ends or via one of the fasteners.
In one embodiment, the power source may be either a local battery pack or a power connection to a separate power source, such as a motorcycle. This flexibility to the rider is by this feature is particularly important. For short trips, or trips on a bike that is not configured to provide power, a mobile battery, self-contained, or internal to the controller or internal to the tube, powers the device. For long road trips, continuous power is assured by a connection to the bike's power system. A battery may be integrated with one or more of the fasteners. The batteries, fasteners, and controller may be integrated into a single physical component.
Different embodiments provide different controllers and controller configurations. Some controllers permit the driver to easily change to a different illumination pattern via a single button or touch, for example, while driving. Some controllers permit multiple devices on multiple riders, who are riding as a group, to display identical or coordinated illumination sequences. One controller may control more than one device. Some controllers permit a variety of illumination patterns to be selected in advance. Some controllers permit on-vehicle control by a personal electronic device. This allows an “app,” for example, to control the lighting of this invention responsive to a wide variety of variables.
One such variable might be location or input from an accelerometer. For example, when a biker is braking, or about to make a left turn, or revving his engine, or changing gears, a particular illumination pattern or sequence is shown.
An important improvement over prior art is the characteristic that this invention is not a garment. In addition to the issues of comfort and fit, many bikers wish to present a particular image, and that image may not be that of “government worker wearing a safety vest.” This invention permits a biker to wear whatever outer-garment he wishes, such as an outer-garment with a club logo, for example, yet be clearly visible so as to live.
Other wearing configurations of embodiments are possible. A first variation is to reverse the above configuration front to back, so the fasteners are near the low-center of the back. A second variation shortens the U shape, 11, and lengthens the two end ends of the tube 13 and 14 so that the fastener is located over the user's chest, perhaps in front of his heart. Yet a third variation is to reverse the second variation front to back so that the fasteners are near the center of the user's back. For a person of average build, a suitable length of the tube is eight feet. Other suitable lengths are in the range six to ten feet. Yet another suitable range is four to twelve feet. Two sizes, three sizes, four sizes, five sizes, or six sizes may be offered.
Embodiments may be offered in different lengths for users of different builds. Alternatively, the tube may be shortenable by the user. Alternatively, the fasteners could provide adjustment to improve fit. For example, a fastener at one end of the tube could slide on the tube to a desired position. As another example, a fastener similar to belt buckle could be used to select a desired hole among a plurality of holes of the tube.
There are numerous embodiments of one or more fasteners. A fastener might be a single component, as far as the user is concerned, permitting three entry points. The entry points may be similar to a seat belt half-buckle, as shown in
Embodiments may employ fastener mechanisms similar to car seat belts, in including child-seat restraints, and car racing seat belts and harnesses, such as are well known in the art.
Another embodiment of the fasteners is to provide three components. The first two components are attached to the tube ends, 13 and 14. These two components attach to each other. A third component, 15, then attaches to the joined 13 and 14. This configuration is shown in
One embodiment uses magnets in the fasteners. One suitable implementation uses rare earth Neodymium magnets, such as a NdFeB N42, as bars, ¾ inch by ¾ inch by 2 inches located in each component of the fastener.
Yet another embodiment of the fasteners uses webbing placed through webbing fasteners. Such fasteners are well known in sporting equipment, sports harnesses and mountain climbing gear, and may be found described in patent applications US2008/0189917, EP2036451 and EP0968374, for example.
Yet another embodiment of the fasteners uses hook and loop fasteners, such as Velcro®.
Yet another embodiment of the fasteners uses carabineers.
Yet another embodiment uses a hook on one end, and either a hook or a ring on a second end. Yet another embodiment uses interlocking rings.
Turning now to
A question may arise as to proper fit. The best fit is the one comfortable by and selected by the user, based on the user's preference for snugness v. the ability to move freely in his activity. Typically, being able to easily place one hand flat between the tube and the torso while the user is in position on his conveyance, and not observing any slop or gaps between the belt and the sides of the user at the waist, indicates a suitable fit. The portions of the tube over the shoulders should not slip off. Generally, the user should be able to lift his arms to horizontal.
In
In
In
A convenient embodiment is having the controller and at least one fastener integrated, as shown in
As one trained in the art appreciates, a large variation of controller implementations is possible.
The controller may communicate with the strip's electronics via an infrared link.
