Safety needle system operable with a medical device

Information

  • Patent Grant
  • 10159818
  • Patent Number
    10,159,818
  • Date Filed
    Monday, June 9, 2014
    10 years ago
  • Date Issued
    Tuesday, December 25, 2018
    6 years ago
Abstract
A safety needle system operable with a medical device includes: a housing with a needle mount having a needle; and a sheath telescopically engaged with the housing and surrounding the needle such that the sheath operates in a retracted position, in which the sheath exposes the needle, and an extended position, in which the sheath surrounds the needle. The sheath is coupleable to the medical device such that removal of the needle from the medical device draws the sheath over the needle, transitioning the sheath from the retracted position to the extended position. In one embodiment, the system includes a slider engaged with the sheath and/or housing and including a restraint that engages and disengages the sheath to respectively reinforce and weaken the coupling of the sheath and medical device. In another embodiment, the sheath includes a longitudinal track that slidingly engages a setting of the housing between sheath positions.
Description
TECHNICAL FIELD

This invention relates generally to the medical field, and more specifically to an improved safety needle system in the medical field.


BACKGROUND

Many medical devices, such as catheter systems for establishing intravenous therapy, include needles that are inserted into patients. By contacting body tissue and fluids such as blood, such needles carry biohazard risks including cross-contamination and transmission of blood-borne diseases, as well as accidental needle sticks or punctures inflicted on a user of the medical device or any other handlers of used medical instruments. Thus, there is a need in the medical field to create an improved safety needle system. This invention provides such an improved safety needle system operable with a medical device.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A and 1B are schematics of the safety needle system of a first preferred embodiment with the sheath in the retracted position and in the extended position, respectively;



FIGS. 2A-2C are schematics of the housing in the safety needle system of a first preferred embodiment;



FIGS. 3A-3D are schematics of variations of interactions between the housing and the slider in the safety needle system of a first preferred embodiment;



FIG. 4 is an “unwrapped” illustration of the housing stop in the safety needle system of a first preferred embodiment;



FIG. 5 is an example of the safety needle system in use with a medical device;



FIGS. 6A-6C are variations of the needle in the safety needle system of a preferred embodiment;



FIGS. 7A-7F are schematics of the sheath in the safety needle system of a first preferred embodiment;



FIGS. 8A-8F are schematics of the slider in the safety needle system of a first preferred embodiment;



FIGS. 9A-9B and 10A-10B are schematics of variations of the sheath in the safety needle system of a first preferred embodiment;



FIGS. 11A-11C are schematics of the coupling between the sheath, slider, and housing during use of the safety needle system of the first preferred embodiment;



FIGS. 12A and 12B are schematics of the “closed” and “open” configurations of the jaws in the sheath of a variation of the safety needle system of the first preferred embodiment;



FIGS. 13A-13F are schematics of a variation of the slider in the safety needle system of a first preferred embodiment;



FIGS. 14A and 14B are schematics of the safety needle system of a second preferred embodiment with the sheath in the retracted position and in the extended position, respectively;



FIGS. 15A-15C are schematics of a perspective view, cross-sectional perspective view, and cross-sectional side view, respectively, or the housing in the safety needle system of a second preferred embodiment;



FIGS. 16A-18B are schematics of variations of the sheath in the safety needle system of a second preferred embodiment;



FIGS. 19A-20D are schematics of variations of the locking mechanism in the safety needle system of a second preferred embodiment;



FIGS. 21A-22B are schematics of the method of assembling the safety needle system of a second preferred embodiment;



FIGS. 23-26B are schematics of the safety needle system of a preferred embodiment with a septum;



FIGS. 27A-31E are schematics of septum variations in the safety needle system of a preferred embodiment;



FIG. 32 is a schematic of a housing with vent chamber in the safety needle system of a preferred embodiment;



FIGS. 33A and 33B are schematics of catch variations in the safety needle system of a preferred embodiment; and



FIGS. 34A-40B are schematics of the steps of the method of using the safety needle system of a preferred embodiment.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.


The safety needle system is preferably used with a catheter with a catheter hub, such as an intravenous catheter. In one embodiment, the safety needle system is operated with a vascular delivery system such as that described in U.S. patent application Ser. Nos. 12/855,013 and 13/111,693, which are each hereby incorporated in its entirety by this reference. In particular, the safety needle system may be operable with a vascular delivery system adapted to be placed about a catheter insertion site on a patient, in which the vascular delivery system includes a frame with a catheter hub providing a first anchoring point on the patient, a stabilization hub providing a second anchoring point on the patient, and at least one lateral member extending between the catheter hub and the stabilization hub, such that the first and second anchoring points are distributed around the insertion site to anchor the frame to the patient and stabilize the catheter. However, the safety needle system may alternatively be used with any other suitable kind of catheter, a syringe, or other medical needle devices or devices used with a medical needle. Use of the safety needle system with such medical devices may reduce risk of cross-contamination and infection from bodily fluids and other biohazards, and reduce risk of accidental needle injuries to a user handling the medical device.


Safety Needle System of a First Embodiment


In a first preferred embodiment, as shown in FIGS. 1 and 2, the safety needle system 100 operable with a medical device 102 includes: a housing no having a needle mount 112; a needle 120 having a distal end insertable through the medical device 102 and a proximal end coupled to the needle mount 112; a sheath 130 telescopically engaged with the housing no and circumferentially surrounding at least a portion of the needle 120, in which the sheath 130 operates in a retracted position 132 and an extended position 134; and a slider 150 longitudinally engaged with the sheath and/or housing and including a restraint that selectively engages with the sheath. In the retracted position 132 of the sheath, the sheath exposes the distal end of the needle. In the extended position of 134 of the sheath, the sheath substantially surrounds the distal end of the needle. The sheath is coupleable to the medical device such that removal of the needle from the medical device draws the sheath over the needle, thereby transitioning the sheath from the retracted position to the extended position. In a preferred embodiment, the restraint is selectively engaged with the sheath such that (1) the restraint is coupled to the sheath when the sheath is in the retracted position and coupled to the medical device, and the restraint reinforces the coupling of the sheath to the medical device, and (2) the restraint is uncoupled from the sheath when the sheath is in the extended position, and the restraint weakens the coupling of the sheath to the medical device, thereby reducing the force required to uncouple the sheath from the medial device. In other variations, during removal of the needle from the medical device as the sheath is drawn over the needle, the slider automatically triggers the full uncoupling of the sheath and the medical device. Removal of the needle is preferably performed by pulling the needle away from the medical device, but alternatively removal of the needle may be performed by pulling the medical device away from the needle. In other words, to draw the sheath from its retracted position to its extended position and to decouple the safety needle system from the medical device, the user (e.g., medical practitioner) may pull the needle away in a proximal direction (or pull the medical device away in a distal direction away from the safety needle system) thereby allowing the sheath to slide from its retracted position to its extended position to cover the distal end of the needle. In a preferred embodiment, the slider further includes a proximal articulation and a distal articulation, When the sheath is in the extended position the proximal articulation is coupled to the housing and the distal articulation is coupled to the sheath, thereby locking the sheath in the extended position; however, the system may include any suitable locking mechanism to lock the sheath in the extended position.


The housing 110 functions to support the sheath 130 and the slider 150, to support the needle and/or to provide a user interface. As shown in FIGS. 2A-2C, the housing 110 includes a needle mount 112 to which the needle is coupled. The needle mount is preferably on a distal end of the housing and axially centered on the housing, but may alternatively be on any suitable portion of the housing. The needle may be molded into the needle mount such that the distal end of the needle extends out of the distal end of the housing, but the needle may alternatively be coupled to the needle mount with a snap fit, friction fit, threads, epoxy, or in any suitable manner.


The housing 110 is slidingly or telescopically engaged with the sheath 130 and/or slider 150. The housing no includes an inner portion that is contained within the sheath, such that the housing slides within the sheath. However, alternatively the housing may be tubular or otherwise configured such that the sheath slides within the housing. The inner portion of the housing may include a track 114 along which the slider 150 is slidingly engaged. The track is preferably longitudinal along the housing body, and may be a projected track such as a ridge (FIGS. 3A and 3D), and/or a recessed track (FIGS. 3B-3D). In one variation, as shown in FIG. 3A, the housing includes one or more arches 118 that form an outer framework around the sheath and/or slider, such as brackets.


The housing 110 preferably includes a housing stop 116 that is configured to abut the proximal articulation of the slider 150 when the sheath is in the extended position. In a preferred embodiment, the abutment of the housing stop 116 against the proximal articulation 164 (or other portion of the slider) functions to fix the relative positions of the housing and slider, thereby contributing to locking the sheath in the extended position. In one variation, as best shown in FIGS. 2C and 4, the housing stop 116 includes a snap lock cantilevered arm whose free end abuts the proximal articulation of the slider. The housing stop 116 may be biased or radially deflected towards the slider such as to allow the slider to pass the housing stop in one direction (e.g. as the slider passes in a distal direction relative to the housing) but to prevent the slider from passing the housing stop in the opposite direction (e.g. as the slider passes in a proximal direction relative to the housing). Alternatively, other housing stop may include a sliding latch, lever, push button, another protrusion of the housing that interacts with the slider, or another suitable mechanism that abuts any suitable portion of the slider. As another alternative, the housing stop may include an aperture that receives the proximal articulation or any suitable portion of the slider. The housing stop is preferably integrally formed with the housing, but may alternatively be a separate piece coupled to the housing during assembly of the safety needle device.


In some embodiments, as best shown in FIG. 1, the housing 110 may have one or more handles 111 that a user can grip and manipulate to operate the safety needle system. The handle 111 preferably includes two side grips on opposite sides of the housing that enable secure grasping with one hand. The handle 111 may include features such as ergonomic contours, ridges to improve friction in the grip, cushioning material such as silicone, or any suitable additions. Furthermore, other variations of the handle may include fewer or more grips (such as a single bulbous handle), and may be particular for specific applications. In some embodiments, as shown in FIG. 5, the handle may further function as a hub cradle, such as for receiving a catheter hub or stabilization hub such as that described in U.S. patent application Ser. No. 12/855,013, or any suitable hub or other portion of a medical device.


The housing 110 is preferably plastic and may be made of one singular piece, such as by an injection molding that forms the needle mount, arches, and/or handles integrally with the rest of the housing. The housing may alternatively include multiple pieces that are separately manufactured and attached to the tubular portion of the housing in a secondary process such as with adhesive, locking joints, or other fasteners. However, the housing may be in made in any suitable manufacturing process such as milling, turning, or stereolithography, and be made of any suitable material.


The needle 120 of the safety needle system is preferably a medical grade needle with a cannula, such as those used to aid insertion of catheters. The needle may have a gauge or size that is selected from a group of available needle gauges, such as standard diameter sizes. In one variation, as shown in FIG. 6A, the needle 120 may include a notch 122 along a portion of the length of the needle. The notch 122 is positioned at a notch extent distance 126 defined as the distance between the distal end of the needle and the proximal edge of the notch. In an exemplary embodiment used with a catheter, during catheter placement within a blood vessel, the needle 120 is typically telescopically engaged within the catheter, forming an annular space between the outer wall of the needle and inner wall of the catheter. When the needle is placed within the blood vessel, blood or other fluids pass along the length of the needle, and the notch in the needle allows a small amount of the fluid (known as “flash”) to pass into the annular space between the needle and catheter. This “flash” becomes visible to the user through the catheter, and the appearance of the flash signifies needle placement within the blood vessel.


In another variation of the needle 120, as shown in FIG. 6B, the needle may be a substantially solid needle rather than a hollow needle with a cannula. For example, the needle 120 may include a trocar as a catheter introducer. In this variation, the needle may include a sharp distal tip and a groove running from the distal tip of the needle. The groove 124 preferably receives the flash upon needle insertion into the vessel (FIG. 6C), and the flash may be visible to the user through the catheter tubing and/or catheter hub.


The sheath 130 of the safety needle system preferably functions to cover the distal end of the needle 120 after the needle tip is no longer needed, to help protect the user from fluid contamination and accidental needle punctures. The sheath 130 operates in a retracted position 132 and an extended position 134, such that in the retracted position 132 the sheath exposes the distal end of the needle 120, and in the extended position 134 the sheath is extended from the housing and substantially surrounds or covers the distal end of the needle 120. In the extended position, the sheath may cover the entire needle body, or only a portion of the needle body including the distal end.


