Safety switch for photovoltaic systems

Information

  • Patent Grant
  • 11018623
  • Patent Number
    11,018,623
  • Date Filed
    Tuesday, January 15, 2019
    5 years ago
  • Date Issued
    Tuesday, May 25, 2021
    3 years ago
Abstract
Various implementations described herein are directed to a methods and apparatuses for disconnecting, by a device, elements at certain parts of an electrical system. The method may include measuring operational parameters at certain locations within the system and/or receiving messages from control devices indicating a potentially unsafe condition, disconnecting and/or short-circuiting system elements in response, and reconnection the system elements when it is safe to do so. Certain embodiments relate to methods and apparatuses for providing operational power to safety switches during different modes of system operation.
Description
BACKGROUND

Safety regulations may require disconnecting and/or short-circuiting one or more photovoltaic (PV) generators or other components in case of an unsafe condition occurring in a photovoltaic installation. For example, safety regulations require that in case of an unsafe condition (e.g. a fire, a short-circuit, carrying out of maintenance work), the maximum voltage at any point in a photovoltaic installation may not exceed a safe voltage level. In some photovoltaic systems, it may be necessary to disconnect and/or short-circuit one or more photovoltaic generator(s) to achieve the safe voltage requirement. While photovoltaic systems may be deployed for tens of years, safety regulations may change at shorter time intervals (e.g. every several years). It would be advantageous to have a controllable safety switch which may be controlled to disconnect or short-circuit a PV generator in case of a safety hazard, and which may be controlled to reconnect the photovoltaic generator once the system is safe again. It would be desirable for controllable safety switches to be cost-effective and easily deployed.


SUMMARY

The following summary is a short summary of some of the inventive concepts for illustrative purposes only, and is not intended to limit or constrain the inventions and examples in the detailed description. One skilled in the art will recognize other novel combinations and features from the detailed description.


Embodiments herein may employ safety switches and associated apparatuses and methods for controlling currents through branches and/or voltages at nodes in photovoltaic (PV) installations.


In illustrative embodiments comprising one or more electrical systems, a group of electrical safety switches may be electrically connectable to a plurality of electrical power sources. The electrical safety switches may be controllable to maintain safe operation of the electrical systems.


In illustrative electrical systems, a safety switch may be deployed between serially-connected photovoltaic generators in a photovoltaic installation. In some embodiments, safety switches may be installed between each pair of PV generators. In some embodiments, the number and location of safety switches may be chosen with regard to current safety regulations, and in some embodiments, the number and location of safety switches may be chosen with regard to anticipated “worst-case” safety regulations. For example, in locales where adding, reconfiguring and/or removing system components is easy and inexpensive, safety switches may be deployed in a PV installation in accordance with the safety regulations at the time the installation was built. In locales where adding, reconfiguring and/or removing system components may be difficult or expensive, safety switches may be deployed in a manner that complies with a “worst-case” (i.e. most stringent) prediction of future regulations.


Illustrative safety switches according to some embodiments may be retrofit to existing photovoltaic installations and components. Illustrative safety switches according to some embodiments may be integrated in other PV system components (e.g. connectors, PV generators, power devices, combiner boxes, batteries and/or inverters), potentially reducing the cost of design and manufacturing of the safety switches, and increasing


In some embodiments, auxiliary power circuits are used to provide power to safety switches and associated controllers. In some embodiments, safety switches are located at system points which do not carry significant electrical power when the safety switches are in a particular state (e.g., when safety switches are in the ON state). Illustrative auxiliary power circuits are disclosed herein, along with associated methods for providing power to the auxiliary power circuits and safety switches regardless of the state of the safety switches.


In some embodiments, components and design of safety switches may be selected to regulate or withstand electrical parameters when illustrative safety switches are in the ON or OFF states. For example, some illustrative safety switches may comprise shunt resistors sized to regulate electrical current flowing through safety switches when the safety switches are in the OFF position.


Further embodiments include photovoltaic power devices comprising internal circuitry configured to limit a voltage between input terminals to the photovoltaic power devices in case of a potentially unsafe condition while continuously providing operational power to the photovoltaic power devices.


Further embodiments include electrical circuits for interconnecting photovoltaic generators and photovoltaic power devices configured to limit a voltage between various system nodes while continuously providing operational power to the photovoltaic power devices.


Further embodiments include a chain of preconnected photovoltaic power devices with associated safety switches, which may provide a cost-effective, easy way to wire a photovoltaic generation system along with associated safety switches.


In some embodiments, safety switches may be in communication with accompanying system devices, such as system control devices and/or end-user devices such as graphical user interfaces for monitoring applications.


Further embodiments include user interfaces for monitoring the state of and parameters measured by safety switches in illustrative power systems. A system owner or operator may be able to view a list of system safety switches, associated switch states and electrical parameter measured thereby. In some embodiments, the list may be a graphical user interface (GUI) viewable on a computing device, such as a computer monitor, tablet, smart-television, smartphone, or the like. In some embodiments, the system operator may be able to manually control safety switches (e.g. by pressing buttons).


As noted above, this Summary is merely a summary of some of the features described herein and is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. The Summary is not exhaustive, is not intended to identify key features or essential features of the claimed subject matter and is not to be a limitation on the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present disclosure will become better understood with regard to the following description, claims, and drawings. The present disclosure is illustrated by way of example, and not limited by, the accompanying figures.



FIG. 1A illustrates a photovoltaic system configuration according to various aspects of the present disclosure.



FIG. 1B illustrates a photovoltaic system configuration according to various aspects of the present disclosure.



FIG. 2 illustrates part of a photovoltaic system configuration according to various aspects of the present disclosure.



FIG. 3 illustrates a safety switch according to various aspects of the present disclosure.