A typical distance means the distance that another driver sees a motorcycle rider, at a distance such that the other driver may safely avoid the motorcycle rider.
No fasteners are shown in
Power wiring to the light-emitting strip, 73, from either a controller or from strip electronics may have multiple forms. One form comprises four wires: common, red (r), green (b), and blue (b). The controller provides appropriate current, which may be pulsed, between each of the color-wires and the common. Varying the current, or the duty cycle of pulses, effects a brightness change on the corresponding color light emitting elements on the strip. Colors other than red, green, or blue are achieved by turning on more than one color at a time. More complex wiring permits patterns and sequences where not all light emitting elements, 72, of one color are illuminated at the same time, as one trained in the art appreciates. Some drive electronics may be integrated with the strip. Suitable elements within the strip, 72, include tri-color surface mount LEDs mounted on a flexible circuit board, at a density of 15 LEDs per linear foot. Another suitable density is 10 to 20 LEDs per linear foot. Another suitable density is 3 LEDs to 200 LEDs per linear foot.
In one embodiment a flexible strip has light emitting elements on one surface and the tube is such that light is emitted radially around the tube, although some portions may emit more light than other portions. For example, the tube may be translucent or partially reflective.
In one embodiment a flexible strip has light emitting elements on both surfaces.
In one embodiment, a flexible strip has light emitting elements on one side, but some such elements provide light primarily in a first direction and other such elements provide light primarily in a second, different, direction. For example, the strip may have holes, with LEDs mounted so that light passes through the holes in the strip. Also, right-angle light emitters may be used.
In one embodiment, a flexible strip is twisted, corkscrew like, so that even though the light-emitters on the strip provide light in a primary direction, the tube as a whole emits light in all radial directions.
In one embodiment, two flexible strips are used, back-to-back. This is describe below, for
In one embodiment a user or distributor may shorten the tube at one end, such as at end 92. If power enters the light-emitting strip from the center, 93 and 94, or from end 91, then end 92 may be shortened appropriately, such as at cut or snap points provided for this purpose, without having to rewire or otherwise modify the invention. The combination of being able to shorten the tube and slide the shell 97 along the mid-point provides for an easily adjustable size (to a smaller size) of this embodiment.
Functions that might be performed while the user of an open conveyance is not operation, by an app on the personal electronic device, in
As one trained in the art appreciates, there are many other ways to design, build and install one or more light-emitting flexible strips in a flexible tube. More than two strips could be used, or one strip could have emitters, such as LEDs, pointing in multiple directions. A single strip could be twisted, corkscrew like, so that light exits the tube in all radial directions. A strip may be folded once or more than once inside the tube.
In one embodiment, where operation is at least partially controlled by a personal electronic device, the personal electronic device may communicate with other personal electronic devices which in turn control devices of this invention worn by other users. Such communication may be direct, such as via Bluetooth™ or an ad hoc wireless network, or through the Internet or through cellular data. In this embodiment the illumination sequences of at least one other device are responsive to at either a sensor, stored sequence, or the illumination sequence of the present device. For example a lead biker's pattern could be duplicated, mimicked, or used to provide motivation for other biker's illumination patterns. All bikers in a group could have the same pattern, or all have unique patterns, or one pattern could be repeated from biker to biker, in turn, as non-limiting examples. All bikers might have the same pattern until some unusual condition caused one biker's pattern to be different. Such a difference would be immediately noticeable by all the bikers. A lead biker could display one color, while a trailing biker a second color, while bikers in the middle display a third color. In this way, the bounds of a group of bikers would be easy to see. My means of GPS or other sensors, such color assignment could be entirely automatic. This embodiment is not limited to bikers. It is equally suitable for bicyclists, skiers, and users in other sports and open conveyances. It is equally suitable for a group of people, such a family or friends, in a crowded environment, such as at transportation, a fair, a concert or a sporting event, so that they may locate each other more easily. Embodiments of this type may be effectively controlled via one or more apps running the users' personal electronic devices. Embodiments of this type include: (a) communicating devices; (b) a system of communicating devices; and (c) a method of communicating among a group of user using devices of this embodiment.
In one embodiment the tube may be shorted by an end customer, a retailer, or a distributor, for example, without the use of specialized tools. For example, a fastener may be removed from an end of a tube that has no protruding wires or an attached controller, the tube cut with a knife or scissors, then the light-emitting strip snapped off at a perforation provided for this purpose, then the fastener re-attached to the now-shortened tube.
