The present invention generally relates to firearms, and more particularly to user-actuated safety mechanisms for firearms.
Manual safeties for firearms are intended to reduce the chance of accidental discharge by disabling fire control components in the event a user fails to exercise proper firearm handling procedures. This can be achieved in numerous ways to block various components of the trigger-actuated firing mechanism. This may be particularly challenging for compact pistol platforms for concealed carry applications where available space within the firearm is limited.
Improvements in safeties are desired.
According to aspects of the present disclosure, an auto-loading firearm with manually-actuated safety mechanism and a related method of operation are provided. The manual safety mechanism discloses herein provides a combination of a hammer blocker and a trigger linkage disconnect activated manually and simultaneously via a single safety mode selector or actuator accessible to the user. This advantageously forms a dual-acting safety mechanism to block discharge of the firearm in two different ways when the safety is activated for added security. In addition, the dual-acting safety mechanism has an efficient and compact configuration allowing it to be used in a compact conceal carry firearm in one possible implementation. In one non-limiting embodiment, the firearm may be a semi-automatic pistol.
A firearm according to the present disclosure therefore includes a manually operated safety mechanism configured to selectively arrest the firing control system. The safety mode selector or actuator is alterable between two axial positions and allows selection of a “SAFE” firing mode or position in which the firing mechanism is disabled, and a “FIRE” firing mode or position in which the firing mechanism is enabled to discharge the firearm.
In one embodiment, the safety selector or actuator may move in a linear manner forward/rearward. A secondary safety catch or link operably coupled to and cooperating with the actuator operates to disable the firing mechanism via movement in a rotary manner. The actuator and safety link in one embodiment are operably interfaced via a camming interface such that linearly changing the axial position of the selector or actuator by sliding the actuator in turn actuates and rotates the safety link via camming action to disable the firing mechanism. The actuator has an actuating member for grasping by the user which is exposed to change the safety mechanism between the SAFE and FIRE modes. Indicia which may be provided on the actuator provides visual confirmation of the status of the safety and firing mechanism. The safety link may be an internal component which is substantially located beneath and concealed by the firearm frame. In one embodiment, the actuator and safety link may be mounted to the frame and/or a firing control housing insert which supports the firing mechanism components (e.g. sear, hammer, etc.).
In one aspect and safety feature, the actuator comprises a cam operated trigger bar linkage disconnect feature which acts to physically move or displace the trigger bar, thereby misaligning an operating interface between the sear and trigger bar such that a trigger pull with the safety activated fails to actuate and rotate the sear which is necessary to release the hammer and fire the firearm. For example, when the safety mechanism (e.g. actuator) is in the FIRE position (e.g. actuator in a first axial position) and the trigger is pulled during normal operation, the trigger bar operating protrusion is axially aligned with the sear operating protrusion which falls in the same linear path of axial travel as the trigger bar operating protrusion. This allows the sear to be rotated via engagement with the trigger bar as it moves forward when the trigger is pulled. The sear when rotated far enough by the trigger bar via the trigger pull allows the hammer to sear-off (disengage the sear) and fully rotate to the forward firing position from its rear cocked position to strike the firing pin and discharge the firearm.
When the safety mechanism according to the present disclosure is actuated, however, the trigger bar is vertically displaced and axially misaligned with the sear operating protrusion when the safety mechanism is in the SAFE position (e.g. actuator in second axial position). In other words, the trigger bar and sear operating protrusions no longer lie in the same linear path of axial travel necessary to rotate the sear via a trigger pull. As such, the trigger can be pulled and moved but without causing the trigger bar to engage and operate the sear. This axial misalignment is induced by the rotation of the secondary safety link caused by the manual linear movement of the actuator between its two possible axial operating positions, which in turn pushes the trigger bar downwards below the sear operating protrusion on the sear in one embodiment. The secondary safety link has a cam surface configured to interact with the cam of the safety actuator to transfer linear fore-aft motion of the actuator into rotational motion of the safety link, as further described herein. The trigger bar of the present firearm is therefore moveable via the dual-acting safety mechanism between an upper position axially with the which is engageable with sear, and a lower position which is misaligned and not engageable with the sear.