As best shown in FIG. 7F, the sheath 130 preferably includes a set of sheath stops including a first stop 136 and a second stop 137. The first stop 136 is configured to abut the distal articulation of the slider 150 when the restraint 151 is engaged with the split portion 140 of the sheath. The second stop 137 is configured to abut the distal articulation of the slider 150 when the sheath is in the extended position which prevents substantial relative longitudinal motion of the sheath and housing, thereby contributing to locking the sheath in the extended position. The sheath stops may additionally and/or alternatively abut against any suitable part of the slider. In one variation the sheath stops 136 and 137 may include an aperture defined in a side wall of the sheath. The aperture may have a partial perimeter defined by the gap between two or more split portions 140 in a side wall of the sheath. For example, the split portions 140 may be opposing members with each member having an angled or toothed tip 142. The opposing angled tips 142 define an aperture with a surface for abutting the distal articulation of the slider. Alternatively, the aperture may be a hole with an enclosed perimeter defined in the side wall of the sheath. In other variations, the sheath stops may include a projection or other extension, such as one similar to any of the variations of the housing stop, on any suitable portion of the sheath.


The sheath 130 may include a mating feature that enables the sheath to couple to the medical device. In one variation, the distal end of the sheath is adapted to mechanically couple to the medical device. In one preferred embodiment, as shown in FIGS. 7A-7E, the mating feature includes jaws 142 extending longitudinally from a distal end of the sheath 130. The jaws 142 are preferably flexible and couple to corresponding mating features (e.g., external articulations, cutouts or pockets) on the medical device 102. Each jaw may be coupled to a split portion 140 of the distal end of the sheath, and preferably couples to the restraint tab 151 of the slider. For example, as shown in FIG. 8F, each split portion or jaw may define a restraint slot 138 that receives a respective restraint tab 151 of the sheath. In one variation, the jaws may have an approximately arcuate profile (FIG. 7A) to conform to an approximately circular portion of the medical device. In other variations, the jaws may include hooked tips 144 (FIGS. 9A and 10B) and/or platforms 146 (FIGS. 10A and 10B) configured to particular corresponding features on the medical device 102 and/or slider 150. In other variations of mechanically coupling to the medical device, the sheath 130 may extend beyond the distal end of the housing when the sheath is in the retracted position to enable the distal end of the sheath to seat within a channel (e.g. a septum or other receptacle) of the medical device. For example, the medical device may retain the distal end of the sheath. As another example, the distal end of the sheath 130 may include extensions that mate with a corresponding recess in the medical device, or the medical device may include extensions that mate with a corresponding recess on the sheath 130. The distal end of the sheath 130 may include other features for sating within the septum or another receiving portion of the medical device, such as having a slight taper to a narrower diameter that fits within the septum, frictional features like ribs or ridges that may includes retention of the sheath 130 within the septum. The distal end of the sheath may additionally and/or alternatively couple to the medical device with magnets, adhesive, snap locks, fasteners, or any suitable mechanical means.


In another variation, the distal end of the sheath 130 is adapted to manually couple to the medical device 102. For example, as shown in FIG. 7A, the sheath may include a holding tab 148 extending from the distal end of the sheath that provides a finger rest for the user to press the holding tab against the medical device, thereby manually coupling the sheath and the medical device. The holding tab may extend laterally outwards or be a projection from the sheath extending in any suitable direction. The holding tab 148 may provide assistance for the user to hold the sheath against the medical device as a counterforce while pulling the housing and needle 120 away from the medical device. As shown in FIG. 7D, the holding tab 148 may include a bridge that connects the split portions of the sheath stop. Alternatively, the sheath may include multiple holding tabs, such as one holding tab 148 extending from each split portion 140 or jaw 142 of the sheath. The holding tab 148 may include features to help the user hold the holding tab against the medical device, such as a lip, ridges that increase friction, or a friction coating such as silicone. The holding tab may include adhesive and/or a mechanical attachment such as a pin, snap or latch that couples the holding tab to the medical device.


In a preferred embodiment, the slider 150 functions to selectively modulate the coupling force between the sheath and the medical device. The slider 150 may further contribute to locking the sheath 130 in the extended position over the distal end of the needle 120. The slider 150 longitudinally extends along at least a portion of the sheath 130 and/or housing and is slidingly engaged with the sheath and/or housing, such that the housing, sheath and slider are longitudinally movable relative to one another. The slider 150 may be directly coupled to the sheath, housing, needle, or any suitable portion of the system. As shown in FIGS. 8A-8E, the slider 150 may include a planar portion 152 and a sheath insert portion 143. The planar portion is preferably substantially flat and is slidingly engaged with the track of the housing, although may alternatively be contoured. The planar portion 152 may include a groove 156 (FIG. 3A) and/or a ridge 158 (FIG. 3B) complementary to the track 114 of the housing no, or any suitable profile. The sheath insert portion 154 is preferably located on a distal section of the slider, and is telescopically engaged in the sheath 130. As shown in FIG. 8D, the sheath insert portion may have an approximately arcuate cross-section profile, or any suitable profile complementary to the cross-sectional profile of the sheath to allow the sheath insert portion to be slidingly engaged with the sheath. The sheath insert portion 154 preferably defines an aperture 162 that allows the needle 120 to pass within the sheath insert. The aperture 162 may be a round hole, a slot, or any suitable opening to allow relative longitudinal translation of the slider 150 and the needle 120.


The sheath insert portion 154 preferably includes a restraint that selectively engages with the sheath, such that when the restraint is engaged with the sheath, the restraint reinforces the coupling of the sheath to the medical device, and when the restraint is disengaged from the sheath, the restraint weakens the coupling of the sheath to the medical device. In a preferred embodiment, as shown in FIG. 8F, the slider 150, in particular the sheath insert portion 154, may include at least one restraint tab 151 that is insertable into a restraint slot 138 on split portion 140 or jaw 142 of the sheath. In this embodiment, when the sheath is retracted and jaws 142 are surrounding and gripping the medical device, the restraint tabs 151 are coupled to the restraint slots 138 and the restraint tabs substantially prevent the jaws from moving relative to each other, thereby strengthening the grip of flexible jaws 142 on the medical device. When the sheath is extended (e.g. the housing is moved in a proximal direction away from the medical device), the restraint tabs become uncoupled from the restraint slots 138, leaving the flexible jaws 142 to more freely move relative to other, thereby weakening the grip of flexible jaws 142 on the medical device. In other words, the selective coupling of the restraint tabs 151 on the slider to the restraint slots 138 on the sheath effectively modulates the amount of force required to flex the jaws and uncouple the sheath from the medical device.


The slider 150 preferably includes a proximal articulation 164 that abuts the housing stop and/or a distal articulation 166 that abuts the sheath stop when the sheath 130 is in the extended position. When the sheath 130 is in the extended position, the proximal and distal articulations preferably fix the slide position relative to both the housing and sheath, respectively, which indirectly fixes the sheath 130 relative to the housing, thereby locking the sheath 130 in the extended position. Alternatively, the system may include any suitable locking mechanism to lock the sheath in the extended position. As best shown in FIG. 8E, the proximal articulation 164 of the slider 150 is preferably on a proximal portion of the slider and is a laterally outward extension, such as a tab, that abuts the housing stop. The proximal articulation 164 may or may not include an aperture similar to the aperture 162 of the sheath insert portion to allow passage of the needle 120 through the proximal articulation. The distal articulation 166 of the slider 150 is preferably an extension, such as a nub or catch on the sheath insert portion that catches in the aperture 136 of the sheath stop. Alternatively, the distal articulation 166 may be on any suitable distal portion of the slider. The proximal and distal articulations may project towards the bottom of the slider 150, although they may project in any suitable direction corresponding to the locations of the housing stop on the housing and the sheath stop on the sheath. In other variations, the proximal and distal articulations may be in any suitable locations on the slider and may each be an aperture or extension corresponding to the kinds of housing stop on the housing and sheath stop on the sheath.


Overall in a preferred embodiment, coupling a distal portion of the sheath to the portion of the medical device involves coupling flexible jaws (which are extensions of split portions on the sheath) around the medical device. As shown in FIG. 11A, the sheath is preferably retracted, and restraint tabs 151 on the slider are inserted in restraint slots 138 on the split portions. While the restraint tabs are inserted the restraint slots, the restraint tabs strengthen or lock the coupling between the jaws and the medical device, by substantially preventing the jaws from moving laterally apart. When the housing and slider are pulled away from the medical device, thereby drawing the sheath over the needle, the distal articulation of the slider temporarily abuts the first sheath stop 136 so that the restraint tabs 151 remain engaged in restraint slots 138 and the sheath remains coupled to the medical device. In this intermediate step, the abutment of the distal articulation of the slider against the first sheath stop is preferably overcomes the shear force due to friction between the housing and slider. As shown in FIG. 11C, when the housing is further pulled away from the medical device, the housing pulls the slider away from the medical device until the distal articulation 166 overcomes first stop 136 and abuts the second sheath stop 137, while the proximal articulation 164 of the slider abuts the housing stop 116. Furthermore, as shown in FIG. 11B, when the distal articulation abuts the second sheath stop, the restraint tabs 151 disengage from the restraint slots 138, thereby weakening the coupling between the jaws and the medical device. For instance, after this final step the user can easily provide enough force to separate the extended sheath (surrounding the needle) and the medical device.


In an alternative embodiment, the slider functions to automatically trigger the decoupling between the sheath 130 and the medical device when the needle is withdrawn from the medical device. In this embodiment, as shown in FIG. 12A, the jaws 142 may be biased into a “closed” configuration 141 in which the jaws tend to grip the mating features on the medical device. As shown in FIG. 12B, the jaws 142 may be manipulated to flex, swing, or otherwise move into an “open” configuration 143 in which the jaws move laterally apart, thereby enabling decoupling of the sheath 130 and medical device 102, such as after the sheath has been drawn into its extended position. The jaws 143 may be manipulated into the “open” configuration automatically when the housing and/or slider 150 is pulled in a proximal direction away from the medical device, thereby automatically decoupling the sheath 130 from the medical device. In this embodiment, as shown in FIG. 13, the slider 150 include protrusions 156 that interfere with the flexible jaws of the sheath 130, such that when the slider is withdrawn from the medical device the protrusions 168 trigger the jaws into the “open” configuration, thereby automatically decoupling the sheath 130 and the medical device.


Safety Needle System of a Second Embodiment


In a second preferred embodiment, as shown in FIGS. 14A and 14B, the safety needle system 200 includes a housing 210 including a needle mount 212 coupled to a setting 214 that approximately axially centers the needle mount 212 within the housing 210; a needle 212 having a distal end insertable through the medical device and a proximal end coupled to the needle mount 212; and a sheath 230 telescopically engaged with the housing 210 and having a distal wall 244 defining a needle aperture 246 and a longitudinal track 242 that is slidingly engaged with the setting 214 of the housing 210. The sheath 230 operates in a retracted position 232 in which the sheath exposes the distal end of the needle and an extended position 234 in which the sheath substantially surrounds the distal end of the needle. Like the sheath of the first preferred embodiment of the safety needle system, the sheath 230 is preferably coupleable to the medical device such that removal of the needle from the medical device draws the sheath 230 over the needle, thereby transitioning the sheath from the retracted position to the extended position. The safety needle system preferably further includes a locking mechanism 250. In a preferred embodiment of the safety needle system, when the sheath is in the extended position, a proximal portion of the sheath 230 abuts a housing stop or catch in the housing, and the locking mechanism 250 restrains the sheath in the extended position. In one variation, the locking mechanism 250 is a housing stop including a snap lock cantilevered arm with a free end that is configured to abut the proximal portion of the sheath when the sheath is in the extended position. However, any suitable locking mechanism may be used.


