Kettlebells are used for a variety of aerobic and anaerobic exercise. A kettlebell typically consists of a large handle extending upward from a weight. The handle may be gripped with a single or two hands. Kettlebell exercise programs may involve the use of different weights of kettlebells. However, it may be cost and/or space prohibitive for an individual or small gym to own and/or store multiple kettlebells. Adjustable kettlebells may allow for a single kettlebell handle to have an adjustable weight, based on how many weight plates are connected to a kettlebell handle.
In some embodiments, a cradle for a kettlebell includes a drive shaft rotatable by a motor. A sensor toggle extends through a bore in the drive shaft and is longitudinally moveable between a first sensor toggle position and a second sensor toggle position. A position sensor determines whether the kettlebell is located in the cradle. A motor may rotate the drive shaft based on whether the position sensor determines that the kettlebell is located in the cradle.
In other embodiments, an adjustable kettlebell includes a handle having a handle bore therethrough. A selection mechanism includes a selection shaft and a dial extending into an indicator opening on the handle. The dial includes a dial key that is complementary to an opening key of the plurality of opening keys. When the dial is retracted into the opening, the dial key may prevent the selection mechanism from rotating and changing a weight of the adjustable kettlebell.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Additional features and advantages of embodiments of the disclosure will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of such embodiments. The features and advantages of such embodiments may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims or may be learned by the practice of such embodiments as set forth hereinafter.
In order to describe the manner in which the above-recited and other features of the disclosure can be obtained, a more particular description will be rendered by reference to specific implementations thereof which are illustrated in the appended drawings. For better understanding, the like elements have been designated by like reference numbers throughout the various accompanying figures. While some of the drawings may be schematic or exaggerated representations of concepts, at least some of the drawings may be drawn to scale. Understanding that the drawings depict some example implementations, the implementations will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
This disclosure generally relates to devices, systems, and methods for an adjustable kettlebell. The weight of the kettlebell may be adjusted when the kettlebell is placed in a cradle. A kettlebell safety feature may prevent the kettlebell from changing weights when it is not docked in the cradle. The kettlebell safety feature may include a dial rotatably connected to a weight selection mechanism. When the kettlebell is not docked in the cradle, the dial may be recessed within an indicator opening of the kettlebell. The dial may be keyed into the indicator opening such that the selection mechanism may not change the weight of the kettlebell until the kettlebell is placed in the cradle. When the kettlebell is placed in the cradle, the dial may be pushed out of the indicator opening, thereby allowing the selection mechanism to rotate and change weight of the kettlebell.
The cradle may further include a cradle safety mechanism. The cradle safety mechanism may include a hollow drive shaft. A position sensor may be located at a base of the hollow drive shaft. A toggle shaft may be located within the bore of the hollow drive shaft and connected to the position sensor. When the kettlebell is not located on the cradle, the position sensor may prevent the cradle from rotating the drive shaft. When the kettlebell is placed in the cradle, the toggle shaft may be pushed downward. This may cause the position sensor to detect the presence of the kettlebell. When the kettlebell is located in the cradle, the cradle may rotate the drive shaft to change the weight of the kettlebell.
To change the weight of the adjustable kettlebell, the user may provide an input to an input device 106 on the cradle 102. The input device 106 may be any type of input device. For example, in the embodiment shown, the input device 106 is a dial. However, it should be understood that the input device 106 may be any input device, including an alphanumeric keypad, one or more buttons, a digital touch-screen display, a toggle, a joystick, any other input device, and combinations thereof. A digital or analog display 108 may display the set weight of the kettlebell. The adjustable kettlebell may include a base and a plurality of selectively connectable plates.
When the user provides a weight input to the input device 106, a drive shaft 110 may be rotated by a pre-determined amount. The drive shaft 110 may rotate a selection mechanism 112 located inside the adjustable kettlebell. The selection mechanism 112 may include a selection gear 114 that is connected to connector plates. The selection gear 114 may extend and retract the connector plates transversely or perpendicularly to the rotational axis of the selection mechanism 112. The connector plates may engage with one or more weight plates to connect the weight plates to the adjustable kettlebell. The lateral position of the connector plates may determine the total connected weight of the adjustable kettlebell. Thus, rotating the drive shaft 110 by a pre-determined amount may move the connector plates by a pre-determined amount, thereby selectively adjusting the weight of the adjustable kettlebell.
The kettlebell system 100 may include one or more safety mechanisms. The safety mechanisms may help to prevent inadvertent changes in the selected weight of the adjustable kettlebell. This may help to prevent one or more weight plates from becoming dislodged during use of the adjustable kettlebell, thereby preventing injuries that may be caused by falling and flying weight plates. The kettlebell system 100 may include two or more multiple redundant safety mechanisms. Redundant safety mechanisms may help to further reduce the chance of an inadvertent change in weight of the adjustable kettlebell system 100.
The kettlebell system 100 may include a kettlebell safety mechanism 116. The kettlebell safety mechanism 116 may be a part of, or connected to, the selection mechanism 112. The kettlebell safety mechanism 116 may include a dial 118 rotationally fixed to the selection mechanism 112. In some embodiments, the dial 118 may be an indicator dial that provides a visual indication of the connected weight of the adjustable kettlebell. During use (e.g., in the uncradled position, when the adjustable kettlebell is not located in the seat 104), the dial 118 may be recessed in an indicator opening in an upper surface of the adjustable kettlebell.
As part of the kettlebell safety mechanism 116, the dial 118 may further include a dial key 120. The dial key 120 may include a protrusion or extension from an otherwise circular dial 118. The dial key 120 may be complementary to a plurality of opening keys in the indicator opening. When the selection mechanism 112 is rotated to set the adjustable kettlebell to a particular weight, the dial key 120 may be recessed within the indicator opening with the dial key 120 recessed within one of the opening keys. Thus, when the dial 118 is recessed within the indicator opening, the dial key 120 may prevent rotation of the selection mechanism 112. This may prevent the connector plates from extending or retracting relative to the selection gear, thereby reducing or preventing the inadvertent disconnection of a weight plate from the adjustable kettlebell.
The dial 118 may be longitudinally movable relative to the selection gear 114. As discussed herein, when the adjustable kettlebell is placed in the cradled position, the dial 118 may be extended out of the indicator opening. When the dial 118 is extended out of the indicator opening, rotation of the dial 118 may no longer be restrained by the interaction of the dial key 120 with the opening key. Thus, the selection mechanism 112 may be rotated and the weight of the adjustable kettlebell changed. In this manner, the weight of the adjustable kettlebell may be changed only when the adjustable kettlebell is in the cradled position (e.g., when the adjustable kettlebell is placed in the seat 104 of the cradle 102).
The kettlebell system 100 may include a cradle safety mechanism. The cradle safety mechanism may include a position sensor that senses when the adjustable kettlebell is located in the cradled position. When the position sensor determines that the adjustable kettlebell is located in the cradled position, a cradle motor may be unlocked such that the drive shaft 110 may be rotated. When the position sensor determines that the adjustable kettlebell is not located in the cradled position, the cradle motor may be locked such that the drive shaft 110 may not be rotated. In this manner, the cradle safety mechanism may help to prevent inadvertent rotation of the drive shaft 110. This may help to ensure that the weight indicated by the input device 106 and/or the display 108 is the actual connected weight of the adjustable kettlebell. This may help to improve the exercise experience and reduce user frustration with a mismatch between the indicated and the actual weight.
In some embodiments, the cradle safety mechanism may be located within a body 122 of the cradle 102. For example, as discussed herein, the position sensor may be a sensor that is physically toggled by a toggle shaft longitudinally movable relative to the drive shaft 110. The toggle shaft may be extended downward when the adjustable kettlebell is installed in the cradled position, thereby indicating the presence of the adjustable kettlebell in the seat 104 of the cradle 102.
In some embodiments, the adjustable kettlebell system 200 may include one or more safety mechanisms to prevent inadvertent rotations connection and disconnection of weight plates to the kettlebell handle. In some embodiments, a kettlebell safety mechanism 216 may be included in the kettlebell handle. In some embodiments, the kettlebell safety mechanism 216 may be a part of the selection mechanism 212. In some embodiments, the kettlebell safety mechanism 216 may include the drive shaft 226. The selection shaft 226 may be longitudinally movable parallel to the longitudinal axis 228. The selection shaft 226 may be rigidly (e.g., rotationally and translationally) connected to a dial 218. Thus, as the selection shaft 226 is rotated, the dial 218 may be rotated. Furthermore, as the selection shaft 226 moves parallel to the longitudinal axis 228, the dial 218 may move parallel to the longitudinal axis.
In some embodiments, the entire selection mechanism 212 may move longitudinally (e.g., parallel or approximately parallel to the longitudinal axis 228) when the selection shaft 226 moves longitudinally. In some embodiments, the selection gear 214 may include a selection gear bore, and the selection shaft 226 may be longitudinally movable through the selection gear bore. In this manner, the selection gear 214 may remain in contact with the connector plates when the adjustable kettlebell is placed in the cradle 202.
In some embodiments, when the adjustable kettlebell is placed into the cradled position in the cradle 202, the drive shaft 210 may push on the selection shaft 226. This may cause the selection shaft 226 to move longitudinally upwards. In some embodiments, the longitudinal movement of the selection shaft 226 may cause the dial 218 to move (e.g., extend) out of the indicator opening in the kettlebell handle. This may cause the dial key (e.g., the dial key 120 of
In the embodiment shown, the drive shaft 210 may push on the selection shaft 226. However, it should be understood that different elements of the cradle 202 may push on the selection shaft 226. For example, a portion of the cradle seat 204 may push on the selection shaft 226. In some examples, a body 222 of the cradle 202 may include a shell 238 surrounding the drive shaft 210, and the shell 238 may push on the selection shaft 226.
In this manner, the weight of the adjustable kettlebell may not be changed unless the adjustable kettlebell is in the cradled position. This may help to prevent inadvertent removal of weight plates from the kettlebell during an exercise activity. This may further help to further maintain alignment of the selection mechanism 212 with the remaining weight plates in the cradle 202.
In some embodiments, the adjustable kettlebell system 200 may include a cradle safety mechanism 232. The cradle safety mechanism 232 may sense the presence of the kettlebell in the cradle 202. If the kettlebell is not located in the cradle 202 (e.g., if the kettlebell is in the uncradled position), then the cradle safety mechanism 232 may prevent the drive shaft 210 from rotating. If the kettlebell is located in the cradle 202 (e.g., if the kettlebell is in the cradled position), then the cradle safety mechanism 232 may allow the drive shaft 210 to rotate and change the weight of the adjustable kettlebell.