In another aspect and safety feature, the secondary safety link advantageously also comprises a hammer blocker feature which works by preventing sear-off between the hammer and sear of the firing control mechanism for preventing the hammer from rotating and striking the firing pin to discharge the firearm when the trigger is pulled. With the provided safety link is rotated downwards by the actuator when in the SAFE position, the safety link positively engages and blocks the hammer from rotating and striking the firing pin in the unlikely situation that the hammer is unintentionally caused to sear-off during a high impact situation (e.g. such as the firearm being dropped onto a hard surface). This provides an added security feature to disable the firing control mechanism in addition to displacement of the trigger bar described above.
According to one aspect, a firearm with safety mechanism comprises: a longitudinal axis; a frame; a hammer pivotably disposed in the frame, the hammer moveable between a rearward cocked position and a forward firing position; a sear pivotably disposed in the frame and configured to hold the hammer in the rearward cocked position; a trigger mechanism comprising a trigger and trigger bar movable therewith, the trigger bar movable to selectively engage the sear for releasing the hammer from the cocked position via a trigger pull to discharge the firearm; a manually-operated safety mechanism comprising a movable actuator and a pivotably movable safety link operably interfaced with the actuator, the safety link actuatable via moving the actuator between first and second positions; the safety link comprising a first protrusion arranged to selectively engage the hammer when the safety link is actuated, and a second protrusion arranged to selectively engage the trigger bar when the safety link is actuated; wherein via moving the actuator, the safety mechanism is changeable between a fire position in which the safety link is disengaged from the hammer and trigger bar which allows the firearm to be discharged in response to a trigger pull, and a safe position in which the safety link is engaged with the hammer and trigger bar to prevent the firearm from being discharged in response to a trigger pull.
According to another aspect, a firearm with dual-acting safety mechanism comprises: a longitudinal axis; a frame; a hammer pivotably movable in the frame, the hammer moveable between a rearward cocked position and a forward firing position; a sear pivotably movable in the frame and configured to hold the hammer in the rearward cocked position; a trigger mechanism comprising a pivotably movable trigger and a trigger bar movably coupled to the trigger, the trigger bar axially moveable via pulling the trigger to selectively engage and rotate the sear for releasing the hammer from the cocked position to discharge the firearm; a manually-operated safety mechanism comprising an axially slideable safety mode selector and a pivotably movable safety link, the safety link moveable between unactuated and actuated positions via sliding the actuator between first and second axial positions; the safety link comprising a first nose protrusion on one lateral side of the firearm which is selectively operable when the safety link is in the actuated position to engage and block rotation of the hammer to prevent discharging the firearm; the safety link further comprising a second foot protrusion on an opposite lateral side of the firearm which is selectively operable when the safety link is in the actuated position to engage and displace the trigger bar such that the trigger bar is prevented from engaging and rotating the sear to prevent discharging the firearm.
According to another aspect, a dual-acting safety mechanism for a firearm having a firing mechanism with a rotatable hammer, a rotatable sear, and a trigger assembly including a trigger and trigger bar movably coupled thereto for fore and aft movement, the safety mechanism comprises: a longitudinal axis; a frame; a safety selector linearly movable in the frame between a forward position and a rearward position; a safety link pivotably movable in the frame and operably interfaced with the actuator, the safety link pivotably actuatable via moving the actuator between an upper position and a lower position; the safety link comprising a first lateral side including a first safety protrusion configured to selectively block rotational movement of the hammer when the safety link is actuated, and a second safety protrusion configured to selectively engage the trigger bar when the safety link is actuated; wherein the safety mechanism is changeable between a fire position in which the safety link is disengaged from the hammer and trigger bar which allows the firearm to be discharged in response to a trigger pull, and a safe position in which the safety link is engaged with the hammer and trigger bar to prevent the firearm from being discharged in response to a trigger pull.