The housing 210 of the second embodiment of the safety needle system functions similarly to the housing of the first embodiment of the system. As shown in FIGS. 15A-15C, the housing 210 is preferably tubular, defining a channel 216 that telescopically engages the sheath 230, and the housing 210 and/or channel 216 is preferably elongated and cylindrical, but may alternatively have any suitable cross-section, such as an oval or an approximate rectangle. Like the housing in the first embodiment, the housing 210 of the second embodiment includes a needle mount 212 to which the needle 220 (which is preferably similar to that of the first embodiment) is coupled. The housing preferably further includes a setting 214 that anchors the needle mount 212 in the housing. The needle mount 212 of the housing is preferably located on a distal end of the housing and is preferably approximately axially centered within the housing. However, the needle mount may alternatively be offset from the center of the housing, or located in any suitable position in or on the housing. The setting is preferably a peg, protrusion, or other inwardly, radially extending feature coupled to an internal wall of the housing. The setting 214 preferably slidingly engages with the sheath 230 to facilitate assembly and/or operability of the sheath in the retracted and extended positions. The setting 214 may have any suitable cross-sectional shape to guide the sliding sheath, such as a square or rectangle. Furthermore, the setting 214 may have a cross-sectional shape that may particularly help reduce lateral movement of the sheath 230 within the housing, such as a dovetail. The housing 210 may also have multiple settings arranged within the channel 216 of the housing that slidingly engage and guide the sheath. For example, the housing may have a first setting on one side of the channel to guide an upper side of the sheath 230, and a second setting on an opposite side of the channel relative to the first setting to guide a lower side of the sheath 230. The needle mount 212 is preferably coupled to the setting 214 such that the setting anchors the needle mount to the housing, but the needle mount and setting may alternatively be independent of one another and located in any suitable position in or on the housing. For example, the setting 214 may be a guide located along the same longitudinal line as the needle mount 212, or on an opposite wall of the needle mount 212, or any suitable location. As shown in FIG. 15C, the relative dimensions of the needle mount and setting preferably form an overhang that defines an alcove space 215 or recess between the needle mount and the housing. The alcove space 215 is preferably dimensioned to accommodate the thickness of the sheath when the sheath is in the extended mode, without permitting the sheath to wobble extensively within the housing.


In some embodiments, the housing 210 further includes one or more handles 218 that a user can grip and manipulate to operate the safety needle system. The handle preferably includes two side grips on opposite sides of the housing that enable secure grasping with one hand. The side grips may be relatively short and narrow along the length of the housing (FIG. 15A) or may be relatively wide and extend along a substantial length of the housing (FIG. 17A). Like the handle of the first preferred embodiment of the system, the handle 218 may include features such as ergonomic contours, ridges to improve friction in the grip, cushioning material such as silicone, or any suitable additions. Furthermore, other variations of the handle may include fewer or more grips (such as a single bulbous handle), and may be particular for specific applications. In some embodiments, the handle may further function as a hub cradle, such as for receiving a catheter hub or stabilization hub such as that described in U.S. patent application Ser. No. 12/855,013, or any suitable hub or other portion of a medical device.


As shown in FIG. 15C, the distal end of the housing 210 may further include a ledge 217 that helps support the sheath 230 when the sheath is in the extended position. The ledge 217 preferably extends beyond the distal end of the housing, preferably on at least an underside of the housing to support the extended sheath against gravity, and may be flat, curved, or any geometry to support the sheath. The ledge may include additional features such as rubberized grips or teeth, or fasteners such as magnets, clips, or adhesive to help secure or support the extended sheath. Furthermore, the ledge may be hingedly attached to the housing, such as for folding to make the system more compact during storage before and/or after use. However, the ledge may have any other suitable geometry and/or arrangement.


The sheath 230 of the safety needle system of the second preferred embodiment of the safety needle system functions similarly to the sheath of the first embodiment of the system. As best shown in FIG. 17A, the sheath 230 is preferably slidably engaged with the housing 210 such that the sheath passes telescopically within the channel of the housing. The sheath 230 is operable in at least one of a retracted position 232 in which the sheath is at least partially retracted within the housing 210 and exposes the distal end of the needle, and an extended position 234 in which the sheath 230 is extended from the housing 210 and substantially surrounds the distal end of the needle. As shown in FIGS. 16-17, the sheath includes a longitudinal track 242 that slidingly engages with the setting or other portion of the housing, and a distal wall 244 that contributes to covering the distal end of the needle when the sheath is in the extended position.


In one preferred embodiment, the sheath 230 is comprised of two pieces, including a proximal sheath portion 230a and a distal sheath portion 230b. As shown in FIGS. 16A-16E, the proximal sheath portion 230a and the distal sheath portion 230b are assembled to form an integrated sheath body. As shown in FIG. 16E, the proximal sheath portion 230a preferably includes snap latches 231a and the distal sheath portion preferably includes snap holes 231b that receive snap latches 231a in a snap fit fastening manner. However, additionally and/or alternatively, the distal sheath portion may include snap latches and the proximal sheath portion may include snap holes, or the proximal and distal sheath portions may be attached by threads, an interference fit, magnets, adhesive, or in any suitable manner. The proximal and distal sheath portions are preferably assembled within the housing 210, joined around the setting and/or other internal projections inside the housing. During assembly, the distal sheath portion may enter the housing 210 from the distal end of the housing and the proximal sheath portion may enter the housing from the proximal end of the housing. In another variation, the sheath includes one sheath portion and includes features, preferably in the longitudinal track as described below, that facilitates assembly into the housing.


The longitudinal track 242 of the sheath 230 functions to guide transition of the sheath between the retracted and extended positions. The longitudinal track is preferably a slot, but may alternatively be a groove that slidingly engages the setting, or may include a combination of single or multiple slots and/or grooves. The longitudinal track 242 is preferably substantially parallel to a longitudinal axis of the sheath, from a proximal end of the sheath towards a distal end of the sheath, and slidingly engages with the setting and/or needle mount or another feature of the housing 210.


As shown in FIGS. 17 and 18, in the one-piece sheath variation, the longitudinal track preferably includes a series of arcuately offset, adjacent slotted portions, and more preferably two such portions that at least partially overlap to form a single track of varying width. In a preferred embodiment, as best shown in the “unwrapped” view of the track in FIG. 17C, the first track portion 242a runs longitudinally along the sheath 230 from the proximal end of the sheath to a point partially along the length of the sheath. In this embodiment, the second track portion 242b is preferably parallel to and circumferentially offset by an offset angle from the first track portion and runs along substantially the entire length of the sheath 230. Each of the two track portions are preferably approximately as wide, or slightly wider than, the width of the setting of the housing, such that as the sheath 230 telescopically moves within the housing 210 with the setting slidingly engaged with the track 242, the setting 214 freely passes within the longitudinal track. In a preferred embodiment, the first track portion 242a slidingly engages the setting to allow the sheath 230 to pass in a proximal direction up to the end of the first track portion, particularly to at least partially retract the sheath in the housing, such as during assembly of the safety needle system. The second track portion 242b preferably slidingly engages the setting at a different circumferential angle around the sheath 230, to allow the sheath to pass farther in the proximal direction towards the fully retracted position. The second track portion 242b preferably also engages the setting 214 to allow the sheath to pass in a distal direction towards the extended position of the sheath, such as during use of the safety needle system to cover the needle. Although the first and second track portions preferably at least partially share an edge, in other variations the track 242 may include any suitable number of track portions in any suitable arrangement. For example, the first and second track portions may be offset by a relatively large offset angle such that the first and second track portions do not share an edge. Furthermore, as shown in FIG. 18A, the longitudinal track portions may be joined by a lateral track 242c or other open passageway (such as an open distal end of the sheath as shown in FIG. 18B) so that rotation of the sheath within the housing enables the setting to travel between the track portions.


As shown in FIGS. 17B, 18A and 18B, the longitudinal track 242 and/or other portion of the sheath 230 preferably also defines a catch portion 238 at the proximal portion of the sheath that functions to prevent the extended sheath from fully exiting the housing 210. The catch 238 is preferably arranged at the proximal portion of the sheath and abuts the setting and/or needle mount when the sheath is in the extended position. The catch 238 may fit into the alcove space 215 of the housing. Another catch mechanism, such as springs or latches, may additionally and/or alternatively be used to prevent the sheath from fully exiting the housing. In one or more of these variations, the sheath is preferably restrained from sliding beyond a particular point in the extension (distal) direction.


The distal wall 244 of the sheath 230 functions to substantially cover the distal end of the needle when the sheath is in the extended position, and further functions as a stop against the needle mount and/or setting when the sheath 230 is in the retracted position, to prevent the sheath from fully retracting into the housing 210. The distal wall 244 forms a substantially full or partial face on the distal end of the sheath, and defines a needle aperture 246 or hole large enough to receive and allow passage of at least a portion of the needle. The needle aperture 246 may be an opening in the distal wall of the sheath (FIG. 18B) or may be in a guide or partial needle covering that extends beyond the distal wall (FIG. 16). To limit sheath retraction up to a point (such as less than fully retracted within the housing 210, such that the distal end of the sheath is still extending beyond the distal end of the housing), the distal wall 244 may abut the needle mount and/or setting when the sheath is in the retracted position, or additionally and/or alternatively the proximal end of the sheath may butt against a proximal wall or another stop in the housing 210. In at least one of these manners, the sheath is preferably retraining from sliding beyond a particular point in the retraction (proximal) direction.


The distal end of the sheath 230 is adapted to mechanically and/or manually couple to the medical device, similar to the sheath of the first preferred embodiment of the system.


The locking mechanism 250 of the safety needle system functions to restrain the sheath 230 in the extended position and prevent the sheath from returning from the extended position to the retracted position. In some embodiments, the safety needle system may include two or more locking mechanisms in the sheath 230 and/or housing 210. In one variation, as shown in FIGS. 19A-19D, the locking mechanism 250 may be coupled to the sheath 230 and/or housing 210. For example, the locking mechanism 250 may be a tab 252, coupled to the sheath, that engages a corresponding catch 254 or other stop in the housing 210 such as near the setting and needle mount (or other suitable location in the housing), to substantially lock the sheath in the extended position. In a one-piece sheath, the tab 252 is preferably near the proximal end of the sheath. In a two-piece sheath, the tab may be located on the proximal sheath portion or the distal sheath portion. The tab preferably enables passage of the sheath 230 within the housing 210 in a proximal direction (e.g. only in assembly), while substantially preventing passage of the sheath in the proximal direction when the tab engages the catch when the sheath is in the extended position. For instance, as shown in FIG. 19B, during assembly when the sheath 230 is passed in the proximal direction into the housing 210, the sheath may be rotated to a particular angle such that the setting and/or needle mount preferably deflect the tab towards the wall of the housing 210, enabling the sheath to free pass in the proximal direction within the housing 210. As shown in FIGS. 19C and 19D, during operation of the safety needle system, when the sheath is drawn out to its extended position, a barbed end of the tab engages and stops on the catch of the housing, thereby substantially preventing movement of the sheath in the proximal direction and restraining the sheath in its extended position.


In another variation, as shown in FIGS. 20A-20D, the locking mechanism 250 includes a housing stop coupled to the housing 210. In the extended position of the sheath 230, the catch of the sheath preferably abuts the setting or other stop of the housing 210 and the housing stop abuts a proximal face of the catch, thereby trapping the catch between the setting and the housing stop. The housing stop is preferably a snap lock cantilevered arm or tab on a wall of the housing 210 that is radially deflectable inwards (FIG. 20A) and/or have a projection that extends radially inwards. (FIG. 20B). In other variations, the locking mechanism 250 may be a sliding latch (FIG. 20C), lever, (FIG. 20D), push button, or another suitable mechanism that is engageable to trap the catch of the sheath 230 against the setting of the housing, thereby locking the sheath in the extended position. In further variations, the locking mechanism 250 may additionally and/or alternatively abut a distal portion, central portion, or any suitable portion of the sheath. The locking mechanism is preferably integrally formed with the housing 210, but may alternatively be a separate piece that is coupled to the housing during assembly of the safety needle device.


Preferably, the locking mechanism 250 is disengaged or otherwise does not interfere with the ability of the sheath 230 to pass in a proximal direction to its retracted position during assembly of the safety needle, or before extended position of the sheath 230 is desired for covering the needle tip. For example, the free end of the cantilever arm may extend into the alcove space 238 adjacent to the setting of the housing 210 out of the assembly path of the sheath, such that during assembly the cantilever arm does not accidentally abut the catch of the sheath 230 and prematurely lock the sheath in the extended position. In other variations, the locking mechanism may be selectively disengaged according to its mechanical nature, such as by sliding a latch or pivoting a lever out of the way of the sheath when the sheath is to be retracted (e.g. during assembly or if the needle is to be uncovered).


In either preferred embodiment, the safety needle system may further include a protective cap 260 that covers the distal end of the needle prior to use of the safety needle system or whenever the sheath is in the retracted position, such as during transport or storage. The protective cap 260 may be a sleeve that surrounds at least a portion of the exposed needle, and/or include a blunt stopper that occludes or blunts the distal end of the needle. However, any other suitable type of cap may be used.