FIGS. 4A-4B illustrate a safety switch according to various aspects of the present disclosure.



FIG. 5A illustrates part of a photovoltaic system configuration according to various aspects of the present disclosure.



FIG. 5B illustrates a photovoltaic generator according to various aspects of the present disclosure.



FIG. 6 illustrates a method for operating a safety switch according to various aspects of the present disclosure.



FIGS. 7A-7C illustrate circuits for providing operational power to a safety switch according to various aspects of the present disclosure.



FIG. 7D illustrates a timing diagram depicting some of the operational parameters of a safety switch according to various aspects of the present disclosure.



FIG. 7E illustrates a circuit for providing operational power to a safety switch according to various aspects of the present disclosure.



FIG. 7F illustrates a timing diagram depicting some of the operational parameters of a safety switch according to various aspects of the present disclosure.



FIG. 7G illustrates a circuit for providing operational power to a safety switch according to various aspects of the present disclosure.



FIG. 7H illustrates a circuit for providing operational power to a safety switch according to various aspects of the present disclosure.



FIG. 7I illustrates part of an illustrative datasheet indicating possible operating points for operating a transistor according to various aspects of the present disclosure.



FIG. 8 illustrates a photovoltaic system configuration according to various aspects of the present disclosure.



FIG. 9 illustrates a photovoltaic power device according to various aspects of the present disclosure.



FIG. 10 illustrates a photovoltaic system configuration according to various aspects of the present disclosure.



FIGS. 11A-11B illustrate a photovoltaic power devices according to various aspects of the present disclosure.



FIG. 12 illustrates a photovoltaic system configuration according to various aspects of the present disclosure.



FIG. 13A illustrates circuitry of a safety switch according to various aspects of the present disclosure.



FIG. 13B illustrates circuitry of a photovoltaic power device according to various aspects of the present disclosure.



FIG. 14 illustrates a portion of a chain of photovoltaic power devices according to various aspects of the present disclosure.



FIG. 15 is an illustrative mockup of a user interface for an electrical system according to illustrative embodiments.



FIG. 16 illustrates a photovoltaic power device according to various aspects of the present disclosure.





DETAILED DESCRIPTION

In the following description of various illustrative embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments in which aspects of the disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made, without departing from the scope of the present disclosure.


Reference is now made to FIG. 1A, which shows a photovoltaic (PV) system according to illustrative embodiments. PV system 100 may comprise a plurality of PV strings 104 coupled in parallel between a ground bus and a power bus. Each of PV strings 104 may comprise a plurality of serially-connected PV generators 101 and a plurality of safety switches 102. PV generators 101 may comprise one or more photovoltaic cells(s), module(s), panel(s) or shingle(s). In some embodiments, PV generators 101 may be replaced by direct current (DC) batteries or alternative direct current or alternating current (AC) power sources.


In the illustrative embodiment of FIG. 1A, a safety switch 102 is disposed between each pair of PV generators 101. In some embodiments (e.g. the embodiment shown in FIG. 2) a safety switch 102 may be disposed between groups of more than one serially-connected PV generators. Safety switch 102 may comprise a control device and a communication device, and may be operated to disconnect adjacent PV generators when receiving (e.g. via the communication device) a command to disconnect PV generators.


In some embodiments, the power and ground buses may be input to system power device 110. In some embodiments, system power device 110 may include a DC/AC inverter and may output alternating current (AC) power to a power grid, home or other destinations. In some embodiments, system power device 110 may comprise a combiner box, transformer and/or safety disconnect circuit. For example, system power device 110 may comprise a DC combiner box for receiving DC power from a plurality of PV strings 104 and outputting the combined DC power. In some embodiments, system power device 110 may include a fuse coupled to each string 104 for overcurrent protection, and/or one or more disconnect switches for disconnecting one or more PV strings 104.


In some embodiments, system power device 110 may include or be coupled to a control device and/or a communication device for controlling or communicating with safety switches 102. For example, system power device 110 may comprise a control device such as a microprocessor, Digital Signal Processor (DSP) and/or a Field Programmable Gate Array (FPGA) configured to control the operation of system power device 110. In some embodiments, system power device 110 may comprise multiple interacting control devices. System power device 110 may further comprise a communication device (e.g. a Power Line Communication circuit and/or a wireless transceiver) configured to communicate with linked communication devices included in safety switches 102. In some embodiments, system power device 110 may comprise both a control device and a communication device, the control device configured to determine desirable modes of operation for PV power devices (e.g. power devices 103), and the communication device configured to transmit operational commands and receive reports from communication devices included in the PV power devices.


System power device 110 may be coupled to any number of other devices and/or systems such as PV systems 100 (e.g., various discrete and/or interconnected devices such as disconnect(s), PV cell(s)/array(s), inverter(s), micro inverter(s), PV power device(s), safety device(s), meter(s), breaker(s), AC main(s), junction box(es), camera etc.), network(s)/Intranet/Internet, computing devices, smart phone devices, tablet devices, camera, one or more servers which may include data bases and/or work stations. System power device 110 may be configured for controlling the operation of components within PV system 100 and/or for controlling the interactions with other elements coupled to PV system 100.


In some embodiments, the power and ground buses may be further coupled to energy storage devices such as batteries, flywheels or other energy storage devices.


Safety regulations may define a maximum allowable voltage between the ground bus and any other voltage point in PV system 100, during both regular operating conditions and during potentially unsafe conditions. Similarly, safety regulations may define a maximum allowable voltage between any two voltage points in PV system 100. In some scenarios, an unsafe condition in PV system 100 may require disconnecting or short-circuiting one or more of the PV generators 101 in a PV string 104.