According to another aspect, a firearm with dual-acting safety mechanism comprises: a pivotable hammer; a rotatable sear operable to selectively hold the hammer in a cocked position; a trigger mechanism including a movable trigger and trigger bar which collectively operates to rotate the sear to release the hammer when in the cocked position; and a safety mechanism including a safety mode selector cooperating with a pivotably movable secondary safety link configured and operable to engage the trigger bar and hammer; wherein linearly moving the selector actuates and rotates the safety link which simultaneously both blocks the hammer and displaces the trigger bar such that the sear can no longer be actuated via a trigger pull
According to yet another aspect, a method for disabling the firing mechanism of a firearm comprises: providing a firearm comprising a firing mechanism including a hammer pivotable between rearward cocked and forward firing positions, a rotatable sear configured to hold the hammer in the cocked position, a movable trigger and trigger bar assembly operable to engage and rotate the sear to release the hammer from the cocked position, and a safety mechanism comprising an actuator and safety link operably interfaced with the firing mechanism; rotating the hammer to the cocked position; engaging the hammer with the sear which holds the hammer in the cocked position; sliding the actuator of the safety mechanism in a first direction; rotating the safety link via camming action between the actuator and the safety link; and engaging the safety link with both the hammer and trigger bar to disable the firing mechanism. The method may further include the engaging step comprising engaging a first protrusion of the safety link with the hammer to block rotation thereof from the cocked position, and engaging a second protrusion of the safety link with the trigger bar which displaces the trigger bar such that rotating the sear via a trigger pull disables release of the hammer from cocked position by the sear.
The features of the exemplary embodiments will be described with reference to the following drawings where like elements are labeled similarly, and in which:
All drawings shown herein are schematic and not necessarily to scale. A reference herein to a figure by number which may include several sub-part figures having the same number but different alphabetical suffixes (e.g. 24A, 24B, etc.) shall be construed as a reference to all sub-part figures unless explicitly noted otherwise.
The features and benefits of the invention are illustrated and described herein by reference to exemplary (“example”) embodiments. This description of exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures may be secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplary embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
An exemplary auto-loading firearm incorporating an embodiment of the dual functioning safety mechanism according to principles of the present invention will now be described with reference to a semi-automatic firearm in the form of a pistol 20. The principles and features of the embodiments disclosed herein, however, may be embodied with equal benefit in other types of auto-loading firearms using any caliber ammunition and including long guns such as rifles or shotguns. Accordingly, the invention is not limited in its applicability or scope to pistols alone as described herein.
Referring initially now to
Slide 24 is slideably mounted on pistol 20, and in one embodiment on firing control housing 80 and/or frame 22 via a support rail and groove system for axial reciprocating movement forwards and rearwards thereon. Such systems are known and understood by those in the art without further elaboration. A recoil spring 29 operably associated with slide 24 and mounted on a guide rod 29a acts to return the slide to the forward position shown in
Pistol 20 further includes a barrel 26 that is movably disposed at least partially inside slide 24 and includes a rear chamber block 28 defining an open chamber 30 therein configured for receiving a cartridge. Breech area 23 is defined at the rear of barrel 26 and chamber 30 in the slide 24 for loading cartridges C therein from magazine 50. Slide 24 includes a breech block defining a frontal breech face 24a which is axially moveable with the slide in relation to the chamber 30 to alternatingly form an open or closed breech in a manner well known in the art. The breech is shown closed in
A spring-biased elongated slide stop 65 is configured to engage the slide and retain it in a rearward open breech position. The slide stop includes an upright protrusion 65a configured to engage a corresponding stop notch 65b formed on the slide (see, e.g.
Referring generally to
An axially movable spring-biased firing pin 27 is supported by slide 24 and positioned for rearward retraction and forward release to strike a chambered cartridge C to discharge the pistol 20. The firing pin 27 is actuated and released via the trigger assembly through a trigger pull. Accordingly, the combination of the trigger assembly and firing pin 27 together define a means for striking a chambered cartridge to discharge pistol 20. Firing pin spring 27a positioned concentrically around the axially firing pin body. Spring 64 may be a helical compression coil spring in one embodiment, or other suitable type spring operable to bias the firing pin towards the chamber 30. The firing pin may have a diametrically narrowed front end configured to contact the rear of cartridge C for detonating the cartridge whereas the rear end may be diametrically enlarged relative thereto. The rear end may be exposed in a rear cavity 27b of the slide where it can be reached and struck by the spring-biased rotating hammer 60 when released from the sear. This drives the firing pin forward to strike and detonate the cartridge in the usual manner known in the art.