The cradle safety mechanism 232 may include a position sensor 234. The position sensor 234 may sense whether the adjustable kettlebell is located in the cradle. In some embodiments, the position sensor 234 may be actuated or toggled by a sensor toggle 236. When the adjustable kettlebell is placed in the cradle, the sensor toggle 236 may be triggered or depressed. This may toggle the sensor 234 to determine that the adjustable kettlebell is in the cradled position. If the sensor toggle 236 is not triggered or depressed, then the sensor 234 may determine that the adjustable kettlebell is in the uncradled position.
In some embodiments, the sensor toggle 236 may be a shaft that extends in the longitudinal direction (e.g., parallel and/or coaxial to the longitudinal axis 228). When the adjustable kettlebell is placed in the cradled position, the selection shaft 226 may depress the sensor toggle 236, causing it to travel in the longitudinal direction (e.g., parallel to the longitudinal axis 228) until it toggles the position sensor 234. In some embodiments, the sensor toggle 236 may be the drive shaft 210. In some embodiments, the sensor toggle 236 may be a shaft that extends through the drive shaft 210.
In the embodiment shown, the selection shaft 226 may depress the sensor toggle 236. However, it should be understood that any other portion of the adjustable kettlebell handle may depress the sensor toggle 236. For example, the body of the kettlebell handle may depress the sensor toggle.
In some embodiments, the position sensor 234 may be any type of sensor. For example, the position sensor 234 may be a weight sensor. For example, the position sensor 234 may measure a total weight of elements located in the cradle seat 204. The position sensor 234 may know the combined weight of the kettlebell handle and each weight plate. If the position sensor 234 determines that the weight in the cradle is equal to the combined weight, the position sensor 234 may determine that the adjustable kettlebell is located in the cradle 202. If the position sensor 234 determines that the weight in the cradle is less than the combined weight, the position sensor 234 may determine that the adjustable kettlebell is not located in the cradle 202.
In some embodiments, the adjustable kettlebell system 200 may include only the kettlebell safety mechanism 212 or the cradle safety mechanism 232. In some embodiments, the adjustable kettlebell system 200 may include both the kettlebell safety mechanism 212 and the cradle safety mechanism 232. In some embodiments, the selection shaft 226 may depress the sensor toggle 236, and the sensor toggle 236 may extend the selection shaft 226. This may add redundancy to the safety mechanisms of the adjustable kettlebell system. This may further prevent inadvertent rotation of the drive shaft 210, thereby reducing a potential mismatch between the user-inputted or selected weight and the actual connected weight of the adjustable kettlebell.
In the embodiment shown, a selection mechanism 312 extends through a handle bore 344 in the kettlebell handle 342. The selection mechanism 312 may include a selection shaft 326 rotationally connected to a selection gear 314. The selection gear 314 may be connected to one or more connector plates 346. The connector plates 346 may be laterally movable (e.g., transverse or perpendicular to the longitudinal axis 328) (e.g., the rotational axis of the selection gear 314 and/or the selection shaft 326) as the selection gear 314 rotates. The connector plates 346 may include a connector tab 348. The connector plate may engage with a slot in a weight plate 350. When the kettlebell handle 342 is placed in the uncradled position, the connector tab 348 may engage with the slot in the weight plate 350, thereby connecting the weight plate 350 to the kettlebell handle 342. As may be seen, the connected weight plate 350 may lift any weight plates resting on top of the connected weight plate 350. Thus, to increase the weight of the adjustable kettlebell, the connector plate 346 may be moved inward (e.g., toward the selection shaft 326) to engage the connector tab 348 with a weight plate that supports more weight plates. To decrease the weight of the adjustable kettlebell, the connector plate 346 may be moved outward to engage the connector tab 348 with a weight plate that supports fewer weight plates.
The selection shaft 326 may be rotated by a drive shaft 310 of a cradle (e.g., the cradle 202 of
In the embodiment shown, the selection gear 314 includes a selection gear bore 354 therethrough. The selection shaft 326 may be inserted into the selection gear bore 354. The selection gear bore 354 may have a complementary shape to the selection shaft 326. Thus, the selection shaft 326 may be rotatably connected to the selection gear bore 354. Furthermore, the selection shaft 326 may be longitudinally movable (e.g., movable along and/or parallel to the longitudinal axis 328) through the selection gear bore 354.
When the kettlebell handle 342 is in the cradled position shown, the drive shaft 310 and/or a sensor toggle 336 in the drive shaft 310 may push on the selection shaft 326. This may cause the selection shaft 326 to move (e.g., slide or translate) in the longitudinal direction through the selection gear 314 via the selection gear bore. This may push the dial 318 out of the indicator opening 340, thereby allowing the selection gear 314 to rotate and change which weight plate is connected to the connector plate 346. In this manner, the weight of the adjustable kettlebell may be changed when the adjustable kettlebell is in the cradled position.
In some embodiments, the kettlebell safety mechanism 316 may include a resilient member 330. The resilient member 330 may push against a stop-ring 356 connected to the selection shaft 326. When the adjustable kettlebell is moved into the uncradled position, the resilient member 330 may push on the selection gear 314 to move the dial 318 back into the retracted position. As discussed herein, this may cause a dial key to engage with an opening key, thereby preventing the dial 318, and therefore the entire selection mechanism 312, from rotating. This may prevent a change in the position of the connector plate, thereby preventing an inadvertent change in which weight plates 350 are connected to the kettlebell handle 342. This may increase the safety of the adjustable kettlebell by reducing the chance of injury based on a falling or flying weight plate 350.
A dial 318 may be inserted into the indicator opening 341. The dial 318 may include a dial key 320 that protrudes or extends from the outer circumference of the dial 318. The dial key 320 may be complementary to each opening key 360. In the retracted position of the dial 318, the dial key 320 may be inserted into one of the opening keys 360. As may be seen, due to the interference between the dial key 320 and the opening key 360, the dial 318 may not be rotated. Because the dial 318 is rotationally connected to the selection mechanism (e.g., the selection mechanism 312 of
In some embodiments, a weight adjustment system of the cradle 402 may determine the connected weight of the adjustable kettlebell based on the rotational position of the drive shaft 410. Rotation of the drive shaft 410 while the adjustable kettlebell is in the uncradled position may cause the weight adjustment system of the cradle 402 to determine that the connected weight of the adjustable kettlebell is different than the actual connected weight. This may lead to user frustration and a decreased user experience based on the discrepancy in determined weight to the actual connected weight. To prevent unintended rotation of the drive shaft 410, when the adjustable kettlebell is in the uncradled position, the position sensor 434 may prevent the motor 424 from rotating the drive shaft. This may help to ensure that the determined weight of the adjustable kettlebell matches the actual weight of the adjustable kettlebell.
In some embodiments, the position sensor 434 may be toggled using a sensor toggle 436 longitudinally movable between a first sensor toggle position and a second sensor toggle position. The drive shaft 410 may include a drive shaft bore 462 extending therethrough. The sensor toggle 436 may be a shaft that extends through the drive shaft bore 462. The sensor toggle 436 may be longitudinally movable relative to the drive shaft 410. When the sensor toggle 436 is pushed downward relative to the drive shaft 410 into the first sensor toggle position, the position sensor 434 may determine that the adjustable kettlebell is in the cradled position. When the sensor toggle 436 is located upward relative to the drive shaft 410 in the second sensor toggle position, position sensor 434 may determine that the adjustable kettlebell is in the uncradled position.
The adjustable kettlebell may move the sensor toggle 436 into the first sensor toggle position such that the position sensor 434 determines that the adjustable kettlebell is in the cradled position. In some embodiments, when the adjustable kettlebell is placed in the cradled position, the selection shaft 426 may press down on the sensor toggle 436 to toggle the position sensor 434. When the adjustable kettlebell is removed from the cradle 402 (e.g., when the adjustable kettlebell is moved into the uncradled position), a resilient member 464 may urge the position sensor 434 back into the second sensor toggle position.
In some embodiments, the position sensor 434 may be connected to a control circuit. When the user provides an input to change the weight of the adjustable kettlebell, if the position sensor 434 determines that the adjustable kettlebell is in the cradled position, the control circuit may provide instructions to the motor 424 to rotate the drive shaft 410. If the position sensor 434 determines that the adjustable kettlebell is in the uncradled position, the control circuit may provide instructions to the motor 424 to not rotate the drive shaft 410.
In some embodiments, the position sensor 434 may be part of a power circuit of the motor 424. In some embodiments, when the sensor toggle 436 is depressed by the selection shaft 426 (e.g., when the sensor toggle 436 is in the first sensor toggle position), the sensor toggle 436 may close the power circuit, thereby allowing the motor 424 to rotate the drive shaft 410. When the sensor toggle 436 is not depressed (e.g., when the sensor toggle 436 is in the second sensor toggle position), the motor 424 may not receive power, and the drive shaft 410 may not be rotated.
The method may further include removing the adjustable kettlebell from the cradle. When the adjustable kettlebell is removed from the cradle, the dial may be retracted into the indicator opening such that the dial key is inserted back into an indicator key.
The method 674 may further include removing the adjustable kettlebell from the cradle. This may cause the sensor toggle to move from the first sensor toggle position to the second sensor toggle position. The position sensor may then determine that the adjustable kettlebell is not located in the cradle based on the sensor toggle being in the second sensor toggle position. The cradle may then receive an input to change the weight of the adjustable kettlebell. However, when the position sensor determines that the adjustable kettlebell is not in the cradle, the motor may be prevented from rotating the drive shaft.
This disclosure generally relates to devices, systems, and methods for an adjustable kettlebell. The weight of the kettlebell may be adjusted when the kettlebell is placed in a cradle. A kettlebell safety feature may prevent the kettlebell from changing weights when it is not docked in the cradle. The kettlebell safety feature may include a dial rotatably connected to a weight selection mechanism. When the kettlebell is not docked in the cradle, the dial may be recessed within an indicator opening of the kettlebell. The dial may be keyed into the indicator opening such that the selection mechanism may not change the weight of the kettlebell until the kettlebell is placed in the cradle. When the kettlebell is placed in the cradle, the dial may be pushed out of the indicator opening, thereby allowing the selection mechanism to rotate and change weight of the kettlebell.