As a numerical example, an illustrative PV string 104 may comprise 20 serially-connected PV generators 101. Each PV generator 101 may have an open-circuit voltage of 45V. In case of an unsafe condition (e.g. a fire, detection of an arc or a dangerous short-circuit somewhere in PV system 100), safety regulations may require that system power device 110 cease drawing power from PV string 104, resulting in an open-circuit voltage of 45·20=900V across PV string 104. Safety regulations may further require that in case of an unsafe condition, the maximum voltage between any two points in PV system 100 may not exceed, for example, 80V. To comply with safety regulations, safety switches 102 may disconnect the plurality of PV generators 101 comprising PV string 104, resulting in PV generators 101 (excluding the PV generators 101 coupled to the ground and power buses) having a “floating” voltage with regard to ground, and a voltage drop of about 45V between the two terminals of each PV generator.


In some embodiments, system power device 110 may respond to a potentially unsafe system condition by limiting the voltage across each PV string 104. For example, system power device 110 may comprise an inverter configured to regulate a voltage of about 60V across each PV string 104 in case of a potentially unsafe condition.


Reference is now made to FIG. 1B, which illustrates a single PV string 104 coupled to system power device 110. In case of a potentially unsafe system condition, safety switches 102 may disconnect (i.e. each switch may move to the OFF state), and system power device 110 may apply a voltage to PV string 104. In the numerical example of FIG. 1B, each PV generator is assumed to be operating at an open-circuit voltage of 45V, and system power device 110 may apply a voltage of 60V across PV string 104. Safety switches 102, in accordance with embodiments disclosed herein, may be configured to provide and withstand a voltage drop of opposite polarity to the PV generators. In the numerical example of FIG. 1B, PV string 104 comprises twenty PV generators 101 and twenty safety switches 102. Each PV generator has a positive voltage drop of 45V, and each safety switch 102 has a negative voltage drop of 42V, providing a string voltage of (45−42)·20=60V. It may be noted that the voltage drop between each pair of locations in the PV system does not exceed 60V.


It is to be noted that the ratio of photovoltaic generators to safety switches, and the location of safety switches, may change depending on electrical parameters of photovoltaic generators and safety regulations. For example, if low-voltage PV generators (e.g. PV generators having an open-circuit voltage of 10V) are used as PV generators 101, and safety regulations allow a maximum point-to-point voltage of 55V in case of a potentially unsafe condition, a single safety switch 102 may be disposed per five PV generators 101. If safety regulations are changed to allow a maximum point-to-point voltage of 45V in case of a potentially unsafe condition, additional safety switches 102 may be added.


Safety switches 102 may comprise a resistor for regulating current through safety switches 102 when the switches are in the OFF state. For example, each of safety switches 102 may comprise a shunt resistor (e.g. resistor R31 of FIG. 3) having a resistance of about 1 kΩ, to regulate the OFF-state current to be about 42V/1 kΩ=42 mA. In general, the value of a shunt resistor may vary according to expected OFF-state voltages and currents, and may be between 10Ω and 5 kΩ.


In some embodiments, the values may vary depending on the regulated voltage provided by system power device 110 and the open-circuit voltage of each PV generator 101. For example, string 104 may comprise ten PV generators, and ten safety switches, each PV generator having an open-circuit voltage of 30V, and system power device 110 may provide a voltage of 50V across PV string 104. In that case, each safety switch may be operated to have a negative voltage of 25V, providing the string voltage of (30−25)·10=50V.


Reference is now made to FIG. 2, which shows a photovoltaic string according to illustrative embodiments. PV string 204 may comprise a plurality of PV generators 101 and safety switches 102. PV generators 101 may be similar to or the same as PV generators 101 of FIG. 1A, and safety switches 102 may be similar to or the same as safety switches 102 of FIG. 1. Safety switches 102 may be installed between each pair of PV generators 101, such that each PV generator 101 (excluding the PV generators connected to the ground and power buses) has a first terminal connected to a different PV generator 101 and a second terminal connected to a safety switch 102. The arrangement illustrated in FIG. 2 may be appropriate in systems where the maximum allowed safe voltage is greater than or equal to double the open-circuit voltage of a single PV generator 101. For example, if each PV generator 101 has an open-circuit voltage of 45V and the maximum allowed safe voltage is 100V, or each PV generator 101 has an open-circuit voltage of 30V and the maximum allowed safe voltage is 80V, the arrangement illustrated in FIG. 2 may reduce costs by reducing the required number of safety switches while still complying with safety regulations.


Reference is now made to FIG. 3, which illustrates a safety switch according to illustrative embodiment. Safety switch 302 may be used as safety switch 102 in FIG. 1A and FIG. 2. Safety switch may comprise male connector 306 and female connector 307, male connector 306 designed to fit a female connector features by a PV generator (e.g. PV generator 101) and female connector 307 designed to fit a male connector features by a PV generator. Conductor 308 may provide an electrical connection to male connector 306, and conductor 309 may provide an electrical connection to female connector 307. In some embodiments, various interconnecting connectors may be used. Safety switch 302 may include a switching element disposed between conductor 308 and conductor 309. In the illustrative embodiment of FIG. 3, transistor Q1 may be used as a switching element disposed between conductor 308 and conductor 309. Safety switch 302 may further include controller 303 for controlling the operation of transistor Q1. Transistor Q1 may be realized using various electrical devices, such as Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET), Insulated Gate Bipolar Junction transistor (IGBT), Bipolar Junction Transistor (BJT), Junction gate field-effect transistor (HET) or other appropriate devices. In some embodiments, transistor Q1 may be realized using multiple transistors connected in parallel, to improve electrical performance (e.g. to reduce losses). In the illustrative embodiments disclosed herein, transistor Q1 and similar switching elements will be assumed to be MOSFETs comprising a body diode. Diode D31 may be the body diode of transistor Q1. In some embodiments (e.g. in case Q1 is a MOSFET comprising a low-quality body diode) a separate diode may be coupled in parallel to diode D31 to function as an alternative bypass diode. Diode D31 may be oriented to prevent forward bias of diode D31 when the transistor is in the OFF position. Resistor R31 may be disposed across the terminals of transistor Q1. Resistor R31 may be sized to regulate the OFF-state resistance across the terminals of transistor Q1. For example, if the anticipated OFF-state voltage drop across transistor Q1 is 40V, and the desired OFF-state leakage current through safety switch 302 is 20 mA, R31 may be about 40V/20 mA=2000Ω. In some embodiments, R31 might not be featured (e.g. if there is no need or desire to regulate the OFF-state leakage current).