A trigger return spring 44 may further be provided which in one embodiment may be a torsion spring that is mounted about trigger pin 41 and biases trigger 40 toward the fully forward ready-to-fire position shown in
The firing control system or mechanism further includes the hammer 60 for striking the firing pin 27 and a sear 100 cooperating with the hammer which operate in conjunction to fire the pistol via a trigger pull. The sear acts in a convention manner to retain the hammer 60 in a rearward pivoted cocked position until the trigger is pulled. Sear 100 is pivotably mounted to firing control housing insert 80 via a transverse sear pin 102 which defines a transverse pivot axis. Sear 100 is biased in an upwards or upright direction and orientation towards engagement with the hammer (counter-clockwise as viewed in
Sear 100 is shown in further isolated detail in
Hammer 60 includes an upper striking portion 61 defining a substantially flat front facing striking surface 61a for striking the rear end of firing pin 27 to discharge the pistol. A lower operating portion 62 is defined by the hammer body which defines the hammer notch 150 and notch surface 150a previously described herein. A transverse through opening 66 which receives hammer pivot pin 68 is located approximately midway between the striking and operating portions in the central portion of the hammer body as shown. Hammer pivot pin 68 extends laterally and transversely to longitudinal axis LA through the firing control housing insert 80 and defines a corresponding transverse pivot axis of the hammer. The hammer and sear pivot pins 68, 102 are oriented parallel to each other and perpendicularly transverse to the longitudinal axis. Hammer spring 101 biases the striking portion 61 of hammer 60 forward toward the firing pin 27. Spring 101 may be an elongated coil spring housed in the rear grip portion 22a of frame 22 (see, e.g.
Operating protrusion 108 of sear 100 extends in a rearward direction from extension arm 100a and is selectively engageable with a corresponding forward facing operating surface 146 formed on the trigger bar 42 for rotating the sear via a trigger pull to discharge the pistol. Operating surface 146 may be defined by an inwardly and laterally-extending portion such as trigger bar operating protrusion 140 as best shown in
With general reference to
Operation of the firing control mechanism will now be briefly described with initial reference to in
The safety mechanism according to the present disclosure and operation will now be described. Referring generally to
Referring to the foregoing figures, the primary safety mode selector or actuator 200 comprises a cam operated trigger bar linkage disconnect feature which acts in concert with secondary safety link 300 to misalign the interface between the sear and trigger bar such that a trigger pull with the safety activated fails to actuate the sear to release the hammer and fire the firearm. Actuator 200 in one non-limiting embodiment has a body including a substantially flat plate-like central portion 202, an actuating member 201 disposed on one lateral side (e.g. left side) of the central portion, and a rod-like camming protrusion 203 on the opposite lateral side (e.g. right side) of the central portion. Plate-like central portion 202 may be vertically oriented and axially elongated in the direction of longitudinal axis LA having a greater length than height or lateral thickness in one non-limiting configuration. The central portion may include position indicia 205 (best shown in
Actuating member 201 is configured grasping by a user and operable for sliding the actuator 200 fore and aft (forward/rearward) in the frame 22 by the user and may extend perpendicularly and laterally outwards from the central portion. Actuating member 201 may have a vertically elongated height greater than the height of the central portion to facilitate engagement by the user's fingers/thumbs. Textured or undulated surface grip features 201a (e.g. ridges, grooves, knurling, serrations, etc.) may be provided in one embodiment on one or both of the front and rear sides of the actuating finger to ensure positive engagement by the user to activate or deactivate the safety by sliding the safety forward or rearward, as further described herein.