The cradle may further include a cradle safety mechanism. The cradle safety mechanism may include a hollow drive shaft. A position sensor may be located at a base of the hollow drive shaft. A toggle shaft may be located within the bore of the hollow drive shaft and connected to the position sensor. When the kettlebell is not located on the cradle, the position sensor may prevent the cradle from rotating the drive shaft. When the kettlebell is placed in the cradle, the toggle shaft may be pushed downward. This may cause the position sensor to detect the presence of the kettlebell. When the kettlebell is located in the cradle, the cradle may rotate the drive shaft to change the weight of the kettlebell.
In some embodiments, an adjustable kettlebell system includes a cradle having a cradle seat. An adjustable kettlebell is configured to sit in the cradle seat in a cradled position. While in the cradled position, (e.g., while the adjustable kettlebell is located in the cradle seat), the weight of the adjustable kettlebell may be changed.
To change the weight of the adjustable kettlebell, the user may provide an input to an input device on the cradle. The input device may be any type of input device. For example, in the embodiment shown, the input device is a dial. However, it should be understood that the input device may be any input device, including an alphanumeric keypad, one or more buttons, a digital touch-screen display, a toggle, a joystick, any other input device, and combinations thereof. A digital or analog display may display the set weight of the kettlebell. The adjustable kettlebell may include a base and a plurality of selectively connectable plates.
When the user provides a weight input to the input device, a drive shaft may be rotated by a pre-determined amount. The drive shaft may rotate a selection mechanism located inside the adjustable kettlebell. The selection mechanism may include a selection gear that is connected to connector plates. The selection gear may extend and retract the connector plates transversely or perpendicularly to the rotational axis of the selection mechanism. The connector plates may engage with one or more weight plates to connect the weight plates to the adjustable kettlebell. The lateral position of the connector plates may determine the total connected weight of the adjustable kettlebell. Thus, rotating the drive shaft by a pre-determined amount may move the connector plates by a pre-determined amount, thereby selectively adjusting the weight of the adjustable kettlebell.
The kettlebell system may include one or more safety mechanisms. The safety mechanisms may help to prevent inadvertent changes in the selected weight of the adjustable kettlebell. This may help to prevent one or more weight plates from becoming dislodged during use of the adjustable kettlebell, thereby preventing injuries that may be caused by falling and flying weight plates. The kettlebell system may include two or more multiple redundant safety mechanisms. Redundant safety mechanisms may help to further reduce the chance of an inadvertent change in weight of the adjustable kettlebell system.
The kettlebell system may include a kettlebell safety mechanism. The kettlebell safety mechanism may be a part of, or connected to, the selection mechanism. The kettlebell safety mechanism may include a dial rotationally fixed to the selection mechanism. In some embodiments, the dial may be an indicator dial that provides a visual indication of the connected weight of the adjustable kettlebell. During use (e.g., in the uncradled position, when the adjustable kettlebell is not located in the seat), the dial may be recessed in an indicator opening in an upper surface of the adjustable kettlebell.
As part of the kettlebell safety mechanism, the dial may further include a dial key. The dial key may include a protrusion or extension from an otherwise circular dial. The dial key may be complementary to a plurality of opening keys in the indicator opening. When the selection mechanism is rotated to set the adjustable kettlebell to a particular weight, the dial key may be recessed within the indicator opening with the dial key recessed within one of the opening keys. Thus, when the dial is recessed within the indicator opening, the dial key may prevent rotation of the selection mechanism. This may prevent the connector plates from extending or retracting relative to the selection gear, thereby reducing, or preventing the inadvertent disconnection of a weight plate from the adjustable kettlebell.
The dial may be longitudinally movable relative to the selection gear. As discussed herein, when the adjustable kettlebell is placed in the cradled position, the dial may be extended out of the indicator opening. When the dial is extended out of the indicator opening, rotation of the dial may no longer be restrained by the interaction of the dial key with the opening key. Thus, the selection mechanism may be rotated and the weight of the adjustable kettlebell changed. In this manner, the weight of the adjustable kettlebell may be changed only when the adjustable kettlebell is in the cradled position (e.g., when the adjustable kettlebell is placed in the seat of the cradle).
The kettlebell system may include a cradle safety mechanism. The cradle safety mechanism may include a position sensor that senses when the adjustable kettlebell is located in the cradled position. When the position sensor determines that the adjustable kettlebell is located in the cradled position, a cradle motor may be unlocked such that the drive shaft may be rotated. When the position sensor determines that the adjustable kettlebell is not located in the cradled position, the cradle motor may be locked such that the drive shaft may not be rotated. In this manner, the cradle safety mechanism may help to prevent inadvertent rotation of the drive shaft. This may help to ensure that the weight indicated by the input device and/or the display is the actual connected weight of the adjustable kettlebell. This may help to improve the exercise experience and reduce user frustration with a mismatch between the indicated and the actual weight.
In some embodiments, the cradle safety mechanism may be located within a body of the cradle. For example, as discussed herein, the position sensor may be a sensor that is physically toggled by a toggle shaft longitudinally movable relative to the drive shaft. The toggle shaft may be extended downward when the adjustable kettlebell is installed in the cradled position, thereby indicating the presence of the adjustable kettlebell in the seat of the cradle.
When a kettlebell is placed in a cradled position in the cradle, the weight of the kettlebell may be changed. To change the weight, the user may provide input to an input device. When the kettlebell is in the cradled position, changing the input device may cause a motor to rotate a drive shaft about a longitudinal axis (e.g., a rotation axis). The drive shaft may be rotationally connected to a selection mechanism. The drive shaft may rotate a selection shaft about the longitudinal axis. The selection shaft may cause a selection gear to rotate about the longitudinal axis, thereby causing one or more connector plates to engage with one or more weight plates, thereby selectively connecting and disconnecting the weight plates to the handle of the kettlebell, based on the rotational position of the selection gear. As may be seen, the rotational position of the selection gear is determined based on the rotational position of the drive shaft. Thus, the adjustable kettlebell system may adjust the weight of the adjustable kettlebell based on the rotational position of the drive shaft.
In some embodiments, the adjustable kettlebell system may include one or more safety mechanisms to prevent inadvertent rotations connection and disconnection of weight plates to the kettlebell handle. In some embodiments, a kettlebell safety mechanism may be included in the kettlebell handle. In some embodiments, the kettlebell safety mechanism may be a part of the selection mechanism. In some embodiments, the kettlebell safety mechanism may include the drive shaft. The selection shaft may be longitudinally movable parallel to the longitudinal axis. The selection shaft may be rigidly (e.g., rotationally and translationally) connected to a dial. Thus, as the selection shaft is rotated, the dial may be rotated. Furthermore, as the selection shaft moves parallel to the longitudinal axis, the dial may move parallel to the longitudinal axis.
In some embodiments, the entire selection mechanism may move longitudinally (e.g., parallel or approximately parallel to the longitudinal axis) when the selection shaft moves longitudinally. In some embodiments, the selection gear may include a selection gear bore, and the selection shaft may be longitudinally movable through the selection gear bore. In this manner, the selection gear may remain in contact with the connector plates when the adjustable kettlebell is placed in the cradle.
In some embodiments, when the adjustable kettlebell is placed into the cradled position in the cradle, the drive shaft may push on the selection shaft. This may cause the selection shaft to move longitudinally upwards. In some embodiments, the longitudinal movement of the selection shaft may cause the dial to move (e.g., extend) out of the indicator opening in the kettlebell handle. This may cause the dial key to extend out of the kettlebell handle, thereby allowing the selection mechanism to be rotated and the weight of the adjustable kettlebell to be changed. When the adjustable kettlebell is removed from the cradle (e.g., when the adjustable kettlebell is in the uncradled position), the selection shaft and the dial may retract into the indicator opening of the adjustable kettlebell handle. In some embodiments, a resilient member, such as a spring or an elastically deformable material, may urge the selection shaft and the dial to retract into the indicator opening of the adjustable kettlebell handle.
In the embodiment shown, the drive shaft may push on the selection shaft. However, it should be understood that different elements of the cradle may push on the selection shaft. For example, a portion of the cradle seat may push on the selection shaft. In some examples, a body of the cradle may include a shell surrounding the drive shaft, and the shell may push on the selection shaft.
In this manner, the weight of the adjustable kettlebell may not be changed unless the adjustable kettlebell is in the cradled position. This may help to prevent inadvertent removal of weight plates from the kettlebell during an exercise activity. This may further help to further maintain alignment of the selection mechanism with the remaining weight plates in the cradle.
In some embodiments, the adjustable kettlebell system may include a cradle safety mechanism. The cradle safety mechanism may sense the presence of the kettlebell in the cradle. If the kettlebell is not located in the cradle (e.g., if the kettlebell is in the uncradled position), then the cradle safety mechanism may prevent the drive shaft from rotating. If the kettlebell is located in the cradle (e.g., if the kettlebell is in the cradled position), then the cradle safety mechanism may allow the drive shaft to rotate and change the weight of the adjustable kettlebell.
The cradle safety mechanism may include a position sensor. The position sensor may sense whether the adjustable kettlebell is located in the cradle. In some embodiments, the position sensor may be actuated or toggled by a sensor toggle. When the adjustable kettlebell is placed in the cradle, the sensor toggle may be triggered or depressed. This may toggle the sensor to determine that the adjustable kettlebell is in the cradled position. If the sensor toggle is not triggered or depressed, then the sensor may determine that the adjustable kettlebell is in the uncradled position.
In some embodiments, the sensor toggle may be a shaft that extends in the longitudinal direction (e.g., parallel and/or coaxial to the longitudinal axis). When the adjustable kettlebell is placed in the cradled position, the selection shaft may depress the sensor toggle, causing it to travel in the longitudinal direction (e.g., parallel to the longitudinal axis) until it toggles the position sensor. In some embodiments, the sensor toggle may be the drive shaft. In some embodiments, the sensor toggle may be a shaft that extends through the drive shaft.
In the embodiment shown, the selection shaft may depress the sensor toggle. However, it should be understood that any other portion of the adjustable kettlebell handle may depress the sensor toggle. For example, the body of the kettlebell handle may depress the sensor toggle.
In some embodiments, the position sensor may be any type of sensor. For example, the position sensor may be a weight sensor. For example, the position sensor may measure a total weight of elements located in the cradle seat. The position sensor may know the combined weight of the kettlebell handle and each weight plate. If the position sensor determines that the weight in the cradle is equal to the combined weight, the position sensor may determine that the adjustable kettlebell is located in the cradle. If the position sensor determines that the weight in the cradle is less than the combined weight, the position sensor may determine that the adjustable kettlebell is not located in the cradle.