Safety switch 302 may comprise communication device 305 for communicating with other devices and controller 303 for controlling the operation (e.g. turning ON and OFF) of transistor Q1. Controller 303 may be an analog circuit, microprocessor, Digital Signal Processor (DSP), Application-Specific Integrated Circuit (ASIC) and/or a Field Programmable Gate Array (FPGA). In some embodiments, communication device 305 may receive a command from an external device to change the state of transistor Q1, and communication device 305 may convey the command to controller 303. Communication device 305 may communicate with external devices using various technologies such as Power Line Communications (PLC), acoustic communications transmitted over conductors 308 and 309, and wireless communication protocols (e.g. Wi-Fi™, ZigBee™, Bluetooth™, cellular communications, etc.).


Auxiliary power circuit 304 may be coupled to conductors 308 and/or 309, and may provide power to controller 303, sensor/sensor interface(s) 310 and/or communication device 305. Auxiliary power circuit 304 may be variously realized, with illustrative embodiments disclosed herein (e.g. in FIGS. 7A-7C, 7E, 7H). In some embodiments, two or more of controller 303, auxiliary power circuit 304 and communication device 305 may be integrated as a single unit. For example, in FIG. 7C, communication device 305 may receive a PLC signal which also provides power to controller 303.


In some embodiments, safety switch 302 may further comprise measurement sensor(s) and/or sensor interface(s) 310 for measuring parameters such as current, voltage and/or temperature. For example, sensor/sensor interface(s) 310 may include a current sensor for measuring the current through conductor 308 or conductor 309, and/or a voltage sensor for measuring the voltage drop across transistor Q1, and/or a temperature sensor for measuring the temperature at or near male connector 306, female connector 307 and/or transistor Q1. In some embodiments, sensor(s)/sensor interface(s) 310 may provide measurements to controller 303, with controller 303 configured to take action (e.g. change the state of transistor Q1) according to the measurements received. For example, controller 303 may be configured to set the state of Q1 to OFF if a high current is measured through conductor 309, or if a high temperature is measured near male connector 306. In some embodiments, controller 303 may provide the measurements obtained from sensor(s)/sensor interface(s) 310 to communication device 305, with communication device 305 configured to transmit the measurements to a system controller or data-collection device (not explicitly depicted), such as system power device 110 of FIG. 1. In some embodiments, sensor(s)/sensor interface(s) 310 may provide measurements directly to communication device 305, bypassing controller 303.


It should be noted that while a preferred embodiment of the disclosure includes providing transistor Q1 for safety features (e.g. the ability to disconnect two PV generators from each other), other embodiments included herein might not include transistor Q1. Sensor/sensor interface(s) 310, auxiliary power circuit 304 and communication device 305 may be combined to provide measurement and data-reporting features even without the safety advantages (e.g. ability to disconnect a photovoltaic generator) provided by safety transistor Q1.


Reference is now made to FIGS. 4A-4B, which illustrates the connectivity of a safety switch according to illustrative embodiments. Safety switch 402 may be similar to or the same as safety switch 302 of FIG. 3. Safety switch 402 may comprise male connector 406 for connecting to connector 403, with connector 403 connected to conductor 404 which carries power generated by a first PV generator (not explicitly depicted). Similarly, safety switch 402 may comprise female connector 407 for connecting to connector 408, with connector 408 connected to conductor 409 which carries power generated by a second PV generator (not explicitly depicted). In some conventional photovoltaic systems, the first and second photovoltaic generators may be serially connected by connecting connector 403 to connector 408. Safety switch 402 may be designed to seamlessly connect to connector 403 on one end and to connector 408 on the other end, adding safety-disconnect, control and/or monitoring features to a photovoltaic installation, either during construction of the installation or as a retrofit feature at a later time.



FIG. 4A shows safety switch 402 along with connectors 408 and 403 prior to connecting, according to illustrative embodiments, while FIG. 4B shows connection point 400 comprising safety switch 402 connected to connectors 408 and 403 (the component boundaries indicated by dashed lines).


In some embodiments, advantages may be obtained by integrating safety switch 402 into a photovoltaic generator connector or a PV generator junction box. For example, safety switch 402 may be built into connector 403 or connector 408 of a PV generator, providing safety switching functionality in a PV generator without necessitating additional components and connections. Integrating safety switches in PV generator connectors or junction boxes may reduce costs (e.g. by not requiring a separate enclosure and connectors for the safety switch) and simplify installation (since no additional components need be connected).


Reference is now made to FIG. 5A, which shows part of a photovoltaic (PV) string featuring a safety switch according to illustrative embodiments. PV string 500 may be part of a string of PV generators 101 (e.g. part of a string similar to or the same as PV string 104 of FIG. 1A, comprising generators similar to or the same as PV generators 101 of FIG. 1A and FIG. 2) connected to each other via connection points 400. Connection points 400 may be similar to or the same as connection point 400 of FIG. 4A and FIG. 4B, and may include a safety switch (e.g. safety switch 402) coupled in between two PV generator connectors (e.g. connectors 403 and 408). Each PV generator 101 may comprise conductors 404 and 409 for carrying photovoltaic power from PV cells comprising the PV generator, and connectors 403 and 408 for connecting to safety switch 402.