The camming protrusion 203 extends perpendicularly and laterally outwards from the central portion 202. Camming protrusion 203 is laterally elongated in length and arranged to engage the secondary safety link 300. The camming protrusion may have an oblong cross section shape having a greater longitudinal width than a height (best shown in
The actuator 200 is captured between firing control housing insert 80 and outer pistol frame 22. Actuator 200 is linearly and slideably movable in the axial direction of the longitudinal axis LA between a forward FIRE position (
Secondary safety link 300 is configured to act directly on the trigger bar 42 and hammer 60 when actuated by the camming protrusion 203 of actuator 200. Safety link 300 comprises a body including a top 308, bottom 309, left lateral side 306 disposed proximate to the left side of pistol 20, and a right lateral side disposed near the right side of the pistol. Safety link 300 includes rear extending mounting portion 303, and front operating portion 304. Mounting portion 303 has a transverse through opening 304 which receives transversely mounted pivot pin 301 therethrough defining a transverse pivot axis of the safety link oriented perpendicularly to longitudinal axis LA. The safety link pivot axis may be located rearward of both the transverse pivot axes of the hammer 60 and sear 100. The opening 304 may be located at the very rear end of the mounting portion 303 as shown in the illustrated embodiment. The front operation portion 304 of the safety link is pivotably up and down about its rear pivot axis for selectively enabling or disabling the firing mechanism, as further described herein. In one embodiment, the rear mounting portion 303 is offset towards the left lateral side of the safety link 200 and the firearm, and therefore does not have a lateral width which extends completely across the firearm from side to side (best shown in
The front operating portion 304 however may have a lateral width in one embodiment which extends transversely completely across the firearm from left to right side. Operating portion 304 includes a pair of safety protrusions comprising trigger bar actuating foot protrusion 302 on the right lateral side 307 of safety link 300 and a hammer blocking nose protrusion 305 on the left lateral side 306. Cross member 308 extends transversely between the foot protrusion and nose protrusion which structurally links them together. The nose protrusion and foot protrusion may project forwardly and perpendicularly from the cross member towards the front of the firearm (i.e. barrel end). The operating and mounting portions 303, 304 of the safety link 300 and features thereon may be integrally formed as unitary structural parts of the monolithic safety link.
The trigger bar actuating foot protrusion 302 of safety link front operating portion 304 is configured and operable to selectively engage the top surface of the laterally extending trigger bar operating protrusion 140 when the safety link is actuated by the actuator 200 (see, e.g.
Safety link 300 is pivotably movable between an upper unactuated position in which the operating portion 304 of the safety link does not engage the trigger bar 42 or hammer 60 thereby allowing the firing mechanism to discharge pistol 20 via a trigger pull, and a lower actuated position in which the operating portion engages the trigger bar and hammer via actuating foot protrusion 302 and nose protrusion 305 respectively to prevent the firing mechanism from discharging the pistol when the trigger is pulled. The safety link may be biased towards the upper position by generally U-shaped spring 310 having a lower leg 310a engaged with the firing control housing insert 80 and/or frame 22, and an upper leg 310b engaged with spring seating hole 310c which may be located on the left hammer blocking nose protrusion 305 in one embodiment (see, e.g.
A method for operating the safety mechanism of pistol 20 according to the present disclosure will now be briefly described.
Referring now to
To activate the safety mechanism, the selector or actuator 200 is manually slid by the user linearly rearward to the position shown in
The foot protrusion 302 of the safety link 300 rotates downward engaging the trigger bar operating protrusion 140 which concomitantly forces and displaces the trigger bar vertically downwards from an upper aligned position to a lower misaligned position (see also
It bears noting that the firing and safety mechanisms are shown in the SAFE mode/position in both
The safety selector or actuator 200 and safety link 300 may be preferably formed of any suitable metallic material. In addition, the individual features of the actuator and safety link as previously described herein and shown in
While the foregoing description and drawings represent exemplary or exemplary embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope and range of equivalents of the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. In addition, numerous variations in the methods/processes as applicable described herein may be made without departing from the spirit of the invention. One skilled in the art will further appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims and equivalents thereof, and not limited to the foregoing description or embodiments. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
The present application claims the benefit of priority to U.S. Provisional Application No. 62/867,423 filed Jun. 27, 2020; the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62867423 | Jun 2019 | US |