The present invention relates to a safety mechanism for a paper shredder and, in particular, to a safety assurance mechanism for a paper shredder feed opening.
Currently, paper shredder feed openings can be divided generally into two types: an open structure and a sliding-plate structure. In an open structure feed opening, a user can directly feed paper into a paper feed opening for shredding. In a sliding plate structure, a user needs to expose the paper feed opening, prior to feeding in paper. Neither structure is connected directly to a circuit capable of cutting off power to the paper shredder. Therefore, neither paper feed opening type preferentially switches off power to the paper shredder, so as to actively protect users from accidentally feeding, for example, parts of their bodies, or their personal belongings, into a paper shredder feed opening.
The circuit design and the mechanical structure of the present invention, namely a shredder paper feed opening protection system, includes a paper shredder upper cover and a paper shredder plate. The shredder upper cover has a longitudinally-oriented opening, and the paper shredder plate being selectively positioned to cover the feed opening, so that the paper feed opening may be either open or closed. The paper shredder plate can be configured with one of a touch structure or a preferential power supply switch and the paper shredder upper cover can be configured with the other of a preferential power supply switch or a touch structure. The touch structure and the preferential power supply switch are configured to engagingly interact with each other, so that the shredder power supply (1) can be switched off when the paper shredder plate is selectively positioned to close the paper feed opening; (2) can be switched on when the paper shredder plate is selectively positioned to open, or uncover, the paper feed opening, and (3) is switched off again when unexpected items are introduced into the paper feed opening, deflecting the selectively positioned paper shredder plate. The paper shredder upper cover and the paper shredder plate can be configured to be an integrated element, or may be configured as separate elements.
Therefore, the preferential power supply switch has a dual protection function: when the paper shredder plate is closed, the entire circuit is not electrically conductive—this is the first-level protection; while when the paper shredder plate is opened during normal operation, the paper shredder plate will switch off the power supply if there are any unexpected items fed, or that accidentally fall down, into the paper feed opening. The falling action will cause a noticeable force that enables the preferential power supply switch to switch off power supply—this is the second-level protection.
In the circuit of the present paper feed opening protection system for a paper shredder, a disconnection switch has a first-level priority, and is introduced electrically before a safety switch and a paper-full switch. The preferential power supply switch is electrically positioned relative to other shredder operational switches, to preferentially switch off the shredder power supply, having first-level priority to protect a user by providing a shredder protection. The preferential power supply switch is different from other shredder operational switches, such as a standard safety switch, or a paper-full switch, because the preferential power supply switch interacts with the touch structure. In other words, the present invention adopts a preferential power supply switch that provides more active protection to users with the aid of a mechanical structure, the touch structure.
The touch structure and the preferential power supply switch can be integrated into a one-circuit disconnection device that serves as a protection system. The protection system acts, after switching on the shredder power supply, as passive conduit whenever the paper feed opening is selectively opened to receive paper for shredding. The protection system actively switches off the shredder power supply whenever the paper feed opening is selectively opened and an unexpected item is fed into the paper feed opening. The protection system acts switches off the shredder power supply, whenever the paper feed opening is selectively closed by the paper shredder plate.
The paper shredder upper cover and the paper shredder plate refer to any separate or integrated structures able to seal the paper feed opening. The paper shredder plate and the paper shredder upper cover are connected such that the former can move separately relative to the latter. The touch structure can be a cam disposed on the paper shredder plate; corresponding to the cam, the preferential power supply switch is disposed on a corresponding position of the paper shredder upper cover. The cam and the preferential power supply switch are configured to interact with each other to control the shredder power supply.
The opening is an indented opening disposed on the paper shredder upper cover; the paper shredder plate locates at the indented opening; the cam is disposed on the bottomside of the paper shredder plate; and the preferential power supply switch is disposed in the reverse side of the paper shredder upper cover.
The cam comprises a fundamental cam and a cam point on the fundamental cam. The fundamental cam is fixed on the paper shredder plate, and the cam point interacts with the touch point of the preferential power supply switch.
Shaft bases are fixed on the two longitudinally opposite sides on the reverse side the paper shredder upper cover. The shaft bases each have a main base body, and a shaft protruding from the main base body. Corresponding to the shaft base, protruding blocks are fixed on the opposite sides of the bottomside of the paper shredder plate. Within each protruding block, a shaft hole is opened to accommodate the shaft.
Each shaft base further includes a protrusion located under the respective shaft, with each protrusion having a respective protruding point, oriented towards the corresponding shaft. A closing detent point and a working detent point are provided on each protruding block, to engage each of the protruding points on a protrusion corresponding to a protrusion block.