Reference is now made to FIG. 5B, which illustrates a PV generator comprising a safety switch according to illustrative embodiments. PV generator 101 may comprise junction box 511 and conductors 404 and 409. FIG. 5B may illustrate the back side on a PV generator, with PV cells mounted on the front side of the PV generator (not explicitly shown). In some embodiments, PV cells may be mounted on both sides of the PV generator, or the back side of the PV generator may be constructed to allow solar irradiance to reach the PV cells from both sides of the PV generator. Junction box 511 may comprise electrical connections 512 and 513 for collecting photovoltaic power from the PV cells, and providing the photovoltaic power via conductors 409 and 404.


In illustrative embodiments disclosed herein, safety switch 502 may be disposed between conductor 404 and electrical connection 512. Safety switch 502 may be functionally similar or the same as safety switch 302 of FIG. 3, without requiring the physical enclosure and connectors 306 and 307. Transistor Q1, diode D31, sensor(s)/sensor interfaces 510, controller 503, communication device 505 and/or auxiliary power circuit 504 may be integrated in junction box 511. In some embodiments, a resistor may be coupled across the terminals of transistor Q1 (similarly to resistor R31 of FIG. 3) for regulating the OFF-state current through safety switch 502. In some embodiments, auxiliary power circuit 504 may be coupled between conductors 404 and 409 for receiving photovoltaic power generated by PV generator 101, and may provide power to controller 503, communication device 505 and/or sensor(s)/sensor interfaces 510.


In some embodiments, junction box 511 may further include an integrated PV power device similar to or the same as PV power device 903 of FIG. 9. PV power device 903 may be coupled between conductors 404 and 409 and electrical connections 512 and 513. For example, power converter 900 of FIG. 9 may receive power from electrical connections 512 and 513, and may output power to conductors 404 and 409. Safety switch 502 may be disposed between PV power device 903 and electrical connection 512, or, in some embodiments, may be integrated into PV power device 903.


Reference is now made to FIG. 6, which shows a method for operating a safety switch (e.g. safety switch 102 of FIG. 1A, safety switch 302 of FIG. 3). Method 600 may be carried out by a controller similar to or the same as controller 303 of FIG. 3. At step 601, the initial condition may be that the switch is in the ON state, allowing current to flow between the two conductors coupled to the switch (e.g. conductors 404 and 409 of FIG. 5A). During step 601, an auxiliary power circuit coupled to the safety switch may provide power to the controller and/or a gate driver for maintaining the switch in the ON state (for example, some types of transistors implementing safety switches may be “normally OFF”, in which case the auxiliary power circuit may power a voltage signal applied to a transistor gate node to maintain the ON state). At step 602, the controller may receive a command to turn the switch to the OFF state. In some embodiments, the command may be received via a communication device (e.g. communication device 305) in communication with a system control device. In some embodiments, at step 602, instead of receiving a command to turn the switch to the OFF state, the controller may independently determine that an unsafe condition may be present (e.g. due to sensor reporting high current or temperature, or a sensor detecting a rapid change in current flowing through the switch, or based on comparing two electrical parameters and detecting a substantial mismatch) and determine that the switch should be turned to the OFF state. In some embodiments, a determination that the switch should be turned to the OFF state may be made in response to not receiving a signal. For example, in some illustrative systems, a system control device continuously provides a “keep alive” signal to associated safety switches and PV power devices. Not receiving a “keep alive” signal may indicate a potentially unsafe condition and may cause a determination that the switch should be turned to the OFF state.


Still referring to FIG. 6, at step 603, the controller turns the switch to the OFF state. In some embodiments (e.g. if the switch is a “normally ON” transistor), turning the switch to the OFF state may include applying a voltage to a transistor terminal, and in some embodiments (e.g. if the switch is a “normally OFF” transistor), turning the switch to the OFF state may include ceasing to apply a voltage to a transistor terminal. At step 604, the controller waits to receive a command to turn the switch back to the ON position. Generally, once an unsafe condition has been resolved, a system control device may provide a signal indicating that it is safe to reconnect PV generators and to resume providing power. In some embodiments, at step 604 the controller may independently determine that it is safe to return the switch to the ON position (e.g., due to a sensor reporting that the unsafe condition is no longer present).


At step 605, the controller determines if a command (or, in some embodiments, a self-determination) to turn the switch to the ON state has been received. If no such command (or determination) has been received, the controller carrying out method 600 returns to step 604. If a command (or, in some embodiments, a self-determination) to turn the switch to the ON state has been received, the controller carrying out method 600 proceeds to step 606, turns the switch back to the ON state (e.g. by applying a voltage to a transistor node, or removing an applied voltage from a transistor node) and returns to step 601.


An auxiliary circuit for providing continuous power supply to a safety switch according to embodiments disclosed herein may be variously implemented. Auxiliary power circuits may provide power for operating a safety switch under varying conditions and at various times. For example, auxiliary power circuits may provide operational power to a safety switch at three times: at initial startup (i.e. when the system comprising a safety switch is first deployed), at steady-state ON time (i.e. when the system is up and running, during normal operating conditions, when the switch is ON), and at steady-state OFF time (i.e. when the system is up and running, during a potentially unsafe condition, when the switch is OFF).


Reference is now made to FIG. 7A, which illustrates a safety switch 702a comprising an auxiliary power circuit according to illustrative embodiments. Safety switch 702a may comprise conductors 708 and 709, transistor Q1, controller 710 and auxiliary power circuit 704. Safety switch 702a may further comprise a communication device similar to or the same as communication device 305 of FIG. 3 (not explicitly depicted, to reduce visual noise). Transistor Q1 may be similar to or the same as transistor Q1 described with regard to FIG. 3, resistor R31 may be the same as R31 of FIG. 3, diode D31 may be the same as D31 of FIG. 3, controller 710 may be similar to or the same as controller 303 of FIG. 3, and conductors 708 and 709 may be similar to or the same as conductors 308 and 309, respectively, of FIG. 3.