As shown in FIGS. 21A-21D, the method of assembling the safety needle system 300 of the second embodiment includes: inserting a proximal end of the sheath into a distal end of the housing S310; engaging the setting of the housing within the first track portion of the longitudinal track S320; sliding the sheath telescopically to at least a partial retracted position in the housing S330, with the setting of the housing traveling within the first track portion of the longitudinal track; rotating the sheath within the housing by the offset angle S340 to engage the setting of the housing within the second track portion of the longitudinal track; and sliding the sheath into a full retracted position in the housing S350, with the setting of the housing traveling within the second track portion of the longitudinal track. As shown in FIG. 21E, the method may also include sterilizing the needle and/or placing a protective cap S360 onto a distal end of the needle that helps maintain sterility and protect users from accidental needle pricks during transport and storage. This method may be used to assemble an embodiment of the safety needle system with a one piece sheath, but a variation 300′ may similarly be used to assemble a safety needle system with a sheath having two or more pieces. In another variation 300′, to assemble a two-piece sheath variation of the system, the proximal sheath portion and the distal sheath portion are preferably coupled to one another around the setting or other housing stop of the housing. For instance, method 300′ may include inserting the proximal sheath portion into the proximal end of the housing S370, inserting the distal sheath portion into a distal end of the housing S380, and coupling the proximal sheath portion and distal sheath portion to one another S390, preferably around the setting. After assembly, the sheath is preferably approximately concentrically nested within the housing. The safety needle system may be assembled during manufacture and supplied to the user with the sheath in its retracted position, or with the sheath in its extended position. Alternatively, the safety needle system may be assembled by the user prior to use.


Safety Needle System—Septum


In either preferred embodiment, the safety needle system may further include one or more instances of a septum 400 that functions to seal any body fluids, such as blood, or other potential biohazards within the sheath as the sheath passes over the needle into the extended position, as the needle is withdrawn from the medical device. Although the safety needle system with septum is primarily shown with the system of the first preferred embodiment, the second preferred embodiment of the system may also include a septum 400. The septum 400 is preferably coupled to the sheath 130 and more preferably within the sheath. The septum 400 in the safety needle system is configured to couple to the medical device (e.g. a septum in the catheter hub or other portion of any medical device) in a fluid-tight manner, to help prevent fluid leakage through the joint between the medical device and the safety needle system. For example, the end of the safety needle system septum may be circumferentially enclosed by the medical device, or the medical device may be circumferentially enclosed by the safety needle system septum. As another example, the joint between the safety needle system and the medical device may include a fluid-tight butt joint or other sealant.


As shown in FIG. 23, the septum preferably includes a first seal 410 and a second seal 420. The first seal 410 is a defense against fluid escaping from one end of the septum, and the second seal 420 functions as a defense against fluid escaping from another end of the septum. In some embodiments, the septum 400 may include fewer or more seals similar to the first and second seals, which may be suitable for some applications to modify the amount of fluid leakage protection. The septum 400 preferably defines a cavity 414 between the first and second seals that may contain trapped fluid. The cavity 414 may be larger than the diameter of the needle to reduce frictional force as the septum passes over the needle. However, the cavity may alternatively be closely fit over the needle, and/or include a material with a lower friction coefficient and/or fluid absorbent material. As shown in FIGS. 24-26, the septum length, and more preferably the cavity length, is at least a long as the notch extent distance of the needle and positioned as such that when the sheath is in the extended mode, the notch is fully contained within the septum. In some embodiments, the needle may include additional fluid exit points such as multiple notches along its length, and the safety needle system may include a longer septum or multiple septa to contain the multiple fluid exit points on the needle.


As shown in FIGS. 24A and 24B, the safety needle septum 400 may be shorter than the length of the sheath 130, such as near the distal end of the sheath so that when the sheath is in the extended position, the septum contains a portion of the needle body including the distal end of the needle and the notch. Alternatively, the safety needle septum may be at least substantially the same length as the sheath. For example, as shown in FIGS. 25A and 25B, the septum may be nearly the same length as the sheath such that when the sheath is in the extended position, the septum contains a large portion needle body. In another example, as shown in FIGS. 26A and 26B, the sheath and septum may be at least as long as the notch extent to contain the notch, but shorter than the overall needle length.


The septum 400 may include an elastomeric material, and may have a diameter slightly larger than the diameter of the sheath, such that compression of the septum, when assembled in the sheath, seals the annular gap between the outer circumferential edges of the septum and the walls of the sheath, thereby preventing fluid from escaping through the annular gap, and further maintaining the coupling between the septum and the sheath, similar to a press fit. The septum may additionally and/or alternatively include a sealant material applied between the outer surface of the septum and the sheath, and/or be temporarily or permanently bonded to the sheath such as with sonic welding, chemical welding, or adhesive.


As shown in FIGS. 27A-27D, in a preferred embodiment of the septum, the septum 420 includes a rigid core 422 and a compressible plug 428 coupled to the rigid core 422. The rigid core 422 is a framework that preferably includes a back wall 424 with aperture 426 and wall members 425 extending from the back wall. The back wall 424 may provide a flange that helps seat the septum 420 within the sheath 130. The wall members 425 are preferably substantially parallel, but may be in any suitable relative orientation that defines a gap between the wall members. The compressible plug 428 is coupled partially or wholly around the rigid core 422, covering or filling the aperture 426 and surrounding the wall members 425 to define a cavity 414in a central portion of the septum. One end of the compressible plug 428 forms the first seal 410, and the other end of the compressible plug covering the aperture of the back wall forms the secondary seal 412. The aperture 426 of the back wall allows needle puncture access through the rigid core into the septum cavity. The rigid core is preferably made of a rigid plastic such as polycarbonate, acrylonitrile butadiene styrene (ABS) or other styrene, and the compressible plug preferably includes an elastomeric material such as isoprene or silicone. However, the rigid core and compressible plug may include any suitable materials. The compressible plug is preferably coupled to the rigid core in an overmolding manufacturing process, but may additionally and/or alternatively include other coupling mechanisms such as adhesive.


In a first alternative variation, as shown in FIGS. 28A-28C, the septum is a split septum 430 that includes a split 432 along a portion of its length. The split longitudinally divides the septum into approximately two halves or other multiple portions. The split 432 may begin at the second seal 412 and terminate near the inner face of the first seal 410, such that the split travels along at least half of the length of the septum and is joined near the first seal, but the split 432 may alternatively be any suitable length, including along the entire length of the septum such that the septum includes two separate portions. As shown in FIG. 28C, when the septum is assembled into the sheath, the sheath preferably radially compresses the septum material to close the split, thereby forming the cavity and the second seal. The split septum may be manufactured through injection molding, such as with a mold having a cavity as shown in FIG. 28B. In another example of this variation, the split 432 may begin at the first seal and terminate at the second seal. In yet another example of this variation, the septum may be split longitudinally along two or more lines, forming three or more split portions.


In a second alternative variation, as shown in FIGS. 29A and 29B, the septum is a dual grommet septum 440 that includes at least two septum pieces 442 or “grommets” placed serially within the sheath. One of the septum pieces 442 forms the first seal 410 and another septum piece 442 forms the second seal 412. The septum pieces are preferably immediately adjacent to each other such that part of their interior faces are contacting and form a fluid-tight seal against the sheath. The interior faces of the septum pieces may be chamfered or radiused to define the septum cavity 414 between the septum pieces, but the septum pieces may alternatively have any suitable geometry. Alternatively, the septum pieces may be separated by a distance, such that the septum cavity is at least partially formed by the walls of the sheath 130. In other examples of this variation, the septum may includes three or more septum pieces placed serially within the sheath, such as to provide three or more seals.


In a third alternative variation, as shown in FIGS. 30A and 30B, the septum 450 includes at least two separate septum pieces 452 and an inner sleeve 454 disposed between the septum pieces. In this variation, two septum pieces 452 are placed serially within the sheath 130, either directly adjacent to each other or separated by a distance. One of the septum pieces 452 forms the first seal 410 and another septum piece 452 forms the second seal 412. The interior faces of the septum pieces are preferably adapted to receive the inner sleeve 454, such as by defining axially aligned recesses. The inner sleeve 454 may be cylindrical and sized to fit within the recesses of the septum pieces, with an inner diameter large enough to form a cavity that accommodates the diameter of the needle. The inner sleeve is preferably rigid, and made of a thermoplastic material or any other suitable rigid material, although the inner sleeve may be made of any suitable material. In other examples of this variation, the septum may include more than two septum pieces, such as further including an outer sleeve-like septum part surrounding the inner sleeve.


In a fourth alternative variation, as shown in FIGS. 31A-31E, the septum 460 includes a housing with first and second housing portions 464 and first and second septum pieces 462. In this variation, as shown in FIG. 31E, the septum includes a first half and a second half that is substantially a mirrored version of the first half, with each half including a housing portion 464 and a corresponding septum piece 462. As shown in FIG. 31A, each housing piece 464 includes a tapered, hourglass-shaped chamber 466 for receiving a corresponding septum piece. The taper in the chamber helps reduce relative movement such as translational movement between the septum piece and the housing. Each housing piece may further include an external annular flange 468 or other protrusion that helps reduce translational movement between the housing and the sheath. The two housing pieces 464 may be coupled together and/or to the sheath 130 through ultrasonic welding, epoxy or other adhesive, threads, and/or any suitable coupling mechanism. As shown in FIG. 31D, each septum piece preferably includes a cavity 463 that extends inward from one open end of the septum piece, and the septum pieces are preferably assembled such that the open ends of the septum pieces abut against each other. In this manner, as shown in FIG. 31E, the closed ends of the septum pieces form first and second seals, respectively, of the septum, and the joined open ends of the septum pieces form enclosed septum cavity 414. The housing and septum pieces are preferably combined, with a corresponding septum portion nested within (e.g. molded into or pressed into) each housing portion, and the combined housing and septum pieces are preferably mounted within the sheath.


In an alternative embodiment, the septum 400 may have only one seal. In a first alternative variation of this embodiment, the septum is made of a flexible material that self-seals to form a hermetic seal within the sheath. This self-sealing septum prevents fluid from passing out of the sheath, contributing to a closed system in which blood and other fluids will not exit the sheath after the needle is contained inside the sheath in the extended position. In a second alternative variation, the septum may be sealed with a plug, such as a stopper or sealant material applied to the septum by a user. The plug may include a separate stopped plug applied to the distal end of the sheath, a sliding piece that the user slides to gate off the distal end of the sheath, a hinged piece that the user swings over the distal end of the sheath, and/or any suitable septum piece. Any of these single seal variations of the septum may be repeated serially to form two seals or more seals.


The septum may be one or more of the embodiments and variations described above, and/or one or more of the embodiments described in U.S. Provisional Applications 61/346,292 filed 19 May 2010 and 61/407,797 filed 28 Oct. 2010, which is each incorporated in its entirety by this reference. Furthermore, the septum may be any suitable mechanism that helps prevent escape or leakage of fluid from the sheath.


In either preferred embodiment, as shown in FIG. 32, the safety needle housing 110 may additionally and/or alternatively include a vent chamber 470 and a vent cap 472 that seals one end of the vent chamber. The vent chamber 470 may be coupled to the needle mount, such that the vent chamber receives blood or other body fluids through the needle. In one variation, the vent chamber includes a recess within the needle mount of the housing, and the proximal end of the needle is inserted into an entrance of the vent chamber to carry fluids into the vent chamber. In this variation, the interface between the needle and the vent chamber is sealed to further guard against release of fluids, such as with a filter, gasket, O-ring, epoxy, or any suitable seal material or mechanism. Furthermore, the housing may include a vent cap 472 that seals one end of the vent chamber to prevent passage of fluid throughout the rest of the housing and safety needle system. The vent cap is preferably hydrophobic, preventing fluid from exiting the vent chamber while allowing air to exit the vent chamber, thereby creating a pressure differential across the needle body due to the difference between vascular and atmospheric pressures. This pressure differential causes the blood in the needle to “flash back” into the vent chamber. In another variation, the proximal end of the needle includes an enlarged needle chamber volume that receives fluids, and the vent chamber of the housing receives the needle chamber. In this variation, the fluids are contained within the needle structure, which is in turn mounted in the housing.


In either preferred embodiment, the safety needle system may further include a catch 480 that helps lock the septum 400 (or alternatively a portion of the sheath 130 without a septum) in place over the notch 122 and/or the distal end of the needle 120. The catch 380 may additionally and/or alternatively fix the sheath in the extended position. As shown in FIGS. 33A and33B, in one variation the catch may be coupled to an internal portion of the septum, such as a spring clip within the septum cavity (or other portion of the septum or sheath) that engages the needle once the sheath is in its extended position. When the spring clip engages the needle, the spring clip prevents movement of the sheath in a proximal direction, thereby locking the septum in place. As also shown in FIGS. 33A and 33B, in another variation the catch is a compressible ring 484 or nub on an external surface of the needle 120 that compresses when the septum 400 passes over the catch in a distal direction, and expands again when the septum covers the notch and/or distal end of the needle, thereby preventing movement of the sheath in a proximal direction and locking the septum in place.