The main base bodies each have through-holes. A pole is positioned on either side, and at either end, along a longitudinal axis on the reverse side of the paper shredder upper cover. The through-holes and the poles are connected together by screws that go through both. The fundamental cam is fixed to the protruding block,
such that the cam is indirectly fixed to the paper shredder plate. As a result, the paper shredder plate also may be a constituent of the touch structure.
The paper shredder plate can be configured on opposite sides of a transverse axis of the bottomside, with one transverse side of the shredder plate having a paper stopper extending downwards and inwards, relative to the paper feed opening, and the other transverse side being formed with an indented pressing area in the middle section of the outer surface.
The preferential power supply switch also includes through-holes. The reverse side of the paper shredder upper cover has poles at a location corresponding to the touch structure. The through-holes and the poles are connected together by screws that go through both.
Beneficial features of the present invention include:
1. A paper shredder plate that enables a touch structure and a preferential power supply switch to interact with each other, resulting in a simple protection system, which can be inexpensive to manufacture.
2. A touch structure that selectively controls the opening and closing of the paper shredder plate, and, interacting with the preferential power supply switch, selectively controls the switching on and off of the power supply to the paper shredder. Moreover, in case of an abnormal opening, that is, a deflection, of the paper shredder plate, the touch structure will cause the power supply to be switched off to prevent any part of a user's body, or his/her personal belongings, to enter the paper feed opening.
3. A protruding block having an adjustable closing detent point and an adjustable working detent point, either one of which detent points matches the protruding point on the corresponding shaft base, which permits convenient, accurate closing and opening of the paper shredder plate.
The invention is generally shown by way of reference to the accompanying drawings in which:
The following embodiment will explain the technical details of the present invention to make it more easily understood.
Referring to
The paper shredder plate 2 is configured with a touch structure 40, and the paper shredder upper cover 1 is correspondingly configured with a preferential power supply switch 12. Alternately, the touch structure 40 can be disposed on paper shredder upper cover 1, and a preferential power supply switch 12 can be disposed on paper shredder plate 2. The touch structure 40 and the preferential power supply switch 12 are designed to interact with each other, and can be constituents of a paper feed opening protection system 100. The paper shredder plate 2 is selectively positioned on the paper feed opening 45. System 100 operates such that when the paper shredder plate 2 is selectively positioned to close paper feed opening 45, the touch structure 40 interacts with the preferential power supply switch 12 to switch off the shredder power supply 50. On the other hand, when the paper shredder plate 2 is selectively positioned to open, or expose, the paper feed opening 45, the touch structure 40 interacts with the preferential power supply switch 12 to switch on the shredder power supply 50. However, when the paper shredder plate 2 is selectively positioned to open, or expose, the paper feed opening 45 and an unexpected item (i.e., other than paper to be shredded) is fed into the paper feed opening 45, the unexpected item forces up, that is, deflects, the paper shredder plate 2.
Deflecting paper shredder plate 2 actively switches off the shredder power supply 50 by the interaction of the touch structure 40 on preferential power supply switch 12. Thus, the present invention provides user protection by preferentially selecting between enabling or disabling the shredder power supply 50, while the paper feed opening 45 is accessible and open. In addition, the present invention provides protection by switching off the shredder power supply 50 both when the paper shredder plate 2 is selectively positioned to close the paper feed opening 45 is closed; and, during normal operation, when an unexpected item enters the paper feed opening 45, and deflects the paper shredder plate 2.
As indicated above, the preferential power supply switch 12 has a dual protection function. First-level protection is provided when the paper shredder plate 2 is selectively positioned to close the paper feed opening 45, making it inaccessible, the shredder power supply 50 is switched off and is not electrically conductive. Second-level protection is provided when the paper shredder plate 2 is selectively positioned to open the paper feed opening 45, and the paper shredder plate 2 will switch on the shredder power supply 50 to perform normal operation. In the event an unexpected item is introduced into the paper feed opening 45, a noticeable force will result, which deflects paper shredder plate 2. The deflection causes paper shredder plate 2 to interact with the preferential power supply switch 12 and to switch off the power supply 50.
The touch structure 40 and the preferential power supply switch 12 can be integrated into a single-circuit disconnection device that serves as the protection structure 100, which actively switches off the power supply whenever an unexpected item is fed into the paper feed opening 45, and which functions reversely as a passive conducting device while feeding paper through the paper feed opening 45. The preferential power supply switch 12 is a preferential disconnection device. Different from an ordinary safety switch, or a paper-full switch, whose function is realized, for example, by adopting a flip-flop in a circuit of a paper shredder, the preferential power supply switch 12 has first-level priority in power supply circuit 50 to protect a user.