All examples are sample embodiments. In particular, the phrase “invention” should be interpreted under all conditions to mean, “an embodiment of this invention.” Examples, scenarios, and drawings are non-limiting. The only limitations of this invention are in the claims.
Text below provides additional non-limiting support for claims. Additional discussion on claim, word, and phrase usage and meaning is provided elsewhere herein.
A tube may be circular or elliptical in cross section, or rectangular, or another cross-sectional shape. A suitable material is clear polyvinyl chloride (PVC). A suitable diameter is ⅞ inch. Suitable diameters are ¾ inch to two inches. Alternative suitable diameters are ½-inch to four inches. For a person of average build, a suitable length of the tube is eight feet. Other suitable lengths are in the range six to ten feet. Yet another suitable range is four to twelve feet. Two sizes, three sizes, four sizes, five sizes, or six sizes may be offered.
Visibility is a reference to the safety of a driver, operator, rider, passenger or user of an open conveyance, particularly but not exclusively so that other vehicle operators and other users of open conveyances may safely see the user wearing the device under operating conditions, including daytime, dusk, and night, so as to avoid hitting the user or otherwise impairing the operation of the user. Such visibility may be reasonably compared the visibility provided by prior art illuminating safety equipment, such as a car taillight or a wearable bicycle light. Detailed specifications for such prior art examples are available in the literature.
The flexibility of the light-emitting strip, or strips, is such that the device may be used as described. That is, it may be draped over the shoulders of the user, crossing in the back of the user, with the ends and mid-point secured in the front of the user.
The light-transmissive tube may be transparent, such as clear PVC, or may be translucent, or may be partially reflective, or may have visual holes for light, or combinations thereof such that light from the light-emitting strip or strips exits the tube radially. One embodiment uses a single light-emitting strip with translucent or partially reflective tube such that the tube emits light in the direction of the back of the strip, even while the majority of the light from the strip is emitted from the front of the strip. The light-transmissive tube may comprise light-pipe or light-directing elements. It may comprise elements that direct, re-direct, reflect, diffract, focus or de-focus light, including elements that produce multiple colors such as diffraction gratings, and elements that produce 3D effects such as holograms.
The electronic controller provides several functions. This functionally may be split among multiple physical pieces, in some embodiments. One function is actually driving the light-emitting elements, such as LEDs, OLEDs, electronic flash, or other devices. One function is power conditioning: adapting the power input to the appropriate voltages, currents, pulses, safety limits, to meet the specific requirements for controller, light-emitting strip and other electric and electronic elements of this invention. One function is providing a memory for illumination sequences. One function is providing a user interface. One function is providing the computational core for the controller. One function, in some embodiment is providing wireless or other remote control or communications features.
All of these controller functions might be implemented in a single physical module. Or these functions might be split between two physical modules. For example, power conditioning and the drive electronics might in a module attached to the light-emitting strip, or may be provided on or in the light-emitting strip itself. The user interface and memory might be implemented in a small, handheld “remote” that provides a keyboard, and communicates via infrared, Bluetooth™ or IEEE 802.11 to the a receiver on, in, or next to the light-emitting strip.
Yet another embodiment of the controller splits the functionality into two physical modules, but in this embodiment a personal electronic device, such as a smart phone, provides the user interface and at least some memory.
Yet another embodiment of the controller splits the functionality into three physical modules: one on, in or attached to the light-emitting strip; an intermediate modules; and a user-interface module.
Each of the various physical modules may be powered separately. Or, one module may feed power to another module. For example, primary power, from either a mobile source such as a battery pack, or provided externally, such as from a motorcycle, may feed a controller, which in turn provides power to the light-emitting strip. In some embodiments the batteries are internal to the physical modules.
When we refer to a second light-emitting strip, which might be back-to-back in the tube with the first light emitting strip, being controlled by the controller in cooperation with the first light emitting strip, we mean that the two strips are controlled together so that any light sequence uses both strips operating cooperatively such that the user does not need to be concerned with the mechanical implementation of the embodiment comprising two separate light-emitting strips. In one embodiment, both light-emitting strips are driven equally. By “two light-emitting strips,” we also refer to an embodiment with a single strip, folded in half, with the two halves back-to-back in the tube.
An illumination sequence refers to any sequence in time, space, color, or in any combination. This term also refers to “no sequence” per se, such as on steady white or on steady red. Another sequence may provide the appearance of motion along the length of the tube. Sequences may include flashing. Sequences may include sub-sequences.