Method of Using the Safety Needle System


As shown in FIGS. 34-40, the method 500 of using the safety needle system of the embodiments described above with a medical device, such as with a catheter hub, preferably includes: inserting the needle into a patient S510; coupling a distal portion of the sheath to the medical device S520, pulling the housing away from the medical device S530 in a proximal direction relative to the needle; allowing the sheath to slide in a distal direction towards the extended position S540, thereby drawing the sheath into the extended position; locking the sheath in the extended position S550, and uncoupling the distal portion of the sheath from the medical device S560.


Inserting the needle into the patient S510 preferably includes any suitable steps for particular applications, such as threading a catheter over the needle into a blood vessel and drawing blood through the needle. These steps are common and are familiar to one skilled in the art, although any suitable insertion step may be used. As shown in FIG. 34, the step of inserting the needle into the patient may further include inserting the needle through a portion of the medical device, such as a catheter hub.


In one embodiment, as shown in FIGS. 34, 35A and 35B, coupling a distal portion of the sheath to the portion of the medical device includes mechanically coupling the sheath to the medical device S522. In one variation, mechanically coupling the sheath to the medical device includes seating a portion of the medical device within the distal portion of the sheath, such as surrounding or gripping a portion of the medical device with flexible jaws S523 or receiving a feature of the medical device in a receptacle of the sheath S522. In another variation, mechanically coupling the sheath to the medical device S522 includes seating the distal end of the sheath in a receptacle of the medical device S526. In other variations, mechanically coupling the sheath to the medical device includes manipulating snaps, latches, tabs and slots, magnets, or any suitable fastener.


In another embodiment, as shown in FIG. 35C, coupling a distal portion of the sheath to the portion of the medical device includes manually coupling the sheath to the medical device, which may include manually pressing a holding tab (or other finger rest, extension, or other portion of the sheath) of the sheath over the medical device. In other variations manually coupling the sheath to the medical device may include any suitable manual coupling step.


As shown in FIG. 36, pulling the housing away from the medical device S530 initiates allowing the sheath to slide in a distal direction towards the extended position. Pulling the housing away from the medical device includes maintaining the coupling between the sheath and medical device, although in a preferred embodiment, the coupling between the sheath and the medical device may be weakened after the sheath is in the extended mode, thereby lowering the required amount of force to separate or decouple the sheath and the medical device. As also shown in FIG. 36, allowing the sheath to slide in a distal direction towards the extended position S540 includes drawing the sheath into the extended position. In one embodiment, as shown in FIG. 37, allowing the sheath to slide in a distal direction includes drawing a septum over the needle S542, which allows the sheath to contain fluid leakage from the needle. When the sheath is in the extended position, the septum preferably encloses the distal tip of the needle and the notch (if present). Steps S530 and S540 are preferably performed approximately simultaneously, but may alternatively be performed separately and sequentially.


Locking the sheath in the extended position S550 may be one of more of several variations. In one variation, such as with the safety needle system of the first embodiment as shown in FIGS. 38-38C, locking the sheath S550 includes longitudinally wedging a slider between the extended sheath and the housing S552. Wedging the slider S552 preferably includes coupling a proximal end of the slider to the housing S554 and coupling a distal end of the slider to the sheath S556, thereby preventing relative longitudinal movement between the sheath and the housing. In another variation, as shown in FIG. 39A, locking the sheath S550 includes allowing a locking mechanism to abut a proximal portion of the sheath against a stop S557. For example, a snap lock cantilever arm on the housing may abut the catch of the sheath against the setting of the housing, thereby trapping the catch in the alcove space adjacent to the setting. In a third variation, as shown in FIG. 39B, locking the sheath S550 includes allowing the sheath and needle to engage with a catch S558. The catch may be coupled to the sheath and engage with the needle (e.g., a spring clip within the septum or other portion of the sheath), and/or the catch may be coupled to the needle and engage with the sheath (e.g. a compressible ring around an external surface of the needle). However, locking the sheath in the extended position may include any suitable step.


Uncoupling the distal portion of the sheath from the medical device S560 includes reversing the mechanical or coupling step performed when coupling the distal portion of the sheath to the medical device. Uncoupling may include unseating the medical device from within the sheath, unseating the sheath from the medical device, releasing a manual holding force coupling the medical device and sheath, or any suitable step. In some embodiments, the interaction of the sheath, slider, and housing triggers automatic decoupling of the sheath from the medical device. Following the uncoupling step, the needle is contained within the extended sheath and the safety needle system is fully disengaged from the medical device.


As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims
  • 1. A safety needle system operable with a medical device, comprising: a housing including a needle mount;a needle having a distal end insertable through the medical device and a proximal end coupled to the needle mount, wherein the medical device comprises a catheter with a catheter hub and the needle is insertable through both the catheter and the catheter hub;a sheath telescopically engaged with the housing and circumferentially surrounding at least a portion of the needle, wherein the sheath operates in: a retracted position that exposes the distal end of the needle; andan extended position, wherein the sheath substantially surrounds the distal end of the needle;wherein the sheath is coupleable to the medical device such that removal of the needle from the medical device transitions the sheath from the retracted position to the extended position;wherein a first inner surface and a second inner surface at a distal end of the sheath are configured to engage a first projection and a second projection on the medical device;wherein the sheath has a first configuration wherein the inner surfaces are inhibited from moving apart and a second configuration wherein the inner surfaces are permitted to move apart to facilitate disengagement from the first and second projections; anda locking mechanism located within the sheath or the housing, the locking mechanism configured to lock the sheath in the extended position, wherein the locking mechanism is configured to abut a portion of the sheath against a portion of the housing, thereby locking the sheath in the extended position.
  • 2. The system of claim 1, wherein the housing includes an inner portion that is contained within the sheath and an outer portion defining an arch that forms a framework external to the sheath, and wherein the inner portion includes a track that facilitates sliding of the housing relative to the sheath.
  • 3. The system of claim 1, wherein the needle is a solid needle.
  • 4. The system of claim 1, wherein the sheath includes a holding tab extending laterally outward from a distal portion of the sheath, wherein the holding tab is configured to assist a user in manipulating the housing away from the medical device.
  • 5. The system of claim 1, wherein the sheath includes a tab having a tabbed end, wherein the stop at the housing includes a catch configured to engage the tabbed end, and wherein the locking mechanism is configured to facilitate engagement of the tabbed end against the catch in the extended position of the sheath.
  • 6. The system of claim 1, wherein the sheath includes one or more split portions.
  • 7. The system of claim 6, wherein the one or more split portions are configured to separate such that the separation of the split portions enables the system to release from the medical device.
  • 8. The system of claim 1, further comprising a restraint, wherein the restraint is configured to engage with the sheath in the retracted position, thereby reinforcing coupling of the sheath to the medical device in the retracted position.
  • 9. The system of claim 1, further comprising a restraint, wherein the restraint is configured to disengage from the sheath in the extended position, thereby weakening the coupling of the sheath to the medical device in the extended position.
  • 10. The system of claim 1, further comprising a restraint configured to reinforce the coupling of the sheath to the medical device in the retracted position.
  • 11. The system of claim 1, further comprising a restraint configured to weaken the coupling of the sheath to the medical device in the extended position.
  • 12. The system of claim 1, wherein the locking mechanism includes a tab and a stop.
  • 13. The system of claim 12, wherein the tab is on the sheath and the stop is on the housing.
  • 14. The system of claim 1, wherein the locking mechanism is on the housing.
  • 15. The system of claim 1, wherein the locking mechanism is on the sheath.
  • 16. The system of claim 1, wherein the sheath is telescopically engaged with the housing in both the retracted position and the extended position.
  • 17. The system of claim 1, wherein the first and second surfaces at the distal end of the sheath are disposed on opposing walls of the sheath.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/111,716, filed 19 May 2011, which claims the benefit of U.S. Provisional Applications Nos. 61/352,220 filed 7 Jun. 2010, 61/407,777 filed 28 Oct. 2010, 61/448,132 filed 1 Mar. 2011, 61/346,292 filed 19 May 2010, 61/407,797 filed 28 Oct. 2010, 61/418,354 filed 30 Nov. 2010, 61/438,781 filed 2 Feb. 2011, and 61/442,456 filed 14 Feb. 2011, the entirety of all of which is incorporated in their entirety by this reference.