In some embodiments, the adjustable kettlebell system may include only the kettlebell safety mechanism or the cradle safety mechanism. In some embodiments, the adjustable kettlebell system may include both the kettlebell safety mechanism and the cradle safety mechanism. In some embodiments, the selection shaft may depress the sensor toggle, and the sensor toggle may extend the selection shaft. This may add redundancy to the safety mechanisms of the adjustable kettlebell system. This may further prevent inadvertent rotation of the drive shaft, thereby reducing a potential mismatch between the user-inputted or selected weight and the actual connected weight of the adjustable kettlebell.
In the cradled position, the kettlebell safety mechanism includes a dial that is extended out of an indicator opening in an upper surface of a kettlebell handle. When the dial is extended out of the indicator opening, the dial may be freely rotated relative to the kettlebell handle. This may allow a change to the number of weights connected to the kettlebell handle, thereby changing the weight of the adjustable kettlebell.
In the embodiment shown, a selection mechanism extends through a handle bore in the kettlebell handle. The selection mechanism may include a selection shaft rotationally connected to a selection gear. The selection gear may be connected to one or more connector plates. The connector plates may be laterally movable (e.g., transverse or perpendicular to the longitudinal axis (e.g., the rotational axis of the selection gear and/or the selection shaft) as the selection gear rotates. The connector plates may include a connector tab. The connector plate may engage with a slot in a weight plate. When the kettlebell handle is placed in the uncradled position, the connector tab may engage with the slot in the weight plate, thereby connecting the weight plate to the kettlebell handle. As may be seen, the connected weight plate may lift any weight plates resting on top of the connected weight plate. Thus, to increase the weight of the adjustable kettlebell, the connector plate may be moved inward (e.g., toward the selection shaft) to engage the connector tab with a weight plate that supports more weight plates. To decrease the weight of the adjustable kettlebell, the connector plate may be moved outward to engage the connector tab 348 with a weight plate that supports fewer weight plates.
The selection shaft may be rotated by a drive shaft of a cradle. Selection shaft may be inserted into a keyed slot at an end of the drive shaft. The keyed slot may be complementarily shaped to the selection shaft such that, when the selection shaft is inserted into the keyed slot, the keyed slot may engage the selection shaft to rotate it. For example, the selection shaft may be hexagonally shaped, and the keyed slot may have a complementary hexagonal shape to receive the selection shaft.
In the embodiment shown, the selection gear includes a selection gear bore therethrough. The selection shaft may be inserted into the selection gear bore. The selection gear bore may have a complementary shape to the selection shaft. Thus, the selection shaft may be rotatably connected to the selection gear bore. Furthermore, the selection shaft may be longitudinally movable (e.g., movable along and/or parallel to the longitudinal axis) through the selection gear bore.
When the kettlebell handle is in the cradled position, the drive shaft and/or a sensor toggle in the drive shaft may push on the selection shaft. This may cause the selection shaft to move (e.g., slide or translate) in the longitudinal direction through the selection gear via the selection gear bore. This may push the dial out of the indicator opening, thereby allowing the selection gear to rotate and change which weight plate is connected to the connector plate. In this manner, the weight of the adjustable kettlebell may be changed when the adjustable kettlebell is in the cradled position.
In some embodiments, the kettlebell safety mechanism may include a resilient member. The resilient member may push against a stop-ring connected to the selection shaft. When the adjustable kettlebell is moved into the uncradled position, the resilient member may push on the selection gear to move the dial back into the retracted position. As discussed herein, this may cause a dial key to engage with an opening key, thereby preventing the dial, and therefore the entire selection mechanism, from rotating. This may prevent a change in the position of the connector plate, thereby preventing an inadvertent change in which weight plates are connected to the kettlebell handle. This may increase the safety of the adjustable kettlebell by reducing the chance of injury based on a falling or flying weight plate.
In some embodiments, an indicator opening opens into the upper surface of the kettlebell handle. The indicator opening includes a plurality of opening keys. A dial may be inserted into the indicator opening. The dial may include a dial key that protrudes or extends from the outer circumference of the dial. The dial key may be complementary to each opening key. In the retracted position of the dial, the dial key may be inserted into one of the opening keys. As may be seen, due to the interference between the dial key and the opening key, the dial may not be rotated. Because the dial is rotationally connected to the selection mechanism, this may prevent the selection mechanism from rotating, thereby preventing a change in weight to the adjustable kettlebell.
A cradle safety mechanism may include a position sensor. The position sensor may be toggled when an adjustable kettlebell is placed in the seat of the cradle. When the position sensor is toggled, a motor may be allowed to rotate a drive shaft. The drive shaft may be rotationally connected to a selector shaft of a selection mechanism. Rotating the drive shaft may cause the weight of the adjustable kettlebell to change. Thus, by toggling the position sensor, the motor may rotate the selection shaft to change the weight of the adjustable kettlebell.
In some embodiments, a weight adjustment system of the cradle may determine the connected weight of the adjustable kettlebell based on the rotational position of the drive shaft. Rotation of the drive shaft while the adjustable kettlebell is in the uncradled position may cause the weight adjustment system of the cradle to determine that the connected weight of the adjustable kettlebell is different than the actual connected weight. This may lead to user frustration and a decreased user experience based on the discrepancy in determined weight to the actual connected weight. To prevent unintended rotation of the drive shaft, when the adjustable kettlebell is in the uncradled position, the position sensor may prevent the motor from rotating the drive shaft. This may help to ensure that the determined weight of the adjustable kettlebell matches the actual weight of the adjustable kettlebell.
In some embodiments, the position sensor may be toggled using a sensor toggle longitudinally movable between a first sensor toggle position and a second sensor toggle position. The drive shaft may include a drive shaft bore extending therethrough. The sensor toggle may be a shaft that extends through the drive shaft bore. The sensor toggle may be longitudinally movable relative to the drive shaft. When the sensor toggle is pushed downward relative to the drive shaft into the first sensor toggle position, the position sensor may determine that the adjustable kettlebell is in the cradled position. When the sensor toggle is located upward relative to the drive shaft in the second sensor toggle position, position sensor may determine that the adjustable kettlebell is in the uncradled position.
The adjustable kettlebell may move the sensor toggle into the first sensor toggle position such that the position sensor determines that the adjustable kettlebell is in the cradled position. In some embodiments, when the adjustable kettlebell is placed in the cradled position, the selection shaft may press down on the sensor toggle to toggle the position sensor. When the adjustable kettlebell is removed from the cradle (e.g., when the adjustable kettlebell is moved into the uncradled position), a resilient member may urge the position sensor back into the second sensor toggle position.
In some embodiments, the position sensor may be connected to a control circuit. When the user provides an input to change the weight of the adjustable kettlebell, if the position sensor determines that the adjustable kettlebell is in the cradled position, the control circuit may provide instructions to the motor to rotate the drive shaft. If the position sensor determines that the adjustable kettlebell is in the uncradled position, the control circuit may provide instructions to the motor to not rotate the drive shaft.
In some embodiments, the position sensor may be part of a power circuit of the motor. In some embodiments, when the sensor toggle is depressed by the selection shaft (e.g., when the sensor toggle is in the first sensor toggle position), the sensor toggle may close the power circuit, thereby allowing the motor to rotate the drive shaft. When the sensor toggle is not depressed (e.g., when the sensor toggle is in the second sensor toggle position), the motor may not receive power, and the drive shaft may not be rotated.
In some embodiments, a method for locking an adjustable kettlebell may include placing an adjustable kettlebell in a cradle seat. When the adjustable kettlebell is placed in the cradle, a dial may be extended out of an indicator opening. When the dial is retracted in the indicator opening, a dial key may be recessed into an indicator key, thereby preventing the dial and a selection mechanism from rotating. When the dial and the dial key are extended out of the indicator opening and the opening key, a selection mechanism rotationally connected to the dial may be rotated to change a weight of the adjustable kettlebell.
The method may further include removing the adjustable kettlebell from the cradle. When the adjustable kettlebell is removed from the cradle, the dial may be retracted into the indicator opening such that the dial key is inserted back into an indicator key.
In some embodiments, a method for adjusting a weight of an adjustable kettlebell may include placing an adjustable kettlebell in a cradle. Placing the adjustable kettlebell in the cradle may move a sensor toggle from a second sensor toggle position to a first sensor toggle position. When the sensor toggle is moved to the first sensor toggle position, a position sensor may determine that the adjustable kettlebell is located in the cradle. A drive shaft may then be rotated to change a weight of the adjustable kettlebell.
The method may further include removing the adjustable kettlebell from the cradle. This may cause the sensor toggle to move from the first sensor toggle position to the second sensor toggle position. The position sensor may then determine that the adjustable kettlebell is not located in the cradle based on the sensor toggle being in the second sensor toggle position. The cradle may then receive an input to change the weight of the adjustable kettlebell. However, when the position sensor determines that the adjustable kettlebell is not in the cradle, the motor may be prevented from rotating the drive shaft.
Following are sections according to embodiments of the present disclosure:
One or more specific embodiments of the present disclosure are described herein. These described embodiments are examples of the presently disclosed techniques. Additionally, in an effort to provide a concise description of these embodiments, not all features of an actual embodiment may be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous embodiment-specific decisions will be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one embodiment to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
The articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements in the preceding descriptions. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. For example, any element described in relation to an embodiment herein may be combinable with any element of any other embodiment described herein. Numbers, percentages, ratios, or other values stated herein are intended to include that value, and also other values that are “about” or “approximately” the stated value, as would be appreciated by one of ordinary skill in the art encompassed by embodiments of the present disclosure. A stated value should therefore be interpreted broadly enough to encompass values that are at least close enough to the stated value to perform a desired function or achieve a desired result. The stated values include at least the variation to be expected in a suitable manufacturing or production process, and may include values that are within 5%, within 1%, within 0.1%, or within 0.01% of a stated value.
A person having ordinary skill in the art should realize in view of the present disclosure that equivalent constructions do not depart from the spirit and scope of the present disclosure, and that various changes, substitutions, and alterations may be made to embodiments disclosed herein without departing from the spirit and scope of the present disclosure. Equivalent constructions, including functional “means-plus-function” clauses are intended to cover the structures described herein as performing the recited function, including both structural equivalents that operate in the same manner, and equivalent structures that provide the same function. It is the express intention of the applicant not to invoke means-plus-function or other functional claiming for any claim except for those in which the words ‘means for’ appear together with an associated function. Each addition, deletion, and modification to the embodiments that falls within the meaning and scope of the claims is to be embraced by the claims.