A ring means that the two ends of the tube are joined. The fasteners are not necessary at the precise end of the tube. For example, in much the same way that a belt is adjustable by selecting a fastening point from a set of fastening points near one end of the belt, a fastener “at” or “near” a given end of the tube refers to an operational fastening sufficiently close to the end of the tube such that the tube performs the described function and that any left over end of the tube, past the fastener, does not significantly interfere with the operation of the device on a user. In one embodiment, the adjustment length for a fastener near an end of the tube is from zero to up to one quarter the length of the tube.
The midpoint of the tube, or “near” the mid-point of the tube is such that (a) the tube fits on the torso of the user comfortably. The user may wish to have the fastener off-center on his torso, or may wish one side of the device to be looser on his torso than the other; and (b) if a fastener near one end is set to be, say eight inches from the of the tube, then the desired midpoint of the tube shifts by four inches such that the two in-use portions of the tube are equal. Thus, “near” is defined such the device operates as described.
When we speak of light being emitted from the tube continuously for its entire length, we mean the entire length except for areas under, hidden by, or adjacent to one or more fasteners, or portions of the tube that are occupied by power, control or drive electronics, or batteries. Such excluded regions are no longer than six inches each. Some areas of the tube may be covered by a label, or by other small utilitarian or decorative elements, and thus light may not be emitted through such an element. Such elements should obscure not more than six inches each of tube length. Note that a fastener in the middle of the tube similarly may block some light from the tube, as could a pocket for a personal electronic device, and thus these regions are excluded from the term, “continuously for its entire length.”
A mobile power source may be a module comprising batteries, or another stand-alone power source. Such batteries may be rechargeable, replaceable, or not. The module may be the same physical module that is used for another purpose, such as housing the controller, or the module may be part of, or inside of, the tube.
When we say that the device, the invention, the tube, or one or more light-emitting strips are powered from a particular source, or via a particular element, we mean either powered directly, or indirectly via power conditioning circuitry, or indirectly through the controller or another element of the invention. For example, LED driver IC's may effectively provide the power to produce the illumination from this invention. The LED driver IC's may take their input power from a power supply, which in turn is provided power by batteries or via a cable and plug, such as from a motorcycle. There may be more than one power source in operation at once.
By waterproof we mean that the device may be used in the rain by a user without permanent damage. While in the rain, it operates as described.
By abrasion resistant we mean that for at least half of typical falls by a motorcycle or bicycle rider (as the user) from his conveyance, that the tube and the enclosed light-emitting strips do not suffer permanent damage of a nature to prevent their usable operation. For example, the tube may sustain major scratches, but does not break apart or become non-operational. A fastener may open or a wire may become reparably open.
When we say that the tube may be interrupted by a fastener near the mid-point, we mean that visible light may not exit the tube where the tube passes through or is behind such a fastener. We also mean that both of the light-emitting strips, or the tube itself, or both, may be physically separated into two halves of the whole tube. Nonetheless, the appearance and operation of the invention as a whole functions as if the tube were a single element with a portion visually obscured by the mid-point fastener.
When we say that the sequence of illumination is responsive to an accelerometer, that sensor may be a component of the invention, or may be in a separate device, such as a smart phone, communicating with this invention, or that sensor may be in or on the open conveyance, such as a motorcycle. An accelerometer is able to provide output to indicate, directly or indirectly, a variety of specific activities, such as braking, turning, accelerating, changing lanes, stunts, or falling. The accelerometer, in conjunction with software, memory, map data, or other sensors, may be able to provide information related to the route of the user, and thus may be able to predict, sometimes with excellent precision, future actions of the user, such as making a turn at an intersection. The accelerometer may be able to identify activities such have having a passenger on board, or gunning the engine. I may be able to identify starting and stopping a bike, or parking, mounting, or dismounting. Thus, when we say responsive, we mean responsive to both the raw output of the accelerometer or sensor, and also the detection and response to any combination of the activities stated herein, in a non-limiting meaning. In one embodiment, if a user falls, a particular illumination sequence is enabled with a priority over any other selected sequence.
The term sensor includes accelerometers, magnetometers, thermometers, touch sensors, tilt-sensors, moisture detectors, microphones, cameras, video input, radio signal sensors, and other sensors as those in the art appreciate. The term sensor in particular includes GPS signals and the signals from similar satellite navigation systems. The term sensor also in particular includes signals from vehicle-to-vehicle navigation systems.