The paper shredder upper cover 1 and the paper shredder plate 2 refer to separate structures able to seal the paper feed opening 45, when the paper shredder plate 2 is selectively positioned to close paper feed opening 45. The paper shredder upper cover 1 and the paper shredder plate 2 also may be integrated. The paper shredder plate 2 and the paper shredder upper cover 1 are connected such that the former can move separately, and be selectively positioned, relative to the latter.
The touch structure 40 comprises a cam 21 disposed on the paper shredder plate 2. Corresponding to the cam 21, the preferential power supply switch 12 is disposed on a corresponding position of the paper shredder upper cover 1. The cam 21 and the preferential power supply switch 12 are configured to interact with each other. That is, when the paper shredder plate 2 is selectively positioned to open, or expose, paper feed opening 45, the cam 21 interacts with the preferential power supply switch 12 to switch on the shredder power supply 50. When there is an unexpected item fed into the paper feed opening 45, touch structure 40 is deflected upward and the cam 21 interacts with the preferential power supply switch 12 to actively switch off the shredder power supply 50. Also, when the paper shredder plate 2 selectively positioned to close the paper feed opening 45, the cam 21 interacts with the preferential power supply switch 12 to switch off the shredder power supply 50.
In one of the embodiments of the present invention, the paper feed opening 45 is included in a longitudinally-oriented recess 11 that is formed in the obverse side 60 of the paper shredder upper cover 1. The paper shredder plate 2 is positioned at the recess 11. The cam 21 is disposed on the bottomside 72 of the paper shedder plate 2; and the preferential power supply switch 12 is disposed on the reverse side 62 of the paper shredder upper cover 1, proximate to cam 21.
As illustrated in
Referring to
Each shaft base 13 further includes a protrusion 16 located under, and parallel to, the shaft 15, with each of the protrusions 16 being provided with a respective protruding point 17. Protruding point 17 is oriented to face the corresponding shaft 15. Each respective protruding block 24 on paper shredder plate 2 further includes a closing detent 26 or a working detent point. Each of the protruding points 17 on the respective upper cover shaft bases 13, are positioned to releasably engage one of the closing detent point 26 or working detent point 27 on a respective protruding block 24. The fundamental cam 22 is fixed to the protruding block 24, with the cam 21 being indirectly coupled to the paper shredder plate 2.
Each main base body 14 of each shaft base 13 has through-holes 43. Opposite ends on the reverse side 62 of the paper shredder upper cover 1 are configured with poles 48. Each through-hole 43 and pole 48 are connected together by a respective screw 49a that goes though both.
As illustrated in
Returning to
Referring to
Referring to
Referring back to
Referring to
Referring to
In summary, the present invention is simply designed and easy to use, and features both active protection and dual protection. While this specification describes the present invention in reference to the above specific embodiments, the present invention can be modified and transformed under its substantial spirit and within its substantial scope. Therefore, the specification and the drawings thereof are provided as descriptions of a preferred embodiment rather than limitations.
Number | Name | Date | Kind |
---|---|---|---|
4411391 | Crane | Oct 1983 | A |
4817877 | Itoh et al. | Apr 1989 | A |
4842205 | Araki et al. | Jun 1989 | A |
5044270 | Schwelling | Sep 1991 | A |
5969310 | Schwelling | Oct 1999 | A |
6065696 | Tsai | May 2000 | A |
6116528 | Schwelling | Sep 2000 | A |
6676050 | Chang | Jan 2004 | B2 |
6682006 | Lee | Jan 2004 | B2 |
6964386 | Ho | Nov 2005 | B2 |
7083131 | Ting | Aug 2006 | B2 |
7414212 | Huang | Aug 2008 | B2 |
20060054725 | Matlin | Mar 2006 | A1 |
20060219827 | Matlin et al. | Oct 2006 | A1 |
20070012808 | Kao | Jan 2007 | A1 |
20070034725 | Duh | Feb 2007 | A1 |
20070246581 | Matlin et al. | Oct 2007 | A1 |
20080006728 | Zhang | Jan 2008 | A1 |
20080105772 | Matlin | May 2008 | A2 |
20080156912 | Huang | Jul 2008 | A1 |
20080164351 | Wang | Jul 2008 | A1 |
20080169369 | Wang | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
WO 2009058225 | May 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090134252 A1 | May 2009 | US |