The present invention relates to safety devices to prevent drownings in swimming pools.
This invention relates to new apparatus elements compatible with the basic concept of a buoyant rescue floor in a pool which rises to bring a person up and out of the water when an automatic or manual trigger switch is engaged to release it from the bottom. U.S. Pat. Nos. 6,389,615 and 6,493,885 of Gregory Perrier describe the basic concept as well as details of hydraulic or electro-mechanical actuators used to re-deploy the buoyant floor to the bottom (ie. to submerge it).
Although the Perrier '615 and '885 patents cited above do describe electro-mechanical means to accomplish the submerging function as a number of specialized motor-driven timing belt actuators dispersed around the pool periphery, no discussion of the application of a winch mechanism as an alternative was discussed. This invention describes the use of winches with electrically disengagable clutches between the motor and cable winding drum. Upon command, the drum is disengaged from the motor to permit the buoyant floor to rise freely in an emergency. All such clutches (one for each of the winches used) would be simultaneously disengaged. Until the clutch is disengaged, the cable is under tension holding the floor down through a direction reversing pulley near the pool bottom. The motor/gear friction prevents backwinding by floor tension; incorporation of at least one stage of worm gear drive is one way to ensure this function. Only uni-directional motor drive is required for inexpensive AC induction motor use. Note that since only slow submersion is required, low power actuators such as this winch mechanism, can be used even though the submerged rescue floor stores significant potential energy for rapid release upon triggering. Since the winch described here uses many similar components from ordinary winches which are available in large volume, it will be less expensive to implement than an equivalent timing belt actuator described in the cited prior art (see FIGS. 7 and 8 of Perrier U.S. Pat. Nos. 6,389,615 and 6,493,885). For a very small pool, a single hand cranked winch (no motor required) with electrically disengageable clutch can be used to redeploy the buoyant floor with a centrally attached cable; a miniature demonstration model of this design has been built.
A solar-powered power supply with storage battery and AC back-up is also described to supply power to the sensor/trigger system to deploy the rescue floor in an emergency. The prior art had called for an uninterruptible power supply (UPS) which would back up the AC (or other power equivalent outside of the United States) during a short power failure. Recent experience with the use of solar panels to power parking kiosks, road hazard signs, and parking lot and road lighting has proven the reliability of these systems. Since this is a potential life and death application, an additional AC back-up for the storage battery/ solar panel subsystem is included. The only remaining exposure is gross component failure or the simultaneous AC power outage with solar/battery failure.
A low cost circuit for an electro-mechanical sensor/trigger circuit is described. Although sophisticated pool sensors using acoustic and optical techniques exist, a simple floating tilt sensor (such as a ball-in-cage or mercury switch) may be more reliable. This can be used alone or in conjunction with a manual direct or remote control trigger switch circuit.
Optionally the trigger switch circuit can alert emergency rescue telephone number 911, which has an automatic address (if from a land line call) or uses cell GPS for location, where location coordinates are calculated from GPS signals received by a GPS chip set. Therefore an emergency response team can be sent to the address of the swimming pool having an emergency rescue situation requiring medical attention.
The present invention can best be understood in connection with the accompanying drawings. It is noted that the invention is not limited to the precise embodiments shown in drawings, in which:
A winch can be used as an actuator to submerge a portion of the buoyant rescue floor.
A solar power supply for the sensor/trigger subsystem is shown in
Solar panel 25 is used to charge battery 27 through a solar battery charger 26 designed to safely keep it at an optimal state of charge for long reliable operation. Without the desire for AC back-up of the solar portion, it can function to supply a low DC voltage (12-24 volts as designed) which, by virtue of the storage battery, can supply short bursts of relatively high current to supply the needs of solenoids which may be used in the trigger circuits. Only components 25-27 would be needed.
To improve the reliability and overcome battery or solar panel malfunctions, the rest of the circuit is used to provide AC back-up. The AC input 30 can be the typical 120 or higher AC mains voltage locally available (or other power equivalent outside of the United States). A directly wired supply is recommended. Solid state relay 31 is normally off, but it will be triggered on by low-voltage sensor 28 (denoting a problem with the solar supply). When triggered on, step-down transformer 32 is powered supplying low voltage AC to diode 33 and filter capacitor 34 creating an alternate source of low voltage DC which turns on relay 29 with a single-pole-double-throw contact arrangement, thereby substituting the AC supplied DC voltage at output 35 for the normally solar supplied voltage and current.
In the foregoing description, certain terms and visual depictions are used to illustrate the preferred embodiment. However, no unnecessary limitations are to be construed by the terms used or illustrations depicted, beyond what is shown in the prior art, since the terms and illustrations are exemplary only, and are not meant to limit the scope of the present invention.
It is further known that other modifications may be made to the present invention, without departing the scope of the invention, as noted in the appended Claims.
This application is a divisional of application Ser. No. 12/843,035, filed Jul. 25, 2010, and claims priority under 35 USC §120 therefrom. That application is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 12843035 | Jul 2010 | US |
Child | 14010420 | US |