In this way it is possible to produce a wide range of illumination patterns matched to specific current and future behaviors of the user.
When we say that the tube is the “primary structural element” of the invention we mean that it is the tube, and the contents of the tube, that determine how the invention drapes on a torso. The term “primary structural element” does not include a controller or controllers, nor the structural part of one or more fasteners.
When we say that the invention is free of garment cloth we mean that it is not an article of clothing such as a jacket or vest. It is free of cloth or cloth-like materials whose primary purpose is provide the substance of an article of clothing. This limitation, “free of garment cloth,” excludes such incidental elements such as a label or included cleaning cloth, webbing-based fasteners, hook and loop fasteners, a personal electronic device pocket, and the like.
When we say the “illumination-mode,” we meant that a power switch, if any, is set to the on-position or on-mode, and that the entirety of the device, including any embodiment of a controller or controllers, is set to an illumination-on mode. For example, a non-illumination-mode may be when the device is being programmed for illumination sequences, but all illumination is off. Such a mode might be called a “programming mode” rather than a “turned on mode.” Similarly, there may a distinct, “standby mode.”
A holder for a personal electronic device may be a pocket, sleeve, clip, sling, bag, net, or other holder or fastener adapted to a particular type or brand of a personal electronic device, or such a device generically. For example, one embodiment comprises two rubberized hook and loop straps to grasp a device of varying size and dimensions. A second example embodiment comprises a full or partial pocket, which may be adjustable, for a smart-phone, PDA or tablet. A third example embodiment is a stretchy net. A fourth example is a fitted mechanical clip.
Fastener elements may have a single release action that releases all connected fastener elements, such as a single mechanical push button, or may have separate releases for each fastener element, or may require a series of steps, such as for mountain climbing body harnesses.
Ideal, Ideally, Optimum and Preferred—Use of the words, “ideal,” “ideally,” “optimum,” “optimum,” “should” and “preferred,” when used in the context of describing this invention, refer specifically a best mode for one or more embodiments for one or more applications of this invention. Such best modes are non-limiting, and may not be the best mode for all embodiments, applications, or implementation technologies, as one trained in the art will appreciate.
May, Could, Option, Mode, Alternative and Feature—Use of the words, “may,” “could,” “option,” “optional,” “mode,” “alternative,” “typical,” “ideal,” and “feature,” when used in the context of describing this invention, refer specifically to various embodiments of this invention. Described benefits refer only to those embodiments that provide that benefit. All descriptions herein are non-limiting, as one trained in the art will appreciate.
Number | Name | Date | Kind |
---|---|---|---|
4328533 | Paredes | May 1982 | A |
4709307 | Branom | Nov 1987 | A |
4924362 | Janko et al. | May 1990 | A |
5434759 | Endo et al. | Jul 1995 | A |
5779348 | Interlicchio | Jul 1998 | A |
5984488 | Tung | Nov 1999 | A |
6059414 | Tsai | May 2000 | A |
6267482 | Miller et al. | Jul 2001 | B1 |
6517214 | Mitchell et al. | Feb 2003 | B1 |
6611244 | Guritz | Aug 2003 | B1 |
6970090 | Sciarra | Nov 2005 | B1 |
6997573 | Maese | Feb 2006 | B2 |
7244045 | Schrimmer et al. | Jul 2007 | B2 |
D654249 | Stout | Feb 2012 | S |
8408731 | Joyner | Apr 2013 | B1 |
20060291193 | Hill | Dec 2006 | A1 |
20070081324 | Schrimmer et al. | Apr 2007 | A1 |
20070291473 | Traynor | Dec 2007 | A1 |
20080067202 | Silva | Mar 2008 | A1 |
20080080172 | Mayo | Apr 2008 | A1 |
20080117624 | Kirkov | May 2008 | A1 |
20090122526 | Lei | May 2009 | A1 |
20090134992 | Pacheco | May 2009 | A1 |
20090284961 | Shemwell | Nov 2009 | A1 |
20110038142 | Ritter | Feb 2011 | A1 |
20110075401 | Torres | Mar 2011 | A1 |
20120002402 | Finn | Jan 2012 | A1 |
20120002403 | Winzer | Jan 2012 | A1 |
20120033411 | Heo | Feb 2012 | A1 |