US Referenced Citations (807)
Number Name Date Kind
2868200 Gewecke Jan 1959 A
3561429 Jewett Feb 1971 A
3729031 Baldwin Apr 1973 A
4013080 Froning Mar 1977 A
4160450 Doherty Jul 1979 A
4316461 Marais et al. Feb 1982 A
4380234 Kamen Apr 1983 A
4397641 Jacobs Aug 1983 A
4424833 Spector et al. Jan 1984 A
4430073 Bemis et al. Feb 1984 A
4432752 Marlon Feb 1984 A
4435173 Siposs et al. Mar 1984 A
4436519 O'Neill Mar 1984 A
4576589 Kraus et al. Mar 1986 A
4591356 Christie May 1986 A
4605011 Näslund Aug 1986 A
4681567 Masters Jul 1987 A
4695274 Fox Sep 1987 A
4755170 Golden Jul 1988 A
4776841 Catalano Oct 1988 A
4798594 Hillstead Jan 1989 A
4799494 Wang Jan 1989 A
4801295 Spencer Jan 1989 A
4834271 Litwin May 1989 A
4834718 McDonald May 1989 A
4846796 Carrell Jul 1989 A
4890626 Wang Jan 1990 A
4898587 Mera Feb 1990 A
4909798 Fleischhacker et al. Mar 1990 A
4935010 Cox et al. Jun 1990 A
4936830 Verlier Jun 1990 A
4941883 Venturini Jul 1990 A
4944725 McDonald Jul 1990 A
4944728 Carrell et al. Jul 1990 A
4952207 Lemieux Aug 1990 A
4964854 Luther Oct 1990 A
4976698 Stokley Dec 1990 A
5000740 Ducharme et al. Mar 1991 A
5049136 Johnson Sep 1991 A
5084023 Lemieux Jan 1992 A
5084026 Shapiro Jan 1992 A
5085648 Purdy et al. Feb 1992 A
5092845 Chang Mar 1992 A
5098048 Chen Mar 1992 A
5116324 Brierley et al. May 1992 A
5129884 Dysarz Jul 1992 A
5135504 Mclees Aug 1992 A
5147327 Johnson Sep 1992 A
5147333 Raines Sep 1992 A
5147375 Sullivan Sep 1992 A
5171234 Jepson et al. Dec 1992 A
5192275 Burns Mar 1993 A
5199948 Mcphee Apr 1993 A
5201717 Wyatt et al. Apr 1993 A
5207647 Phelps May 1993 A
5211634 Vaillancourt May 1993 A
5215525 Sturman Jun 1993 A
5215528 Purdy et al. Jun 1993 A
5215537 Lynn et al. Jun 1993 A
5232010 Rozenblatt et al. Aug 1993 A
5238010 Grabenkort et al. Aug 1993 A
5254097 Schock et al. Oct 1993 A
5269771 Thomas et al. Dec 1993 A
5295970 Clinton et al. Mar 1994 A
5295977 Cohen et al. Mar 1994 A
5300034 Behnke et al. Apr 1994 A
5312368 Haynes May 1994 A
5314411 Bierman et al. May 1994 A
5330438 Gollobin Jul 1994 A
5351383 Behnke et al. Oct 1994 A
5352205 Dales et al. Oct 1994 A
5354275 Behnke et al. Oct 1994 A
5354282 Bierman Oct 1994 A
5356390 Erskine Oct 1994 A
5360408 Vaillancourt Nov 1994 A
5364368 Kauffman et al. Nov 1994 A
5368801 Vaillancourt Nov 1994 A
5375589 Bhatta Dec 1994 A
5376071 Henderson Dec 1994 A
5376082 Phelps Dec 1994 A
5400500 Behnke et al. Mar 1995 A
5405331 Behnke et al. Apr 1995 A
5413562 Swauger May 1995 A
5425465 Healy Jun 1995 A
5425721 Malenchek Jun 1995 A
5439451 Collinson et al. Aug 1995 A
5445623 Richmond Aug 1995 A
5456668 Ogle, II Oct 1995 A
5458658 Sircom Oct 1995 A
5462255 Rosen et al. Oct 1995 A
5472430 Vaillancourt Dec 1995 A
5474544 Lynn Dec 1995 A
5476452 Thompson Dec 1995 A
5487728 Vaillancourt Jan 1996 A
5487734 Thorne et al. Jan 1996 A
5498247 Brimhall Mar 1996 A
5501674 Trombley, III Mar 1996 A
5509912 Vaillancourt et al. Apr 1996 A
5514111 Phelps May 1996 A
5514116 Vaillancourt et al. May 1996 A
5522804 Lynn Jun 1996 A
5545146 Ishak Aug 1996 A
5549651 Lynn Aug 1996 A
5558651 Crawford et al. Sep 1996 A
5562631 Bogert Oct 1996 A
5575769 Vaillancourt Nov 1996 A
5575777 Cover et al. Nov 1996 A
5591138 Vaillancourt Jan 1997 A
5601536 Crawford et al. Feb 1997 A
5643216 White Jul 1997 A
5669891 Vaillancourt Sep 1997 A
5676656 Brimhall Oct 1997 A
5676658 Erskine Oct 1997 A
5688253 Paradis Nov 1997 A
5697914 Brimhall Dec 1997 A
5697915 Lynn Dec 1997 A
5702367 Cover et al. Dec 1997 A
5702371 Bierman Dec 1997 A
5704914 Stocking et al. Jan 1998 A
5713876 Bogert et al. Feb 1998 A
5725499 Silverstein et al. Mar 1998 A
5727770 Dennis Mar 1998 A
5735826 Richmond Apr 1998 A
5735827 Adwers et al. Apr 1998 A
5740810 Johnson et al. Apr 1998 A
5743884 Hasson et al. Apr 1998 A
5746727 Graves et al. May 1998 A
5749857 Cuppy May 1998 A
5755709 Cuppy May 1998 A
5769825 Lynn Jun 1998 A
5788675 Mayer Aug 1998 A
5810780 Brimhall et al. Sep 1998 A
5827221 Phelps Oct 1998 A
5830184 Basta Nov 1998 A
5833662 Stevens Nov 1998 A
5846227 Osterlind Dec 1998 A
5879330 Bell Mar 1999 A
5902274 Yamamoto et al. May 1999 A
5911705 Howell Jun 1999 A
5913845 Brimhall Jun 1999 A
5916199 Miles Jun 1999 A
5935110 Brimhall Aug 1999 A
5954698 Pike Sep 1999 A
5957887 Oesterlind et al. Sep 1999 A
5989220 Shaw et al. Nov 1999 A
5997504 Bell Dec 1999 A
6001080 Kuracina et al. Dec 1999 A
6004294 Brimhall et al. Dec 1999 A
6022339 Fowles et al. Feb 2000 A
6027480 Davis et al. Feb 2000 A
6033382 Basta Mar 2000 A
6056718 Funderburk et al. May 2000 A
6077244 Botich et al. Jun 2000 A
6077248 Zumschlinge Jun 2000 A
6086564 Mclaughlin Jul 2000 A
6142981 Heck et al. Nov 2000 A
6149632 Landuyt Nov 2000 A
6152913 Feith et al. Nov 2000 A
6162206 Bindokas et al. Dec 2000 A
6168137 Paradis Jan 2001 B1
6171287 Lynn et al. Jan 2001 B1
6197007 Thorne et al. Mar 2001 B1
6210624 Mayer Apr 2001 B1
6213978 Voyten Apr 2001 B1
6221048 Phelps Apr 2001 B1
6228065 Lynn May 2001 B1
6261259 Bell Jul 2001 B1
6261268 Mayer Jul 2001 B1
6273869 Vaillancourt Aug 2001 B1
6273871 Davis et al. Aug 2001 B1
RE37357 Lynn Sep 2001 E
6299602 Miller Oct 2001 B1
6302866 Marggi Oct 2001 B1
6342120 Basta Jan 2002 B1
6375639 Duplessie et al. Apr 2002 B1
6379333 Brimhall et al. Apr 2002 B1
6379337 Mohammad Apr 2002 B1
6443929 Kuracina et al. Sep 2002 B1
6506181 Meng et al. Jan 2003 B2
6520938 Funderburk et al. Feb 2003 B1
6569120 Green et al. May 2003 B1
RE38145 Lynn Jun 2003 E
6572586 Wojcik Jun 2003 B1
6572588 Bierman et al. Jun 2003 B1
6572591 Mayer Jun 2003 B2
6595955 Ferguson et al. Jul 2003 B2
6623461 Wilkinson et al. Sep 2003 B1
6638252 Moulton et al. Oct 2003 B2
6652490 Howell Nov 2003 B2
6663599 Osborne et al. Dec 2003 B2
6673046 Bierman et al. Jan 2004 B2
6692468 Waldenburg Feb 2004 B1
6699221 Vaillancourt Mar 2004 B2
6712790 Prestidge et al. Mar 2004 B1
6719726 Meng et al. Apr 2004 B2
6719727 Brimhall et al. Apr 2004 B2
6730096 Basta May 2004 B2
6740277 Howell et al. May 2004 B2
6749588 Howell et al. Jun 2004 B1
6761706 Vaillancourt Jul 2004 B2
6776775 Mohammad Aug 2004 B1
6805860 Alt Oct 2004 B1
6811545 Vaillancourt Nov 2004 B2
6837875 Bierman Jan 2005 B1
6849051 Sramek et al. Feb 2005 B2
6902546 Ferguson Jun 2005 B2
6905483 Newby et al. Jun 2005 B2
6908459 Harding et al. Jun 2005 B2
6921391 Barker et al. Jul 2005 B1
6926721 Basta Aug 2005 B2
6953448 Moulton et al. Oct 2005 B2
6955659 Carter Oct 2005 B1
6972002 Thorne Dec 2005 B2
6981965 Luther et al. Jan 2006 B2
6981966 Green et al. Jan 2006 B2
6984223 Newby et al. Jan 2006 B2
RE38996 Crawford et al. Feb 2006 E
6997902 Thorne et al. Feb 2006 B2
6997913 Wilkinson Feb 2006 B2
6997917 Niedospial, Jr. et al. Feb 2006 B2
7004934 Vaillancourt Feb 2006 B2
7008406 Mayer Mar 2006 B2
7022111 Duplessie et al. Apr 2006 B2
7033339 Lynn Apr 2006 B1
7060055 Wilkinson et al. Jun 2006 B2
7060060 Simpson et al. Jun 2006 B1
7090660 Roberts et al. Aug 2006 B2
7090661 Morris et al. Aug 2006 B2
7112191 Daga Sep 2006 B2
RE39334 Lynn Oct 2006 E
7125398 Garcia, Jr. Oct 2006 B2
7141040 Lichtenberg Nov 2006 B2
7147622 Gutierrez Dec 2006 B2
7220249 Hwang et al. May 2007 B2
7258680 Mogensen et al. Aug 2007 B2
7344516 Erskine Mar 2008 B2
7347842 Thorne et al. Mar 2008 B2
7351230 Smith et al. Apr 2008 B2
7354422 Riesenberger et al. Apr 2008 B2
7396346 Nakajima Jul 2008 B2
7413562 Ferguson et al. Aug 2008 B2
7435238 Reid Oct 2008 B2
7445611 Osborne et al. Nov 2008 B2
7470261 Lynn Dec 2008 B2
7481797 Mahurkar Jan 2009 B2
7507222 Cindrich et al. Mar 2009 B2
7569033 Greene et al. Aug 2009 B2
7604616 Thoresen et al. Oct 2009 B2
7611499 Woehr et al. Nov 2009 B2
7615033 Leong Nov 2009 B2
7618395 Ferguson Nov 2009 B2
7625360 Woehr et al. Dec 2009 B2
7635357 Mayer Dec 2009 B2
7651481 Raybuck Jan 2010 B2
7654988 Moulton et al. Feb 2010 B2
7658725 Bialecki et al. Feb 2010 B2
7666166 Emmert et al. Feb 2010 B1
7670299 Beckman et al. Mar 2010 B2
7670317 Cindrich et al. Mar 2010 B2
7682339 Fujii Mar 2010 B2
7694403 Moulton Apr 2010 B2
7699814 Lande Apr 2010 B2
7713243 Hillman May 2010 B2
7713250 Harding et al. May 2010 B2
7717882 Harding May 2010 B2
7722569 Soederholm et al. May 2010 B2
7736332 Carlyon et al. Jun 2010 B2
7736337 Diep et al. Jun 2010 B2
7736342 Abriles et al. Jun 2010 B2
7740615 Shaw et al. Jun 2010 B2
7744572 Bierman Jun 2010 B2
7749254 Sobelman et al. Jul 2010 B2
7762993 Perez Jul 2010 B2
7763199 Fangrow, Jr. Jul 2010 B2
7766879 Tan et al. Aug 2010 B2
7766897 Ramsey et al. Aug 2010 B2
7771412 Anderson et al. Aug 2010 B2
7776017 Ponzi et al. Aug 2010 B2
7798991 Insignares Sep 2010 B2
7798994 Brimhall Sep 2010 B2
7799000 Silich Sep 2010 B2
7806869 Nilsson et al. Oct 2010 B2
7833201 Carlyon et al. Nov 2010 B2
7862547 Ferguson et al. Jan 2011 B2
7887515 Bierman Feb 2011 B2
7892216 Fangrow, Jr. Feb 2011 B2
7918828 Lundgaard et al. Apr 2011 B2
7931615 Fangrow, Jr. Apr 2011 B2
7959613 Rhad et al. Jun 2011 B2
7972313 Woehr et al. Jul 2011 B2
8012145 Cawley Sep 2011 B2
8025644 Chong et al. Sep 2011 B2
8042689 Fröjd et al. Oct 2011 B2
8043265 Abe et al. Oct 2011 B2
8048031 Shaw et al. Nov 2011 B2
8062262 Christensen et al. Nov 2011 B2
8066669 Christensen et al. Nov 2011 B2
8066670 Cluff et al. Nov 2011 B2
8066675 Cindrich et al. Nov 2011 B2
8066678 Vaillancourt et al. Nov 2011 B2
8070725 Christensen Dec 2011 B2
8079979 Moorehead Dec 2011 B2
8083728 Rome Dec 2011 B2
8092435 Beling et al. Jan 2012 B2