Auxiliary power circuit 704 may be coupled in parallel to transistor Q1. A first input of auxiliary power circuit 704 may be coupled to conductor 708, and a second input of auxiliary power circuit 704 may be coupled to conductor 709.


In some embodiments, auxiliary power circuit 704 may comprise analog circuitry configured to provide an appropriate control signal to transistor Q1. In some embodiments, auxiliary power circuit 704 may provide power to controller 710, with controller 710 configured to provide a control signal to transistor Q1.


Reference is now made to FIG. 7B, which illustrates a safety switch 702b comprising an auxiliary power circuit according to illustrative embodiments. Safety switch 702b may comprise conductors 708 and 709, transistor Q1, controller 710 and auxiliary power circuit 714. Safety switch 702b may further comprise a communication device similar to or the same as communication device 305 of FIG. 3 (not explicitly depicted, to reduce visual noise). Transistor Q1 may be similar to or the same as transistor Q1 described with regard to FIG. 3, resistor R31 may be the same as R31 of FIG. 3, diode D31 may be the same as D31 of FIG. 3, controller 710 may be similar to or the same as controller 303 of FIG. 3, and conductors 708 and 709 may be similar to or the same as conductors 308 and 309, respectively, of FIG. 3.


Auxiliary power circuit 714 may be coupled in series with transistor Q1. A first input of auxiliary power circuit 714 may be coupled to conductor 708, and a second input of auxiliary power circuit 704a may be coupled to transistor Q1.


Reference is now made to FIG. 7C, which depicts an auxiliary power circuit according to illustrative embodiments. Auxiliary power circuit 704a may be used as auxiliary power circuit 704 of FIG. 7A. A first input to auxiliary power circuit 704a may be coupled to the source terminal of a transistor (e.g. Q1 of FIG. 7A), and a second input to auxiliary power circuit 704a may be coupled to the drain terminal of a transistor. An output of auxiliary power circuit 704a may be coupled to the gate terminal of a transistor. Auxiliary power circuit 704a may comprise Ultra Low Voltage Direct-Current to Direct Current (DC/DC) converter (ULVC) 720. Controller 710 may be an analog or digital controller, and may be similar to controller 303 of FIG. 3. Controller 710 may be integrated with or separate from auxiliary power circuit 304a. In some embodiments, an output of ULVC 720 may be coupled to an input of controller 710, with controller 710 applying a voltage to the gate of a transistor. ULVC 720 may be configured to receive a very low voltage (e.g. tens or hundreds of millivolts) at its input, and output a substantially larger voltage (e.g. several volts). ULVC 720 may be variously implemented. In some embodiments, ULVC may comprise an oscillator charge pump and/or several conversion stages. Variations of illustrative circuits found in “0.18-V Input Charge Pump with Forward Body Biasing in Startup Circuit using 65 nm CMOS” (P. H. Chen et. al., ©IEEE 2010), “Low voltage integrated charge pump circuits for energy harvesting applications” (W.P.M. Randhika Pathirana, 2014) may be used as or as part of ULVC 720.


Reference is now made to FIG. 7D, which shows a timing diagram for operating auxiliary power circuit 704a of FIG. 7C according to an illustrative embodiment. As a numerical example, auxiliary power circuit 704a may be coupled as described above to the terminals of a MOSFET. ULVC 720 may be coupled between the source (Vs) and drain (Vd) terminals of the MOSFET. When the MOSFET is in the OFF position, the voltage drop between terminals Vs and Vd may be substantial, e.g. close to the open-circuit voltage of a PV generator. When the MOSFET is in the OFF position, ULVC 720 may be bypassed or disabled, with the substantial voltage drop between terminals Vs and Vd processed to provide power to controller 710. Controller 710 may hold the voltage between the MOSFET gate and source terminals to a low value, (e.g. 0V or 1V, under a minimum source-gate threshold of 2V), maintaining the MOSFET in the OFF position.


Still referring to FIG. 7D, controller 710 may receive a command via a communication circuit (not explicitly depicted) to turn the MOSFET to the ON state. Controller 710 may increase the gate-to-source voltage to about 5V. In illustrative PV systems, the current flowing through a PV string at certain points of operation may be about 10 A. At a gate-to-source voltage of 5V and drain-to-source current of 10 A, the drain-to-source voltage may be about 90 mV. ULVC 720 may boost the drain-to-source voltage of 90 mV to a voltage of several volts or more (e.g. 5V, 10V, 12V or 20V) for powering controller 710. Controller 710 may continuously hold the gate-to-source voltage at about 5V until a command is received to turn the MOSFET OFF. In some embodiments, the MOSFET is turned OFF at the end of every day, i.e. when PV generators cease producing significant power due to nightfall. When it is time to turn the MOSFET OFF, controller may decrease the gate-to-source voltage back to about 0V or 1V.


Operating auxiliary power circuit 704a according to the illustrative timing diagrams of FIG. 7D may provide several advantages. For example, the steady-state power consumed by safety switch 702a using auxiliary power circuit 704a may be low, in this illustrative example, 90 mV*10 A=900 mW when in the ON position, and 30V*10 uA=0.3 mW when in the OFF position. Furthermore, the steady-state voltage across safety switch 702a may be substantially constant when in the ON position (e.g. 90 mV).