The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” and “substantially” may refer to an amount that is within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of a stated amount. Further, it should be understood that any directions or reference frames in the preceding description are merely relative directions or movements. For example, any references to “up” and “down” or “above” or “below” are merely descriptive of the relative position or movement of the related elements.
The present disclosure may be embodied in other specific forms without departing from its spirit or characteristics. The described embodiments are to be considered as illustrative and not restrictive. The scope of the disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. Changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims priority to and benefit of U.S. Provisional Patent Application No. 63/150,066, filed Feb. 16, 2021, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3123646 | Easton | Mar 1964 | A |
3579339 | Chang et al. | May 1971 | A |
4023795 | Pauls | May 1977 | A |
4300760 | Bobroff | Nov 1981 | A |
D286311 | Martinell et al. | Oct 1986 | S |
4681318 | Lay | Jul 1987 | A |
4684126 | Dalebout et al. | Aug 1987 | A |
4728102 | Pauls | Mar 1988 | A |
4750736 | Watterson | Jun 1988 | A |
4796881 | Watterson | Jan 1989 | A |
4813667 | Watterson | Mar 1989 | A |
4830371 | Lay | May 1989 | A |
4844451 | Bersonnet et al. | Jul 1989 | A |
4850585 | Dalebout et al. | Jul 1989 | A |
D304849 | Watterson | Nov 1989 | S |
4880225 | Lucas et al. | Nov 1989 | A |
4883272 | Lay | Nov 1989 | A |
D306468 | Watterson | Mar 1990 | S |
D306891 | Watterson | Mar 1990 | S |
4913396 | Dalebout et al. | Apr 1990 | A |
D307614 | Bingham et al. | May 1990 | S |
D307615 | Bingham et al. | May 1990 | S |
4921242 | Watterson | May 1990 | A |
4932650 | Bingham et al. | Jun 1990 | A |
D309167 | Griffin | Jul 1990 | S |
D309485 | Bingham et al. | Jul 1990 | S |
4938478 | Lay | Jul 1990 | A |
D310253 | Bersonnet et al. | Aug 1990 | S |
4955599 | Bersonnet et al. | Sep 1990 | A |
4971316 | Dalebout et al. | Nov 1990 | A |
D313055 | Watterson | Dec 1990 | S |
4974832 | Dalebout | Dec 1990 | A |
4979737 | Kock | Dec 1990 | A |
4981294 | Dalebout et al. | Jan 1991 | A |
D315765 | Measom et al. | Mar 1991 | S |
4998725 | Watterson et al. | Mar 1991 | A |
5000442 | Dalebout et al. | Mar 1991 | A |
5000443 | Dalebout et al. | Mar 1991 | A |
5000444 | Dalebout et al. | Mar 1991 | A |
D316124 | Dalebout et al. | Apr 1991 | S |
5013033 | Watterson et al. | May 1991 | A |
5014980 | Bersonnet et al. | May 1991 | A |
5016871 | Dalebout et al. | May 1991 | A |
D318085 | Jacobson et al. | Jul 1991 | S |
D318086 | Bingham et al. | Jul 1991 | S |
D318699 | Jacobson et al. | Jul 1991 | S |
5029801 | Dalebout et al. | Jul 1991 | A |
5034576 | Dalebout et al. | Jul 1991 | A |
5058881 | Measom | Oct 1991 | A |
5058882 | Dalebout et al. | Oct 1991 | A |
D321388 | Dalebout | Nov 1991 | S |
5062626 | Dalebout et al. | Nov 1991 | A |
5062627 | Bingham | Nov 1991 | A |
5062632 | Dalebout et al. | Nov 1991 | A |
5062633 | Engel et al. | Nov 1991 | A |
5067710 | Watterson et al. | Nov 1991 | A |
5072929 | Peterson et al. | Dec 1991 | A |
D323009 | Dalebout et al. | Jan 1992 | S |
D323198 | Dalebout et al. | Jan 1992 | S |
D323199 | Dalebout et al. | Jan 1992 | S |
D323863 | Watterson | Feb 1992 | S |
5088729 | Dalebout | Feb 1992 | A |
5090694 | Pauls et al. | Feb 1992 | A |
5102380 | Jacobson et al. | Apr 1992 | A |
5104120 | Watterson et al. | Apr 1992 | A |
5108093 | Watterson | Apr 1992 | A |
D326491 | Dalebout | May 1992 | S |
5122105 | Engel et al. | Jun 1992 | A |
5135216 | Bingham et al. | Aug 1992 | A |
5147265 | Pauls et al. | Sep 1992 | A |
5149084 | Dalebout et al. | Sep 1992 | A |
5149312 | Croft et al. | Sep 1992 | A |
5171196 | Lynch | Dec 1992 | A |
D332347 | Raadt et al. | Jan 1993 | S |
5190505 | Dalebout et al. | Mar 1993 | A |
5192255 | Dalebout et al. | Mar 1993 | A |
5195937 | Engel et al. | Mar 1993 | A |
5203826 | Dalebout | Apr 1993 | A |
D335511 | Engel et al. | May 1993 | S |
D335905 | Cutter et al. | May 1993 | S |
D336498 | Engel et al. | Jun 1993 | S |
5217487 | Engel et al. | Jun 1993 | A |
D337361 | Engel et al. | Jul 1993 | S |
D337666 | Peterson et al. | Jul 1993 | S |
D337799 | Cutter et al. | Jul 1993 | S |
5226866 | Engel et al. | Jul 1993 | A |
5244446 | Engel et al. | Sep 1993 | A |
5247853 | Dalebout | Sep 1993 | A |
5259611 | Dalebout et al. | Nov 1993 | A |
D342106 | Campbell et al. | Dec 1993 | S |
5279528 | Dalebout et al. | Jan 1994 | A |
D344112 | Smith | Feb 1994 | S |
D344557 | Ashby | Feb 1994 | S |
5282776 | Dalebout | Feb 1994 | A |
5295931 | Dreibelbis et al. | Mar 1994 | A |
5302161 | Loubert et al. | Apr 1994 | A |
D347251 | Dreibelbis et al. | May 1994 | S |
5316534 | Dalebout et al. | May 1994 | A |
D348493 | Ashby | Jul 1994 | S |
D348494 | Ashby | Jul 1994 | S |
5328164 | Soga | Jul 1994 | A |
D349931 | Bostic et al. | Aug 1994 | S |
5336142 | Dalebout et al. | Aug 1994 | A |
5344376 | Bostic et al. | Sep 1994 | A |
D351202 | Bingham | Oct 1994 | S |
D351435 | Peterson et al. | Oct 1994 | S |
D351633 | Bingham | Oct 1994 | S |
D352534 | Dreibelbis et al. | Nov 1994 | S |
D353422 | Bostic et al. | Dec 1994 | S |
5372559 | Dalebout et al. | Dec 1994 | A |
5374228 | Buisman et al. | Dec 1994 | A |
5382221 | Hsu et al. | Jan 1995 | A |
5387168 | Bostic | Feb 1995 | A |
5393690 | Fu et al. | Feb 1995 | A |
D356128 | Smith et al. | Mar 1995 | S |
5409435 | Daniels | Apr 1995 | A |
5429563 | Engel et al. | Jul 1995 | A |
5431612 | Holden | Jul 1995 | A |
D360915 | Bostic et al. | Aug 1995 | S |
5468205 | McFall et al. | Nov 1995 | A |
5489249 | Brewer et al. | Feb 1996 | A |
5492517 | Bostic et al. | Feb 1996 | A |
D367689 | Wilkinson et al. | Mar 1996 | S |
5511740 | Loubert et al. | Apr 1996 | A |
5512025 | Dalebout et al. | Apr 1996 | A |
D370949 | Furner | Jun 1996 | S |
D371176 | Furner | Jun 1996 | S |
5527245 | Dalebout et al. | Jun 1996 | A |
5529553 | Finlayson | Jun 1996 | A |
5540429 | Dalebout et al. | Jul 1996 | A |
5549533 | Olson et al. | Aug 1996 | A |
5554085 | Dalebout | Sep 1996 | A |
5569128 | Dalebout | Oct 1996 | A |
5591105 | Dalebout et al. | Jan 1997 | A |
5591106 | Dalebout et al. | Jan 1997 | A |
5595556 | Dalebout et al. | Jan 1997 | A |
5607375 | Dalebout et al. | Mar 1997 | A |
5611539 | Watterson et al. | Mar 1997 | A |
5622527 | Watterson et al. | Apr 1997 | A |
5626538 | Dalebout et al. | May 1997 | A |
5626542 | Dalebout et al. | May 1997 | A |
D380024 | Novak et al. | Jun 1997 | S |
5637059 | Dalebout | Jun 1997 | A |
D380509 | Wilkinson et al. | Jul 1997 | S |
5643153 | Nylen et al. | Jul 1997 | A |
5645509 | Brewer et al. | Jul 1997 | A |
D384118 | Deblauw | Sep 1997 | S |
5662557 | Watterson et al. | Sep 1997 | A |
5669857 | Watterson et al. | Sep 1997 | A |
5672140 | Watterson et al. | Sep 1997 | A |
5674156 | Watterson et al. | Oct 1997 | A |
5674453 | Watterson et al. | Oct 1997 | A |
5676624 | Watterson et al. | Oct 1997 | A |
5683331 | Dalebout | Nov 1997 | A |
5683332 | Watterson et al. | Nov 1997 | A |
D387825 | Fleck et al. | Dec 1997 | S |
5695433 | Buisman | Dec 1997 | A |
5695434 | Dalebout et al. | Dec 1997 | A |
5695435 | Dalebout et al. | Dec 1997 | A |