8105286 Anderson et al. Jan 2012 B2
8105288 Keyser et al. Jan 2012 B2
8122923 Kraus et al. Feb 2012 B2
8123738 Vaillancourt Feb 2012 B2
8133202 Marsh Mar 2012 B2
8133206 Greene et al. Mar 2012 B2
8147455 Butts et al. Apr 2012 B2
8147465 Kern Apr 2012 B2
8157770 Elwell et al. Apr 2012 B2
8162882 Rubinstein et al. Apr 2012 B2
8162896 Tan Apr 2012 B2
8162914 Kraushaar et al. Apr 2012 B2
8163237 Crawford et al. Apr 2012 B2
8172803 Morrissey et al. May 2012 B2
8172825 Solomon et al. May 2012 B2
8177745 Brechbuehler et al. May 2012 B2
8177753 Vitullo et al. May 2012 B2
8177754 Barnes May 2012 B2
8177755 Berry et al. May 2012 B2
8177760 Rome et al. May 2012 B2
8177762 Beasley et al. May 2012 B2
8177772 Christensen et al. May 2012 B2
8182448 Emmert et al. May 2012 B2
8197452 Harding et al. Jun 2012 B2
8197466 Yokota et al. Jun 2012 B2
8211070 Woehr et al. Jul 2012 B2
8226612 Nakajima Jul 2012 B2
8251950 Albert et al. Aug 2012 B2
8273056 Kuracina et al. Sep 2012 B2
8277424 Pan Oct 2012 B2
8287518 Kitani et al. Oct 2012 B2
8298195 Peppel Oct 2012 B2
8313459 Kiehne Nov 2012 B2
8313469 Fiser Nov 2012 B2
8323249 White et al. Dec 2012 B2
8337471 Baid Dec 2012 B2
8337483 Harding et al. Dec 2012 B2
8357121 Burkholz Jan 2013 B2
8361408 Lynn Jan 2013 B2
8366676 Harding et al. Feb 2013 B2
8377010 Harding et al. Feb 2013 B2
8377040 Burkholz et al. Feb 2013 B2
8382718 Woehr Feb 2013 B2
8382721 Woehr et al. Feb 2013 B2
8398597 Brimhall Mar 2013 B2
8398598 Carlyon et al. Mar 2013 B2
8403894 Lynn et al. Mar 2013 B2
8403905 Yow Mar 2013 B2
8408226 Raines et al. Apr 2013 B2
8409165 Niedospial, Jr. et al. Apr 2013 B2
8419688 Woehr et al. Apr 2013 B2
8430850 Gyrn et al. Apr 2013 B2
8439877 Burkholz May 2013 B2
8439891 Milligan May 2013 B1
8444605 Kuracina et al. May 2013 B2
8460247 Woehr et al. Jun 2013 B2
8465441 Srivatsa et al. Jun 2013 B2
8511352 Kraus et al. Aug 2013 B2
8529524 Newton et al. Sep 2013 B2
8545454 Kuracina et al. Oct 2013 B2
8556854 Zivkovic et al. Oct 2013 B2
8556855 Zivkovic et al. Oct 2013 B2
8568372 Woehr et al. Oct 2013 B2
8591469 Keyser et al. Nov 2013 B2
8622967 Davis et al. Jan 2014 B2
8628497 Finnestad et al. Jan 2014 B2
8636697 Scheurer et al. Jan 2014 B2
8647301 Bialecki et al. Feb 2014 B2
8652104 Goral et al. Feb 2014 B2
8657788 Fangrow, Jr. Feb 2014 B2
8657790 Tal et al. Feb 2014 B2
8663169 Emmert et al. Mar 2014 B2
8668674 White et al. Mar 2014 B2
8671964 Py Mar 2014 B2
8684994 Lev et al. Apr 2014 B2
8702675 Imai Apr 2014 B2
8715222 Truitt et al. May 2014 B2
8715247 Mansour et al. May 2014 B2
8715250 Tremblay May 2014 B2
8721627 Alpert May 2014 B2
8728035 Warring et al. May 2014 B2
8771230 White et al. Jul 2014 B2
8784387 Woehr Jul 2014 B2
8790310 White et al. Jul 2014 B2
8801678 Panian et al. Aug 2014 B2
8814833 Farrell et al. Aug 2014 B2
8827965 Woehr et al. Sep 2014 B2
8834422 Walker et al. Sep 2014 B2
8834432 Winsor et al. Sep 2014 B2
8840577 Zollinger et al. Sep 2014 B1
8858503 Burkholz et al. Oct 2014 B2
8870835 Baid Oct 2014 B2
8870846 Davis et al. Oct 2014 B2
8876784 Coete, Sr. et al. Nov 2014 B2
8882742 Dikeman et al. Nov 2014 B2
8900192 Anderson et al. Dec 2014 B2
8900199 Kawai et al. Dec 2014 B2
8910919 Bonnal et al. Dec 2014 B2
8915891 Bornhoft Dec 2014 B2
8932259 Stout et al. Jan 2015 B2
8951233 Mansour Feb 2015 B2
8956328 Antonucci Feb 2015 B2
8956330 Fangrow, Jr. Feb 2015 B2
8968252 White et al. Mar 2015 B2
8968261 Kimball et al. Mar 2015 B2
8968271 Guala Mar 2015 B2
8974425 Tachizaki et al. Mar 2015 B2
8979795 Bokelman et al. Mar 2015 B2
8979804 Ho et al. Mar 2015 B2
8986227 Belson Mar 2015 B2
8998851 Constantineau et al. Apr 2015 B2
9011382 Nilsson et al. Apr 2015 B2
9017288 Starnes Apr 2015 B1
9017295 Pan Apr 2015 B2
9032997 Abura et al. May 2015 B2
9033927 Maan et al. May 2015 B2
9033952 Chen May 2015 B2
9039047 Imai May 2015 B2
9044552 Schraga Jun 2015 B2
9044585 Masuda et al. Jun 2015 B2
9050128 Ros Jun 2015 B2
9056188 Hager et al. Jun 2015 B2
9061130 Truitt et al. Jun 2015 B2
9067049 Panian et al. Jun 2015 B2
9089680 Ueda et al. Jul 2015 B2
9089681 Ueda et al. Jul 2015 B2
9089682 Yeh et al. Jul 2015 B2
9095679 Nishimura et al. Aug 2015 B2
9095683 Hall et al. Aug 2015 B2
9114231 Woehr et al. Aug 2015 B2
9114241 Stout et al. Aug 2015 B2
9114244 Yeh et al. Aug 2015 B2
9119950 Mansour et al. Sep 2015 B2
9126017 Albert et al. Sep 2015 B2
9138572 Zeytoonian et al. Sep 2015 B2
9144672 Mansour et al. Sep 2015 B2
9162029 Zollinger Oct 2015 B2
9162037 Belson et al. Oct 2015 B2
9198831 Rogers Dec 2015 B2
9199062 Liska et al. Dec 2015 B2
9199063 Baid Dec 2015 B2
9212772 Ho et al. Dec 2015 B2
9220871 Thörne et al. Dec 2015 B2
9227038 Woehr Jan 2016 B2
9233229 Emmert et al. Jan 2016 B2
9234616 Carrez et al. Jan 2016 B2
9238128 Yamaguchi et al. Jan 2016 B2
9238130 Mouri Jan 2016 B2
9259533 Weilbacher et al. Feb 2016 B2
9259537 Baney et al. Feb 2016 B2
9265882 Ito Feb 2016 B2
9271668 Crawford et al. Mar 2016 B2
9278180 Wong Mar 2016 B2
9278195 Erskine Mar 2016 B2
9289237 Woehr et al. Mar 2016 B2
9289588 Chen Mar 2016 B2
9308352 Teoh et al. Apr 2016 B2
9308353 Shaw et al. Apr 2016 B2
9308354 Farrell et al. Apr 2016 B2
9314604 Bonnal et al. Apr 2016 B2
9320469 Shaw et al. Apr 2016 B2
9320858 Grimm et al. Apr 2016 B2
9320859 Grimm et al. Apr 2016 B2
9320860 Grimm et al. Apr 2016 B2
9345641 Kraus et al. May 2016 B2
9352127 Yeh et al. May 2016 B2
9370466 Garfield et al. Jun 2016 B2
9370641 Woehr et al. Jun 2016 B2
9370651 Zollinger et al. Jun 2016 B2
9375551 Harding Jun 2016 B2
9375552 Tremblay Jun 2016 B2
9381324 Fuchs et al. Jul 2016 B2
9381337 Carter et al. Jul 2016 B2
9393398 Truitt et al. Jul 2016 B2
9399116 Goral et al. Jul 2016 B2
9399119 Kuracina et al. Jul 2016 B2
9399120 Burkholz Jul 2016 B2
9408632 Erskine Aug 2016 B2
9409007 Yeh Aug 2016 B2
9415192 Kuracina et al. Aug 2016 B2
9421345 Woehr et al. Aug 2016 B2
9421352 Butts et al. Aug 2016 B2
9427549 Woehr et al. Aug 2016 B2
9433708 Eddy Sep 2016 B2
9433758 Farley et al. Sep 2016 B2
9522255 Knutsson Dec 2016 B2
9809355 Solomon et al. Nov 2017 B2
9827398 White et al. Nov 2017 B2
9962526 White et al. May 2018 B2
20010041871 Brimhall Nov 2001 A1
20020045843 Barker et al. Apr 2002 A1
20020165497 Greene et al. Nov 2002 A1
20030032922 Moorehead Feb 2003 A1
20030073956 Hoffman et al. Apr 2003 A1
20030083620 Luther et al. May 2003 A1
20030083621 Shaw et al. May 2003 A1
20030120222 Vaillancourt Jun 2003 A1
20030181871 Wilkinson et al. Sep 2003 A1
20030195479 Kuracina et al. Oct 2003 A1
20030199827 Thorne Oct 2003 A1
20040010227 Riesenberger et al. Jan 2004 A1
20040106903 Shue et al. Jan 2004 A1
20040030294 Mahurkar Feb 2004 A1
20040064102 Yamada Apr 2004 A1
20040097888 Gutierrez May 2004 A1
20040102735 Moulton et al. May 2004 A1
20040111059 Howlett et al. Jun 2004 A1
20040116855 Popov et al. Jun 2004 A1
20040127856 Johnson Jul 2004 A1
20040143216 Douglas et al. Jul 2004 A1
20040181192 Cuppy Sep 2004 A1
20040206416 Paradis Oct 2004 A1
20040267210 Popovsky Dec 2004 A1
20050027263 Woehr et al. Feb 2005 A1
20050043709 Brimhall et al. Feb 2005 A1
20050045192 Fulton Mar 2005 A1
20050059933 Johnson Mar 2005 A1
20050113755 Greene et al. May 2005 A1
20050131350 Shaw et al. Jun 2005 A1
20050192535 Takagi et al. Sep 2005 A1
20060015071 Fitzgerald Jan 2006 A1
20060015075 Blanco et al. Jan 2006 A1
20060030815 Csincsura et al. Feb 2006 A1
20060060892 Propp Mar 2006 A1
20060094983 Burbank et al. May 2006 A1
20060106335 Putter et al. May 2006 A1
20060116638 Woehr et al. Jun 2006 A1
20060155258 Rogers et al. Jul 2006 A1
20060189942 Chang Aug 2006 A1
20060247577 Wright Nov 2006 A1
20060253076 Butts et al. Nov 2006 A1
20060264833 Moulton Nov 2006 A1
20060270994 Bierman Nov 2006 A1
20070016149 Hunn Jan 2007 A1
20070038179 Bialecki et al. Feb 2007 A1
20070038182 Bialecki et al. Feb 2007 A1
20070038183 Bialecki et al. Feb 2007 A1
20070038185 Albert et al. Feb 2007 A1
20070038186 Sutton et al. Feb 2007 A1
20070038187 Albert et al. Feb 2007 A1
20070066958 Wright Mar 2007 A1
20070066960 Jones et al. Mar 2007 A1
20070073221 Bialecki et al. Mar 2007 A1
20070078400 Gesler, III Apr 2007 A1
20070079894 Kraus et al. Apr 2007 A1
20070129689 Woehr et al. Jun 2007 A1
20070142785 Lundgaard et al. Jun 2007 A1
20070161950 Carlyon et al. Jul 2007 A1
20070173768 Bierman Jul 2007 A2
20070179446 Carrez et al. Aug 2007 A1
20070185454 Fangrow Aug 2007 A1
20070185455 Fangrow Aug 2007 A1
20070191776 Bialecki et al. Aug 2007 A1
20070191777 King Aug 2007 A1
20070244438 Perez Oct 2007 A1
20070250011 Lee Oct 2007 A1
20070250057 Nobis Oct 2007 A1
20070255212 Smith et al. Nov 2007 A1
20070265572 Smith et al. Nov 2007 A1
20070270754 Soderholm et al. Nov 2007 A1
20070270758 Hanner et al. Nov 2007 A1
20080039796 Nakajima Feb 2008 A1
20080051726 Lee et al. Feb 2008 A1
20080097315 Miner et al. Apr 2008 A1
20080108944 Woehr et al. May 2008 A1
20080125717 Shue et al. May 2008 A1
20080132846 Shue et al. Jun 2008 A1
20080135443 Frojd et al. Jun 2008 A1
20080140004 Thorne et al. Jun 2008 A1
20080140011 Hager et al. Jun 2008 A1
20080147009 Nilsson et al. Jun 2008 A1
20080195033 Eagleson et al. Aug 2008 A1
20080215009 Shaw et al. Sep 2008 A1
20080228144 Liniger et al. Sep 2008 A1
20080262431 Anderson et al. Oct 2008 A1
20080287876 Shue et al. Nov 2008 A1
20080300543 Abriles et al. Dec 2008 A1
20080300574 Belson et al. Dec 2008 A1
20090012480 Moulton et al. Jan 2009 A1
20090036836 Nystrom et al. Feb 2009 A1