Reference is now made to FIG. 7E, which depicts an auxiliary power circuit according to illustrative embodiments. Auxiliary power circuit 704b may be used as auxiliary power circuit 704 of FIG. 7A. A first input to auxiliary power circuit 704b may be coupled to the source terminal of a transistor (e.g. Q1 of FIG. 7A), and a second input to auxiliary power circuit 704b may be coupled to the drain terminal of a transistor. An output of auxiliary power circuit 704b may be coupled to the gate terminal of a transistor. Auxiliary power circuit 704b may comprise capacitor C2, diode D2, diode Z2, transistor Q70 and DC-to-DC converter 721. In some embodiments, capacitor C2 may be replaced by a different charge device (e.g. a battery). Controller 710 may be analog or digital, and may be similar to controller 303 of FIG. 3. Controller 710 may be integrated with or separate from auxiliary power circuit 304a. Diode Z2 may be a Zener diode designed to limit and hold a reverse-bias voltage to a predetermined value. In this illustrative embodiment, diode Z2 is assumed to have a reverse-bias voltage of 4V. A first input to auxiliary power circuit 704b may be coupled to the source terminal of a transistor (e.g. Q1 of FIG. 7A), and a second input to auxiliary power circuit 704b may be coupled to the drain terminal of a transistor (e.g. Q1). An output of auxiliary power circuit 704b may be coupled to the gate terminal of a transistor (e.g. Q1). In some embodiments, an output of converter 721 may be coupled to an input of controller 710, with controller 710 applying a voltage to the gate of a transistor. Converter 721 may be configured to receive a voltage of several volts (e.g. between 3V-10V) at its input, and output a voltage for powering controller 710 or controlling the gate voltage of a transistor gate terminal.


The anode of diode D2 may be coupled to a transistor drain terminal (Vd), and the cathode of diode D2 may be coupled to the cathode of diode Z2 and a first terminal of capacitor C2. The anode of diode Z2 may be coupled to a drain terminal of transistor Q70, with the source terminal of transistor Q70 coupled to a transistor source terminal (Vs) and to a second terminal of capacitor C2. The gate voltage of transistor Q70 may be controlled by controller 710 (the control line is not explicitly depicted). The inputs of converter 721 may be coupled in parallel with capacitor C2.


Auxiliary power circuits 704a-b and 714 may be operated to provide a voltage drop across the terminals of safety switch 702 according to safety and effective system operation requirements. The drain-to-source voltage may be desired to be low during normal system operation, when safety switch 702 is in the “steady ON state”, i.e. when the switch provides a low-impedance path for photovoltaic power to flow through a PV string. When safety switch 702 is in a “steady OFF state”, safety switch 702 may be required to provide a drain-to-source voltage of about an open-circuit voltage of a PV generator without providing a low-impedance path for current flow.


Referring back to FIG. 7E, controller 710 may operate transistor Q70 and transistor Q1 of FIG. 7A to provide a voltage drop across the terminals of safety switch 702 according to safety and effective system operation requirements. In the “steady OFF state”, transistors Q1 and Q70 may be held in the OFF state. In the “steady ON state” transistor Q1 may be ON, providing a low impedance path between the drain and source terminals, and transistor Q70 may be either ON or OFF. It may be desirable during the “steady ON state” to temporarily move Q1 to the “temporarily OFF state” for a short period of time, to allow capacitor C2 to recharge and continue providing operational power to controller 710. In the “temporarily OFF” state, transistor Q1 may be OFF and transistor Q70 may be ON. Diode Z2 may provide a limited charging voltage (e.g. 4V) across the terminals of capacitor C2, with capacitor C2 providing a current path for the current of a PV string.


Reference is now made to FIG. 7F, which shows a timing diagram for operating auxiliary power circuit 704b of FIG. 7E according to an illustrative embodiment. As a numerical example, auxiliary power circuit 704a may be coupled as described above to the terminals of a MOSFET. Converter 721 may be coupled between the source (Vs) and drain (Vd) terminals of the MOSFET. When the MOSFET is in the steady-OFF-state, the voltage drop between terminals Vs and Vd may be substantial, e.g. close to the open-circuit voltage of a PV generator. When the MOSFET is in the steady-OFF-state, converter 721 may be bypassed or disabled, with the substantial voltage drop between terminals Vs and Vd processed to provide power to controller 710. In some embodiments, when the MOSFET is in the steady-OFF-state, converter 721 may process the drain-to-source voltage to provide power to controller 710. Controller 710 may hold the voltage between the MOSFET gate terminal and source terminals to a low value, (e.g. 0V or 1V, under a minimum source-gate threshold of 2V), maintaining the MOSFET in the OFF position. When the MOSFET is in the steady-OFF-state, capacitor C2 may be charged to about the voltage between the drain and source terminals. In some embodiments, diode Z2 may be disconnected (e.g. by turning Q70 to the OFF state), to increase the drain-to-source voltage when the MOSFET is in the steady-OFF-state. In some embodiments, having a large drain-to-source voltage (e.g. about the same voltage as a PV generator open-circuit voltage) when the MOSFET is in the steady-OFF-state increases system safety by decreasing the total voltage across a PV generator and an accompanying safety switch.