5702325 | Watterson et al. | Dec 1997 | A |
5704879 | Watterson et al. | Jan 1998 | A |
5718657 | Dalebout et al. | Feb 1998 | A |
5720200 | Anderson et al. | Feb 1998 | A |
5720698 | Dalebout et al. | Feb 1998 | A |
D392006 | Dalebout et al. | Mar 1998 | S |
5722922 | Watterson et al. | Mar 1998 | A |
5733229 | Dalebout et al. | Mar 1998 | A |
5743833 | Watterson et al. | Apr 1998 | A |
5762584 | Daniels | Jun 1998 | A |
5762587 | Dalebout et al. | Jun 1998 | A |
5772560 | Watterson et al. | Jun 1998 | A |
5810698 | Hullett et al. | Sep 1998 | A |
5827155 | Jensen et al. | Oct 1998 | A |
5830114 | Halfen et al. | Nov 1998 | A |
5860893 | Watterson et al. | Jan 1999 | A |
5860894 | Dalebout et al. | Jan 1999 | A |
5899834 | Dalebout et al. | May 1999 | A |
D412953 | Armstrong | Aug 1999 | S |
D413948 | Dalebout | Sep 1999 | S |
5951441 | Dalebout et al. | Sep 1999 | A |
5951448 | Bolland | Sep 1999 | A |
D416596 | Armstrong | Nov 1999 | S |
6003166 | Hald et al. | Dec 1999 | A |
6019710 | Dalebout et al. | Feb 2000 | A |
6027429 | Daniels | Feb 2000 | A |
6033347 | Dalebout et al. | Mar 2000 | A |
D425940 | Halfen et al. | May 2000 | S |
6059692 | Hickman | May 2000 | A |
D428949 | Simonson | Aug 2000 | S |
6123646 | Colassi | Sep 2000 | A |
6171217 | Cutler | Jan 2001 | B1 |
6171219 | Simonson | Jan 2001 | B1 |
6174267 | Dalebout et al. | Jan 2001 | B1 |
6193631 | Hickman | Feb 2001 | B1 |
6228003 | Hald et al. | May 2001 | B1 |
6238323 | Simonson | May 2001 | B1 |
6251052 | Simonson | Jun 2001 | B1 |
6261022 | Dalebout et al. | Jul 2001 | B1 |
6280362 | Dalebout et al. | Aug 2001 | B1 |
6296594 | Simonson | Oct 2001 | B1 |
D450872 | Dalebout et al. | Nov 2001 | S |
6312363 | Watterson et al. | Nov 2001 | B1 |
D452338 | Dalebout et al. | Dec 2001 | S |
D453543 | Cutler | Feb 2002 | S |
D453948 | Cutler | Feb 2002 | S |
6350218 | Dalebout et al. | Feb 2002 | B1 |
6387020 | Simonson | May 2002 | B1 |
6413191 | Harris et al. | Jul 2002 | B1 |
6422980 | Simonson | Jul 2002 | B1 |
6447424 | Ashby et al. | Sep 2002 | B1 |
6458060 | Watterson et al. | Oct 2002 | B1 |
6458061 | Simonson | Oct 2002 | B2 |
6471622 | Hammer et al. | Oct 2002 | B1 |
6563225 | Soga et al. | May 2003 | B2 |
6601016 | Brown et al. | Jul 2003 | B1 |
6623140 | Watterson et al. | Sep 2003 | B2 |
6626799 | Watterson et al. | Sep 2003 | B2 |
6652424 | Dalebout | Nov 2003 | B2 |
6685607 | Olson | Feb 2004 | B1 |
6695581 | Wasson et al. | Feb 2004 | B2 |
6701271 | Willner et al. | Mar 2004 | B2 |
6702719 | Brown et al. | Mar 2004 | B1 |
6712740 | Simonson | Mar 2004 | B2 |
6730002 | Hald et al. | May 2004 | B2 |
6743153 | Watterson et al. | Jun 2004 | B2 |
6746371 | Brown et al. | Jun 2004 | B1 |
6749537 | Hickman | Jun 2004 | B1 |
6761667 | Cutler et al. | Jul 2004 | B1 |
6770015 | Simonson | Aug 2004 | B2 |
6786852 | Watterson et al. | Sep 2004 | B2 |
6808472 | Hickman | Oct 2004 | B1 |
6821230 | Dalebout et al. | Nov 2004 | B2 |
6830540 | Watterson et al. | Dec 2004 | B2 |
6863641 | Brown et al. | Mar 2005 | B1 |
6866613 | Brown et al. | Mar 2005 | B1 |
6875160 | Watterson et al. | Apr 2005 | B2 |
D507311 | Butler et al. | Jul 2005 | S |
6918858 | Watterson et al. | Jul 2005 | B2 |
6921351 | Hickman et al. | Jul 2005 | B1 |
6974404 | Watterson et al. | Dec 2005 | B1 |
6997852 | Watterson et al. | Feb 2006 | B2 |
7025713 | Dalebout et al. | Apr 2006 | B2 |
D520085 | Willardson et al. | May 2006 | S |
7044897 | Myers et al. | May 2006 | B2 |
7052442 | Watterson et al. | May 2006 | B2 |
7060006 | Watterson et al. | Jun 2006 | B1 |
7060008 | Watterson et al. | Jun 2006 | B2 |
7070539 | Brown et al. | Jul 2006 | B2 |
7097588 | Watterson et al. | Aug 2006 | B2 |
D527776 | Willardson et al. | Sep 2006 | S |
7112168 | Dalebout et al. | Sep 2006 | B2 |
7128693 | Brown et al. | Oct 2006 | B2 |
7166062 | Watterson et al. | Jan 2007 | B1 |
7166064 | Watterson et al. | Jan 2007 | B2 |
7169087 | Ercanbrack et al. | Jan 2007 | B2 |
7169093 | Simonson et al. | Jan 2007 | B2 |
7192388 | Dalebout et al. | Mar 2007 | B2 |
7250022 | Dalebout et al. | Jul 2007 | B2 |
7282016 | Simonson | Oct 2007 | B2 |
7285075 | Cutler et al. | Oct 2007 | B2 |
7344481 | Watterson et al. | Mar 2008 | B2 |
7377882 | Watterson et al. | May 2008 | B2 |
7425188 | Ercanbrack et al. | Sep 2008 | B2 |
7429236 | Dalebout et al. | Sep 2008 | B2 |
7455622 | Watterson et al. | Nov 2008 | B2 |
7482050 | Olson | Jan 2009 | B2 |
D588655 | Utykanski | Mar 2009 | S |
7510509 | Hickman | Mar 2009 | B2 |
7537546 | Watterson et al. | May 2009 | B2 |
7537549 | Nelson et al. | May 2009 | B2 |
7537552 | Dalebout et al. | May 2009 | B2 |
7540828 | Watterson et al. | Jun 2009 | B2 |
7549947 | Hickman et al. | Jun 2009 | B2 |
7556590 | Watterson et al. | Jul 2009 | B2 |
7563203 | Dalebout et al. | Jul 2009 | B2 |
7575536 | Hickman | Aug 2009 | B1 |
7601105 | Gipson et al. | Oct 2009 | B1 |
7604573 | Dalebout et al. | Oct 2009 | B2 |
D604373 | Dalebout et al. | Nov 2009 | S |
7618350 | Dalebout et al. | Nov 2009 | B2 |
7618357 | Dalebout et al. | Nov 2009 | B2 |
7625315 | Hickman | Dec 2009 | B2 |
7625321 | Simonson et al. | Dec 2009 | B2 |
7628730 | Watterson et al. | Dec 2009 | B1 |
7628737 | Kowallis et al. | Dec 2009 | B2 |
7637847 | Hickman | Dec 2009 | B1 |
7645212 | Ashby et al. | Jan 2010 | B2 |
7645213 | Watterson et al. | Jan 2010 | B2 |
7658698 | Pacheco et al. | Feb 2010 | B2 |
7674205 | Dalebout et al. | Mar 2010 | B2 |
7713171 | Hickman | May 2010 | B1 |
7713172 | Watterson et al. | May 2010 | B2 |
7713180 | Wickens et al. | May 2010 | B2 |
7717828 | Simonson et al. | May 2010 | B2 |
7736279 | Dalebout et al. | Jun 2010 | B2 |
7740563 | Dalebout et al. | Jun 2010 | B2 |
7749144 | Hammer | Jul 2010 | B2 |
7766797 | Dalebout et al. | Aug 2010 | B2 |
7771329 | Dalebout et al. | Aug 2010 | B2 |
7775940 | Dalebout et al. | Aug 2010 | B2 |
7789800 | Watterson et al. | Sep 2010 | B1 |
7798946 | Dalebout et al. | Sep 2010 | B2 |
7815550 | Watterson et al. | Oct 2010 | B2 |
7857731 | Hickman et al. | Dec 2010 | B2 |
7862475 | Watterson et al. | Jan 2011 | B2 |
7862478 | Watterson et al. | Jan 2011 | B2 |
7862483 | Hendrickson et al. | Jan 2011 | B2 |
D635207 | Dalebout et al. | Mar 2011 | S |
7901330 | Dalebout et al. | Mar 2011 | B2 |
7909740 | Dalebout et al. | Mar 2011 | B2 |
7976443 | Krull | Jul 2011 | B2 |
7980996 | Hickman | Jul 2011 | B2 |
7981000 | Watterson et al. | Jul 2011 | B2 |
7981013 | Krull | Jul 2011 | B2 |
7985164 | Ashby | Jul 2011 | B2 |
8029415 | Ashby et al. | Oct 2011 | B2 |
8033960 | Dalebout et al. | Oct 2011 | B1 |
D650451 | Olson et al. | Dec 2011 | S |
D652877 | Dalebout et al. | Jan 2012 | S |
8152702 | Pacheco | Apr 2012 | B2 |
D659775 | Olson et al. | May 2012 | S |
D659777 | Watterson et al. | May 2012 | S |
D660383 | Watterson et al. | May 2012 | S |
D664613 | Dalebout et al. | Jul 2012 | S |
8251874 | Ashby et al. | Aug 2012 | B2 |
8298123 | Hickman | Oct 2012 | B2 |
8298125 | Colledge et al. | Oct 2012 | B2 |
D671177 | Sip | Nov 2012 | S |
D671178 | Sip | Nov 2012 | S |
D673626 | Olson et al. | Jan 2013 | S |
8690735 | Watterson et al. | Apr 2014 | B2 |
D707763 | Cutler | Jun 2014 | S |
8740753 | Olson et al. | Jun 2014 | B2 |
8758201 | Ashby et al. | Jun 2014 | B2 |
8771153 | Dalebout et al. | Jul 2014 | B2 |
8784270 | Ashby et al. | Jul 2014 | B2 |