20090036914 Houser Feb 2009 A1
20090043260 Bierman Feb 2009 A1
20090069751 Curtis et al. Mar 2009 A1
20090076435 Melsheimer et al. Mar 2009 A1
20090082732 Hillman Mar 2009 A1
20090082733 Fujii Mar 2009 A1
20090124981 Evans May 2009 A1
20090131870 Fiser May 2009 A1
20090131872 Popov May 2009 A1
20090137958 Erskine May 2009 A1
20090137961 Bracken May 2009 A1
20090157013 Wong Jun 2009 A1
20090163861 Carlyon Jun 2009 A1
20090177167 Kuracina et al. Jul 2009 A1
20090221961 Tal et al. Sep 2009 A1
20090227896 Alvin Tan et al. Sep 2009 A1
20090299295 Rubinstein Dec 2009 A1
20090306602 Elwell et al. Dec 2009 A1
20100004604 Stearns Jan 2010 A1
20100016804 Muskatello et al. Jan 2010 A1
20100036331 Sen Feb 2010 A1
20100094310 Warring et al. Apr 2010 A1
20100106135 Radmand Apr 2010 A1
20100137815 Kuracina et al. Jun 2010 A1
20100137833 Glynn Jun 2010 A1
20100168675 Cindrich et al. Jul 2010 A1
20100204648 Stout et al. Aug 2010 A1
20100210934 Belson Aug 2010 A1
20100222746 Burkholz Sep 2010 A1
20100234804 Hiejima et al. Sep 2010 A1
20100241088 Ranalletta et al. Sep 2010 A1
20100262038 Tan et al. Oct 2010 A1
20100262083 Grunhut et al. Oct 2010 A1
20100268156 Milacek et al. Oct 2010 A1
20100274199 Weston Oct 2010 A1
20100286615 Gyrn et al. Nov 2010 A1
20100286620 Edginton Nov 2010 A1
20100286623 Liversidge Nov 2010 A1
20100292673 Korogi et al. Nov 2010 A1
20100305519 McKinnon et al. Dec 2010 A1
20100318063 Soll Dec 2010 A1
20110015573 Maan Jan 2011 A1
20110021994 Anderson et al. Jan 2011 A1
20110040281 White et al. Feb 2011 A1
20110054404 Tanabe et al. Mar 2011 A1
20110060288 Carlyon et al. Mar 2011 A1
20110077592 Takemoto Mar 2011 A1
20110125096 Baid May 2011 A1
20110125097 Shaw et al. May 2011 A1
20110166475 Crawford et al. Jul 2011 A1
20110178427 Tan et al. Jul 2011 A1
20110178464 Rawls Jul 2011 A1
20110178478 Huet et al. Jul 2011 A1
20110196260 Melsheimer et al. Aug 2011 A1
20110208124 Rhad et al. Aug 2011 A1
20110213307 Kawai et al. Sep 2011 A1
20110224617 Miner Sep 2011 A1
20110306933 Djordjevic et al. Dec 2011 A1
20110319859 Zeytoonian et al. Dec 2011 A1
20120010577 Liska et al. Jan 2012 A1
20120016312 Brown et al. Jan 2012 A1
20120022464 Zivkovic et al. Jan 2012 A1
20120191010 Cabot Jan 2012 A1
20120035552 Woehr Feb 2012 A1
20120041371 Tal et al. Feb 2012 A1
20120041377 Haak Feb 2012 A1
20120056746 Kaigler et al. Mar 2012 A1
20120065612 Stout et al. Mar 2012 A1
20120109077 Ryan May 2012 A1
20120123381 Kraus et al. May 2012 A1
20120143151 Low et al. Jun 2012 A1
20120150117 Andino Jun 2012 A1
20120150121 Silverman et al. Jun 2012 A1
20120153201 Larose et al. Jun 2012 A1
20120184910 Woehr Jul 2012 A1
20120191071 Butts et al. Jul 2012 A1
20120197200 Belson Aug 2012 A1
20120197205 Peters Aug 2012 A1
20120220944 Charlez Aug 2012 A1
20120220955 Maseda et al. Aug 2012 A1
20120220956 Kuracina et al. Aug 2012 A1
20120220984 Christensen et al. Aug 2012 A1
20120226240 Bedford et al. Sep 2012 A1
20120259293 Bialecki et al. Oct 2012 A1
20120316536 Carrez et al. Dec 2012 A1
20120323181 Shaw et al. Dec 2012 A1
20120330248 Woehr Dec 2012 A1
20130030370 Walker et al. Jan 2013 A1
20130041313 Chung Feb 2013 A1
20130053781 Woehr et al. Feb 2013 A1
20130053815 Mucientes et al. Feb 2013 A1
20130060197 Woehr et al. Mar 2013 A1
20130060198 Woehr et al. Mar 2013 A1
20130060199 Baid Mar 2013 A1
20130060201 Popov Mar 2013 A1
20130060205 Mansour et al. Mar 2013 A1
20130066276 Ito et al. Mar 2013 A1
20130079730 Mosler et al. Mar 2013 A1
20130096504 Walker et al. Apr 2013 A1
20130110036 Fojtik May 2013 A1
20130116598 Howell et al. May 2013 A1
20130150784 Rodriguez Lelis et al. Jun 2013 A1
20130158506 White et al. Jun 2013 A1
20130178798 Pearson et al. Jul 2013 A1
20130178825 Helm, Jr. Jul 2013 A1
20130211325 Wang et al. Aug 2013 A1
20130226144 Milligan Aug 2013 A1
20130231630 Kraus et al. Sep 2013 A1
20130261554 Baid Oct 2013 A1
20130296808 Triplett et al. Nov 2013 A1
20140012196 Zivkovic et al. Jan 2014 A1
20140012206 Shaw et al. Jan 2014 A1
20140025036 Bierman et al. Jan 2014 A1
20140039399 Burkholz Feb 2014 A1
20140052065 Woehr et al. Feb 2014 A1
20140058329 Walker et al. Feb 2014 A1
20140058357 Keyser et al. Feb 2014 A1
20140074032 Bornhoft Mar 2014 A1
20140081210 Bierman et al. Mar 2014 A1
20140100528 Finnestad et al. Apr 2014 A1
20140107619 Butts et al. Apr 2014 A1
20140135702 Woehr et al. May 2014 A1
20140135703 Yeh et al. May 2014 A1
20140151083 Ohnuma et al. Jun 2014 A1
20140163470 Baid Jun 2014 A1
20140163523 Constantineau et al. Jun 2014 A1
20140171876 Shaw et al. Jun 2014 A1
20140174578 Bonnal et al. Jun 2014 A1
20140180212 Baid Jun 2014 A1
20140180219 Ho et al. Jun 2014 A1
20140180250 Belson Jun 2014 A1
20140180258 Ho et al. Jun 2014 A1
20140188003 Belson Jul 2014 A1
20140209197 Carrez et al. Jul 2014 A1
20140221931 Kuracina et al. Aug 2014 A1
20140257202 Woehr Sep 2014 A1
20140261860 Heath et al. Sep 2014 A1
20140276453 Woehr Sep 2014 A1
20140276455 Yeh et al. Sep 2014 A1
20140276458 Mansour et al. Sep 2014 A1
20140276459 Yeh et al. Sep 2014 A1
20140276462 Vincent et al. Sep 2014 A1
20140276463 Mansour et al. Sep 2014 A1
20140276466 Yeh et al. Sep 2014 A1
20140296794 Li Oct 2014 A1
20140296829 White et al. Oct 2014 A1
20140303561 Li Oct 2014 A1
20140316350 Yamaguchi et al. Oct 2014 A1
20140323980 Cronenberg et al. Oct 2014 A1
20140336582 Tisci et al. Nov 2014 A1
20140336583 Morrissey et al. Nov 2014 A1
20140358033 Lynn Dec 2014 A1
20140364809 Isaacson et al. Dec 2014 A1
20140371686 Sano et al. Dec 2014 A1
20150005718 Walker et al. Jan 2015 A1
20150038943 Warring et al. Feb 2015 A1
20150045746 Macy, Jr. et al. Feb 2015 A1
20150073304 Miller Mar 2015 A1
20150080801 Tanabe et al. Mar 2015 A1
20150148748 Shluzas et al. May 2015 A1
20150148749 Cohn May 2015 A1
20150148756 Lynn May 2015 A1
20150157799 Chen et al. Jun 2015 A1
20150157800 Chen et al. Jun 2015 A1
20150157848 Wu et al. Jun 2015 A1
20150165132 Perot et al. Jun 2015 A1
20150174339 Bokelman et al. Jun 2015 A1
20150174374 Woehr Jun 2015 A1
20150190168 Bierman et al. Jul 2015 A1
20150190627 Ueda et al. Jul 2015 A1
20150196737 Baid Jul 2015 A1
20150196749 Ziv et al. Jul 2015 A1
20150196750 Ueda et al. Jul 2015 A1
20150202424 Harton Jul 2015 A1
20150209508 Constantineu et al. Jul 2015 A1
20150258325 Panian et al. Sep 2015 A1
20150265829 Truitt et al. Sep 2015 A1
20150290431 Hall et al. Oct 2015 A1
20150297817 Guala Oct 2015 A1
20150297880 Ogawa et al. Oct 2015 A1
20150313523 Chelak et al. Nov 2015 A1
20150328438 Baid Nov 2015 A1
20150352331 Helm, Jr. Dec 2015 A1
20150352333 Arellano Cabrera et al. Dec 2015 A1
20160000364 Mendels et al. Jan 2016 A1
20160001057 Lopez et al. Jan 2016 A1
20160015943 Belson et al. Jan 2016 A1
20160015945 Warring et al. Jan 2016 A1
20160015958 Ueda et al. Jan 2016 A1
20160015961 Mansour et al. Jan 2016 A1
20160022963 Belson Jan 2016 A1
20160022977 Ueda et al. Jan 2016 A1
20160022978 Ueda Jan 2016 A1
20160030730 Mosler et al. Feb 2016 A1
20160038730 Zollinger Feb 2016 A1
20160088995 Ueda et al. Mar 2016 A1
20160114136 Woeher Apr 2016 A1
20160114137 Woehr et al. Apr 2016 A1
20160114147 Siopes et al. Apr 2016 A1
20160121082 Emmert et al. May 2016 A1
20160129180 Roman et al. May 2016 A1
20160135841 Albert et al. May 2016 A1
20160136051 Lavi May 2016 A1
20160158498 White et al. Jun 2016 A1
20160158499 Helm Jun 2016 A1
20160158524 Quach et al. Jun 2016 A1
20160183976 Bertoli et al. Jun 2016 A1
20160199575 Belley et al. Jul 2016 A1
20160206813 Abe et al. Jul 2016 A1
20160206858 Ishida Jul 2016 A1
20160220270 Tamura et al. Aug 2016 A1
20160235944 Ma Aug 2016 A1
20160235949 Baid Aug 2016 A1
20160235961 Maffei Aug 2016 A1
20160256667 Ribelin et al. Sep 2016 A1
20160263353 Kuracina et al. Sep 2016 A1
20160271370 Keyser et al. Sep 2016 A1
20160296724 Goral et al. Oct 2016 A1
20160325078 Burkholz Nov 2016 A1
20170000983 Woehr Jan 2017 A1
20170182293 Chhikara Jun 2017 A1
20170239443 Abitabilo et al. Aug 2017 A1
20180154119 White Jun 2018 A1
Foreign Referenced Citations (21)
Number Date Country
101466431 Jun 2009 CN
0 576 302 Dec 1993 EP
0821980 Apr 2003 EP
1323442 Jul 2003 EP
H0678999 Mar 1994 JP
2910915 Jun 1999 JP
2008528225 Jul 2008 JP
4211858 Jan 2009 JP
WO 199001351 Feb 1990 WO
WO 1997015342 May 1997 WO
2006082350 Aug 2006 WO
WO 2006090148 Aug 2006 WO
WO 2007008511 Jan 2007 WO
WO 2007143555 Dec 2007 WO
WO 2008042285 Apr 2008 WO
2009032008 Mar 2009 WO
WO 2009092076 Jul 2009 WO
2011146764 Nov 2011 WO
WO 2011146769 Nov 2011 WO
WO 2015119940 Aug 2015 WO
WO 2018009653 Jan 2018 WO
Non-Patent Literature Citations (5)
Entry
International Search Report and Written Opinion, re PCT Application No. PCT/US2011/037242, dated Nov. 2, 2011.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2011/037242, dated Nov. 20, 2012.
U.S. Appl. No. 15/427,714, filed Feb. 8, 2017, Whie et al.
U.S. Appl. No. 15/951,509, filed Apr. 12, 2018, White et al.
BD Nexiva Closed IV Catheter System, http://www.bd.com/infusion/products/ivcatheters/nexiva/index.asp, downloaded Sep. 6, 2013 in 19 pages.
Related Publications (1)
Number Date Country
20150224267 A1 Aug 2015 US
Provisional Applications (8)
Number Date Country
61352220 Jun 2010 US
61407777 Oct 2010 US
61448132 Mar 2011 US
61346292 May 2010 US
61407797 Oct 2010 US
61418354 Nov 2010 US
61438781 Feb 2011 US
61442456 Feb 2011 US
Continuations (1)
Number Date Country
Parent 13111716 May 2011 US
Child 14299872 US