8784280 | Krull | Jul 2014 | B2 |
8808148 | Watterson et al. | Aug 2014 | B2 |
8814762 | Butler et al. | Aug 2014 | B2 |
D712493 | Ercanbrack et al. | Sep 2014 | S |
8840075 | Dalebout et al. | Sep 2014 | B2 |
8845493 | Watterson et al. | Sep 2014 | B2 |
8870726 | Watterson et al. | Oct 2014 | B2 |
8876668 | Hendrickson et al. | Nov 2014 | B2 |
8894549 | Colledge | Nov 2014 | B2 |
8894555 | Colledge et al. | Nov 2014 | B2 |
8911330 | Watterson et al. | Dec 2014 | B2 |
8920288 | Dalebout et al. | Dec 2014 | B2 |
8986165 | Ashby | Mar 2015 | B2 |
8992364 | Law et al. | Mar 2015 | B2 |
8992387 | Watterson et al. | Mar 2015 | B2 |
D726476 | Ercanbrack | Apr 2015 | S |
9028368 | Ashby et al. | May 2015 | B2 |
9028370 | Watterson et al. | May 2015 | B2 |
9039578 | Dalebout | May 2015 | B2 |
D731011 | Buchanan | Jun 2015 | S |
9072930 | Ashby et al. | Jul 2015 | B2 |
9119983 | Rhea | Sep 2015 | B2 |
9123317 | Watterson et al. | Sep 2015 | B2 |
9126071 | Smith | Sep 2015 | B2 |
9126072 | Watterson | Sep 2015 | B2 |
9138615 | Olson et al. | Sep 2015 | B2 |
9142139 | Watterson et al. | Sep 2015 | B2 |
9144703 | Dalebout et al. | Sep 2015 | B2 |
9149683 | Watterson et al. | Oct 2015 | B2 |
9186535 | Ercanbrack | Nov 2015 | B2 |
9186549 | Watterson et al. | Nov 2015 | B2 |
9254409 | Dalebout et al. | Feb 2016 | B2 |
9254416 | Ashby | Feb 2016 | B2 |
9278248 | Tyger et al. | Mar 2016 | B2 |
9278249 | Watterson | Mar 2016 | B2 |
9278250 | Buchanan | Mar 2016 | B2 |
9289648 | Watterson | Mar 2016 | B2 |
9339691 | Brammer | May 2016 | B2 |
9352185 | Hendrickson et al. | May 2016 | B2 |
9352186 | Watterson | May 2016 | B2 |
9375605 | Tyger et al. | Jun 2016 | B2 |
9381394 | Mortensen et al. | Jul 2016 | B2 |
9387387 | Dalebout | Jul 2016 | B2 |
9393453 | Watterson | Jul 2016 | B2 |
9403047 | Olson et al. | Aug 2016 | B2 |
9403051 | Cutler | Aug 2016 | B2 |
9421416 | Mortensen et al. | Aug 2016 | B2 |
9457219 | Smith | Oct 2016 | B2 |
9457220 | Olson | Oct 2016 | B2 |
9457222 | Dalebout | Oct 2016 | B2 |
9460632 | Watterson | Oct 2016 | B2 |
9463356 | Rhea | Oct 2016 | B2 |
9468794 | Barton | Oct 2016 | B2 |
9468798 | Dalebout | Oct 2016 | B2 |
9480874 | Cutler | Nov 2016 | B2 |
9492704 | Mortensen et al. | Nov 2016 | B2 |
9498668 | Smith | Nov 2016 | B2 |
9517378 | Ashby et al. | Dec 2016 | B2 |
9521901 | Dalebout | Dec 2016 | B2 |
9533187 | Dalebout | Jan 2017 | B2 |
9539461 | Ercanbrack | Jan 2017 | B2 |
9579544 | Watterson | Feb 2017 | B2 |
9586086 | Dalebout et al. | Mar 2017 | B2 |
9586090 | Watterson et al. | Mar 2017 | B2 |
9604099 | Taylor | Mar 2017 | B2 |
9616276 | Dalebout et al. | Apr 2017 | B2 |
9616278 | Olson | Apr 2017 | B2 |
9623281 | Hendrickson et al. | Apr 2017 | B2 |
9636567 | Brammer et al. | May 2017 | B2 |
9675839 | Dalebout et al. | Jun 2017 | B2 |
9682307 | Dalebout | Jun 2017 | B2 |
9694234 | Dalebout et al. | Jul 2017 | B2 |
9694242 | Ashby et al. | Jul 2017 | B2 |
9737755 | Dalebout | Aug 2017 | B2 |
9757605 | Olson et al. | Sep 2017 | B2 |
9764186 | Dalebout et al. | Sep 2017 | B2 |
9767785 | Ashby et al. | Sep 2017 | B2 |
9795822 | Smith et al. | Oct 2017 | B2 |
9808672 | Dalebout | Nov 2017 | B2 |
9844695 | Shorter | Dec 2017 | B1 |
9849326 | Smith | Dec 2017 | B2 |
9878210 | Watterson | Jan 2018 | B2 |
9889334 | Ashby et al. | Feb 2018 | B2 |
9889339 | Douglass | Feb 2018 | B2 |
9937376 | McInelly et al. | Apr 2018 | B2 |
9937377 | McInelly et al. | Apr 2018 | B2 |
9937378 | Dalebout et al. | Apr 2018 | B2 |
9937379 | Mortensen et al. | Apr 2018 | B2 |
9943719 | Smith et al. | Apr 2018 | B2 |
9943722 | Dalebout | Apr 2018 | B2 |
9948037 | Ashby | Apr 2018 | B2 |
9968816 | Olson et al. | May 2018 | B2 |
9968821 | Finlayson et al. | May 2018 | B2 |
9968823 | Cutler | May 2018 | B2 |
10010755 | Watterson | Jul 2018 | B2 |
10010756 | Watterson | Jul 2018 | B2 |
10029145 | Douglass | Jul 2018 | B2 |
D826350 | Hochstrasser | Aug 2018 | S |
10046196 | Ercanbrack et al. | Aug 2018 | B2 |
D827733 | Hochstrasser | Sep 2018 | S |
10065064 | Smith et al. | Sep 2018 | B2 |
10071285 | Smith et al. | Sep 2018 | B2 |
10085586 | Smith et al. | Oct 2018 | B2 |
10086254 | Watterson | Oct 2018 | B2 |
10099083 | Owusu | Oct 2018 | B1 |
10136842 | Ashby | Nov 2018 | B2 |
10166429 | Chen | Jan 2019 | B2 |
10186161 | Watterson | Jan 2019 | B2 |
10188890 | Olson et al. | Jan 2019 | B2 |
10207143 | Dalebout et al. | Feb 2019 | B2 |
10207145 | Tyger et al. | Feb 2019 | B2 |
10207147 | Ercanbrack et al. | Feb 2019 | B2 |
10207148 | Powell et al. | Feb 2019 | B2 |
10212994 | Watterson et al. | Feb 2019 | B2 |
10220259 | Brammer | Mar 2019 | B2 |
10226396 | Ashby | Mar 2019 | B2 |
10226664 | Dalebout et al. | Mar 2019 | B2 |
10252109 | Watterson | Apr 2019 | B2 |
10258828 | Dalebout et al. | Apr 2019 | B2 |
10272317 | Watterson | Apr 2019 | B2 |
10279212 | Dalebout et al. | May 2019 | B2 |
10293211 | Watterson et al. | May 2019 | B2 |
D852292 | Cutler | Jun 2019 | S |
10343017 | Jackson | Jul 2019 | B2 |
10376736 | Powell et al. | Aug 2019 | B2 |
10388183 | Watterson | Aug 2019 | B2 |
10391361 | Watterson | Aug 2019 | B2 |
10420978 | Wang | Sep 2019 | B2 |
D864320 | Weston | Oct 2019 | S |
D864321 | Weston | Oct 2019 | S |
10426989 | Dalebout | Oct 2019 | B2 |
10433612 | Ashby et al. | Oct 2019 | B2 |
10441840 | Dalebout | Oct 2019 | B2 |
10441844 | Powell | Oct 2019 | B2 |
10449416 | Dalebout et al. | Oct 2019 | B2 |
10463906 | Owusu | Nov 2019 | B2 |
10471299 | Powell | Nov 2019 | B2 |
D868909 | Cutler et al. | Dec 2019 | S |
10492519 | Capell et al. | Dec 2019 | B2 |
10493349 | Watterson | Dec 2019 | B2 |
10500473 | Watterson | Dec 2019 | B2 |
10537764 | Smith et al. | Jan 2020 | B2 |
10543395 | Powell et al. | Jan 2020 | B2 |
10561877 | Workman | Feb 2020 | B2 |
10561893 | Chatterton et al. | Feb 2020 | B2 |
10561894 | Dalebout et al. | Feb 2020 | B2 |
10569121 | Watterson | Feb 2020 | B2 |
10569123 | Hochstrasser et al. | Feb 2020 | B2 |
10625114 | Ercanbrack | Apr 2020 | B2 |
10625137 | Dalebout et al. | Apr 2020 | B2 |
10661114 | Watterson et al. | May 2020 | B2 |
10668320 | Watterson | Jun 2020 | B2 |
10671705 | Capell et al. | Jun 2020 | B2 |
10688346 | Brammer | Jun 2020 | B2 |
10695614 | Owusu | Jun 2020 | B2 |
10702736 | Weston et al. | Jul 2020 | B2 |
10709925 | Dalebout et al. | Jul 2020 | B2 |
10726730 | Watterson | Jul 2020 | B2 |
10729965 | Powell | Aug 2020 | B2 |
10758767 | Olson et al. | Sep 2020 | B2 |
10786700 | Owusu | Sep 2020 | B2 |
10786706 | Smith | Sep 2020 | B2 |
10864407 | Watterson et al. | Dec 2020 | B2 |
10918905 | Powell et al. | Feb 2021 | B2 |
10932517 | Ashby et al. | Mar 2021 | B2 |
10940360 | Dalebout et al. | Mar 2021 | B2 |
10953268 | Dalebout et al. | Mar 2021 | B1 |
10953305 | Dalebout et al. | Mar 2021 | B2 |
10967214 | Olson et al. | Apr 2021 | B1 |
10994173 | Watterson | May 2021 | B2 |
11000730 | Dalebout et al. | May 2021 | B2 |
11013960 | Watterson et al. | May 2021 | B2 |
11033777 | Watterson et al. | Jun 2021 | B1 |
11058913 | Dalebout et al. | Jul 2021 | B2 |
11058914 | Powell | Jul 2021 | B2 |
11058918 | Watterson et al. | Jul 2021 | B1 |
11185731 | Wang | Nov 2021 | B2 |
11187285 | Wrobel | Nov 2021 | B2 |
RE49009 | Wang | Apr 2022 | E |
11298577 | Watterson | Apr 2022 | B2 |
11326673 | Buchanan | May 2022 | B2 |
11338169 | Dalebout et al. | May 2022 | B2 |
11338175 | Watterson et al. | May 2022 | B2 |
11426633 | Watterson et al. | Aug 2022 | B2 |
11451108 | Tinney | Sep 2022 | B2 |
11452903 | Watterson | Sep 2022 | B2 |
11491361 | Flick | Nov 2022 | B2 |
11511152 | Powell et al. | Nov 2022 | B2 |
11534651 | Ercanbrack et al. | Dec 2022 | B2 |
11534654 | Silcock et al. | Dec 2022 | B2 |
11534655 | Dalebout et al. | Dec 2022 | B2 |
11565148 | Dalebout et al. | Jan 2023 | B2 |
11596830 | Dalebout et al. | Mar 2023 | B2 |
11642564 | Watterson | May 2023 | B2 |
11673036 | Dalebout et al. | Jun 2023 | B2 |
11680611 | Wrobel | Jun 2023 | B2 |
11700905 | Ashby et al. | Jul 2023 | B2 |
11708874 | Wrobel | Jul 2023 | B2 |
20080051256 | Ashby et al. | Feb 2008 | A1 |
20100120589 | Krull | May 2010 | A1 |
20100210427 | Yu | Aug 2010 | A1 |
20110263392 | Yu | Oct 2011 | A1 |
20150251055 | Ashby | Sep 2015 | A1 |
20160089560 | Smith et al. | Mar 2016 | A1 |
20170124912 | Ashby et al. | May 2017 | A1 |
20170193578 | Watterson | Jul 2017 | A1 |
20170259106 | Pawlas et al. | Sep 2017 | A1 |
20170266489 | Douglass et al. | Sep 2017 | A1 |
20170270820 | Ashby et al. | Sep 2017 | A1 |
20180085630 | Capell et al. | Mar 2018 | A1 |
20180099116 | Ashby | Apr 2018 | A1 |
20180099180 | Wilkinson | Apr 2018 | A1 |
20180111034 | Watterson | Apr 2018 | A1 |
20190223612 | Watterson et al. | Jul 2019 | A1 |
20190240526 | Owusu | Aug 2019 | A1 |
20190269971 | Capell et al. | Sep 2019 | A1 |
20200009417 | Dalebout | Jan 2020 | A1 |
20200078632 | Owusu | Mar 2020 | A1 |
20200114204 | Owusu | Apr 2020 | A1 |
20200391069 | Olson et al. | Aug 2020 | A1 |
20200368575 | Hays et al. | Nov 2020 | A1 |
20210001177 | Smith | Jan 2021 | A1 |
20210046353 | Dalebout et al. | Feb 2021 | A1 |
20210106899 | Willardson et al. | Apr 2021 | A1 |
20210110910 | Ostler et al. | Apr 2021 | A1 |
20210146221 | Dalebout et al. | May 2021 | A1 |
20210213331 | Watterson | Jul 2021 | A1 |
20210268336 | Watterson et al. | Sep 2021 | A1 |
20210291013 | Nascimento | Sep 2021 | A1 |
20210299518 | Brammer et al. | Sep 2021 | A1 |
20210299542 | Brammer et al. | Sep 2021 | A1 |
20210339079 | Dalebout et al. | Nov 2021 | A1 |
20220062685 | Ashby et al. | Mar 2022 | A1 |
20220104992 | Ashby | Apr 2022 | A1 |
20220212052 | Ercanbrack et al. | Jul 2022 | A1 |
20220241649 | Ashby | Aug 2022 | A1 |
20220241665 | Dalebout et al. | Aug 2022 | A1 |
20220241668 | Willardson et al. | Aug 2022 | A1 |
20220249912 | Watterson et al. | Aug 2022 | A1 |
20220257994 | Smith | Aug 2022 | A1 |
20220258007 | Watterson et al. | Aug 2022 | A1 |
20220258008 | Watterson et al. | Aug 2022 | A1 |
20220266085 | Dalebout et al. | Aug 2022 | A1 |
20220280857 | Watterson | Sep 2022 | A1 |
20220309042 | Archer | Sep 2022 | A1 |
20220314078 | Watterson et al. | Oct 2022 | A1 |
20220323827 | Watterson et al. | Oct 2022 | A1 |
20220339493 | Larsen | Oct 2022 | A1 |
20220339520 | Toth | Oct 2022 | A1 |
20220342969 | Watterson et al. | Oct 2022 | A1 |
20220347516 | Taylor | Nov 2022 | A1 |
20220347548 | Watterson | Nov 2022 | A1 |
20220362613 | Watterson et al. | Nov 2022 | A1 |
20220362624 | Dalebout | Nov 2022 | A1 |
20220395729 | Toth | Dec 2022 | A1 |
20230039903 | Brammer et al. | Feb 2023 | A1 |
20230054845 | Smith | Feb 2023 | A1 |
20230122235 | Ashby et al. | Apr 2023 | A1 |
20230128721 | Plummer | Apr 2023 | A1 |
20230158358 | Ercanbrack et al. | May 2023 | A1 |
20230181993 | Taylor et al. | Jun 2023 | A1 |
20230191189 | Taylor et al. | Jun 2023 | A1 |
20230191197 | Ashby | Jun 2023 | A1 |
20230218975 | Toles et al. | Jul 2023 | A1 |
20230226401 | Watterson | Jul 2023 | A1 |
Number | Date | Country |
---|---|---|
102233169 | Nov 2011 | CN |
105457213 | Apr 2016 | CN |
107773908 | Mar 2018 | CN |
107773909 | Mar 2018 | CN |
112368054 | Feb 2021 | CN |
Entry |
---|
Taiwan Office Action with English translation issued in application 111105588 dated Nov. 8, 2022, 15 pages. |
Taiwan Notice of Allowance with English translation issued in application 111105588 dated Feb. 15, 2023, 4 pages. |
Chinese Office Action with English translation issued in application 202210143311.8 dated Jul. 14, 2023, 23 pages. |
JaxJox Kettlebell Connect; accessed from https://web.archive.org/web/20190617075340/https://jaxjox.com/product/kettlebell-connect/ on Nov. 9, 2022, 7 pages. |
U.S. Appl. No. 17/066,485, filed Oct. 9, 2020, Weston et al. |
U.S. Appl. No. 17/739,819, filed May 9, 2022, Buchanan. |
U.S. Appl. No. 17/841,313, filed Jun. 15, 2022, Weston et al. |
U.S. Appl. No. 17/963,822, filed Oct. 11, 2022, Powell. |
U.S. Appl. No. 18/091,004, filed Dec. 29, 2022, Cox. |
U.S. Appl. No. 18/103,221, filed Jan. 30, 2023, Dalebout et al. |
U.S. Appl. No. 18/114,758, filed Feb. 27, 2023, Cutler et al. |
U.S. Appl. No. 18/117,263, filed Mar. 3, 2023, Smith et al. |
U.S. Appl. No. 18/123,026, filed Mar. 17, 2023, Silcock et al. |
U.S. Appl. No. 18/132,277, filed Apr. 7, 2023, Vasquez et al. |
U.S. Appl. No. 18/136,535, filed Apr. 19, 2023, Ashby et al. |
U.S. Appl. No. 18/141,872, filed May 1, 2023, Ashby et al. |
U.S. Appl. No. 18/205,299, filed Jun. 2, 2023, Wrobel. |
U.S. Appl. No. 18/207,512, filed Jun. 8, 2023, Chuang. |
U.S. Appl. No. 18/210,505, filed Jun. 15, 2023, Nielsen et al. |
U.S. Appl. No. 29/702,127, filed Sep. 16, 2019, Cutler et al. |
U.S. Appl. No. 62/273,852, filed Dec. 31, 2015, Watterson. |
U.S. Appl. No. 63/073,081, filed Sep. 1, 2021, Ashby et al. |
U.S. Appl. No. 63/079,697, filed Sep. 7, 2020, Willardson et al. |
U.S. Appl. No. 63/086,793, filed Oct. 20, 2020, Ashby. |
U.S. Appl. No. 63/134,036, filed Jan. 5, 2021, Ercanbrack et al. |
U.S. Appl. No. 63/150,066, filed Feb. 16, 2021, Smith. |
U.S. Appl. No. 63/156,801, filed Mar. 4, 2021, Watterson. |
U.S. Appl. No. 63/165,498, filed Mar. 24, 2021, Archer. |
U.S. Appl. No. 63/179,094, filed Apr. 23, 2021, Watterson et al. |
U.S. Appl. No. 63/180,521, filed Apr. 27, 2021, Watterson et al. |
U.S. Appl. No. 63/187,348, filed May 11, 2021, Dalebout et al. |
U.S. Appl. No. 63/188,431, filed May 13, 2021, Plummer. |
U.S. Appl. No. 63/200,903, filed Apr. 2, 2021, Watterson et al. |
U.S. Appl. No. 63/211,870, filed Jun. 17, 2021, Watterson et al. |
U.S. Appl. No. 63/216,313, filed Jun. 29, 2021, Watterson et al. |
U.S. Appl. No. 63/229,794, filed Aug. 12, 2021, Brammer. |
U.S. Appl. No. 63/235,002, filed Aug. 19, 2021, Smith. |
U.S. Appl. No. 63/254,470, filed Oct. 11, 2021, Powell. |
U.S. Appl. No. 63/278,714, filed Nov. 12, 2021, Taylor. |
U.S. Appl. No. 63/289,997, filed Dec. 15, 2021, Taylor et al. |
U.S. Appl. No. 63/290,455, filed Dec. 16, 2021, Taylor et al. |
U.S. Appl. No. 63/290,557, filed Dec. 16, 2021, Ashby. |
U.S. Appl. No. 63/298,170, filed Jan. 10, 2022, Ercanbrack et al. |
U.S. Appl. No. 63/299,357, filed Jan. 13, 2022, Toles et al. |
U.S. Appl. No. 63/305,976, filed Feb. 2, 2022, Watterson. |
U.S. Appl. No. 63/329,270, filed Apr. 8, 2022, Vasquez et al. |
U.S. Appl. No. 63/332,581, filed Apr. 25, 2022, Ashby et al. |
U.S. Appl. No. 63/338,265, filed May 4, 2022, Ashby et al. |
U.S. Appl. No. 63/350,072, filed Jun. 8, 2022, Chuang. |
U.S. Appl. No. 63/352,539, filed Jun. 15, 2022, Nielsen et al. |
U.S. Appl. No. 63/471,680, filed Jun. 7, 2023, Powell et al. |
Number | Date | Country | |
---|---|---|---|
20220257994 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
63150066 | Feb 2021 | US |