Still referring to FIG. 7F, controller 710 may receive a command via a communication circuit (not explicitly depicted) to turn the MOSFET to the ON state. Controller 710 may increase the gate-to-source voltage of Q1 to about 6V. In illustrative PV systems, the current flowing through a PV string at certain points of operation may be about 10 A. At a gate-to-source voltage of 6V and drain-to-source current of 10 A, the drain-to-source voltage may be about 65 mV. Diode D2 might not be forward biased (e.g., if diode has a forward voltage of 0.6V, a drain-to-source voltage of 65 mV might not forward-bias diode D2), disconnecting capacitor C2 from the drain terminal. Capacitor C2 may slowly discharge by providing power to converter 721. Converter 721 may include circuitry (e.g. analog comparators) to monitor the voltage across capacitor C2, and may respond to the voltage across capacitor C2 falling below a first threshold. If the voltage across capacitor falls below the first threshold, controller 710 may reduce the gate-to-source voltage to about 0V or 1V, resulting in the MOSFET moving to the OFF state. Diode D2 may then become forward-biased, and diode Z2 may limit the drain-to-source voltage to a second threshold. Transistor Q70 may be held in the ON state, allowing diode Z2 to regulate the drain-to-source voltage. Capacitor C2 may then be rapidly charged back to about the voltage level of the second threshold, with controller 710 configured to increase the gate-to-source voltage back to 6V when capacitor C2 reaches the second threshold voltage. This iterative process may repeat itself while the MOSFET is operating in a “steady ON state” mode. In the illustrative embodiment illustrated in FIG. 7F, the first threshold is 2V, and the second threshold is 4V. The voltage across capacitor C2 varies between the two levels, with the gate-to-source voltage alternating between about 0V and about 6V, and the drain-to-source voltage alternating between 4V and 65 mV.


Operating auxiliary power circuit 704b according to the illustrative timing diagrams of FIG. 7F may provide several advantages. For example, a converter designed to receive an input voltage between 2-30V (e.g. converter 721) may be cheap, efficient and easy to implement. In some embodiments, additional zener diodes may be coupled in series with diode Z2, increasing the first voltages. Increasing the first threshold voltage (e.g. to 10V, 15V or 20V, respectively) may provide advantages such as decreasing the frequency of charge-discharge cycles over capacitor C2, and may provide a voltage to converter 721 which may be easier to process.


It is to be understood that illustrative operating points comprising MOSFET drain-to-source voltages of 65 mV and 90 mV, MOSFET gate-to-source voltages of 5V and 6V, and MOSFET drain-to-source currents of 10A are used for illustrative purposes and are not intended to be limiting of operating points used in conjunction with illustrative embodiments disclosed herein. In some embodiments, multiple MOSFET transistors may be parallel-coupled to reduce ON-state resistance, thereby reducing the drain-to-source voltage across MOSFETs when in the ON state. For example, coupling five MOSFETs in parallel may reduce a drain-to-source ON-state voltage from 65 mV to 15 mV.


Reference is now made to FIG. 7G, which depicts an auxiliary power circuit according to illustrative embodiments. Auxiliary power circuit 704c may be used as auxiliary power circuit 704 of FIG. 7A. Auxiliary power circuit 704c may be similar to auxiliary power circuit 704b, with a modification in that the anode of diode Z2 is coupled to the drain terminal of transistor Q1 (Vs), and that the drain terminal of transistor Q70 is also coupled to the source terminal of transistor Q1 (Vs). When safety switch 702 is in the “steady ON state”, transistors Q1 and Q70 may be ON, providing a low impedance path for PV string current. When safety switch 702 is in the “steady OFF state”, transistors Q1 and Q70 may be OFF, preventing a low impedance path for a PV string current, and providing a substantial voltage drop across the terminals of safety switch 702 (e.g. about the same voltage or a slightly lower voltage than a PV-generator open-circuit voltage). When safety switch 702 is in the “temporarily OFF state”, transistor Q1 may be OFF and transistor Q70 may be ON, diode Z2 providing a charging voltage to capacitor C2 and Q70 providing a low-impedance current path for a PV string current.


Reference is now made to FIG. 7H, which illustrates a safety switch comprising an auxiliary power circuit according to illustrative embodiments. Safety switch 702c may comprise conductors 708 and 709, transistor Q1, controller 710 and auxiliary power circuit 715. Auxiliary power circuit 715 may be used auxiliary power circuit 714 of FIG. 7B. In this illustrative embodiment, auxiliary power circuit 715 may double as a power line communication (PLC) device. Inductor L4, capacitor C3 and resistor R may be coupled in parallel, with a first node of inductor L4 coupled to conductor 708, and a second node of inductor L4 coupled to the source terminal of transistor Q1. The values of inductor L4 and capacitor C3 may be selected to resonate at a resonant frequency (e.g. 60 kHz).


Still referring to FIG. 7H, an external device (e.g. system power device 110 of FIG. 1) may transmit a PLC high-frequency alternating current signal (e.g. using frequency shift keying, amplitude modulation or other modulation schemes) over conductor 708. The PLC signal may induce a high-frequency alternating-current voltage drop across the terminals of resistor R, with diode D7 providing a voltage to controller 710 when the voltage across resistor R is positive (i.e. the voltage at conductor 708 is higher than the voltage at the source terminal of transistor Q1). In some embodiments, diode D7 may be replaced by a “full bridge” of diodes providing a voltage to controller 710 when the voltage across R is nonzero (either positive or negative). In some embodiments, the PLC-induced voltage across resistor R may serve a dual purpose. The PLC signal may provide operational information to controller 710 by varying the voltage drop across resistor R. Additionally, in some embodiments, the PLC signal may provide operational power to controller 710. Controller 710 may draw power from the resonant circuit comprising resistor R, capacitor C3 and inductor L4, and use the drawn power to set the state of transistor Q1.


Implementing auxiliary power circuit 715 as illustrated in FIG. 7H may provide certain advantages. For example, auxiliary power circuit 715 of FIG. 7H may double as a communication device, reducing the total component count in safety switch 702c. Furthermore, integrating control and power signals may reduce the complexity required to program controller 710. For example, an ‘ON’ signal may be broadcast by a system controller at a high power, and an ‘OFF’ signal may be broadcast by a system controller at low power. Auxiliary power circuit 715 may directly apply the converted power signal to the gate of transistor Q1, wherein the power of the ‘ON’ signal may be sufficient to hold Q1 in the ON state, and the power of the ‘OFF’ signal might not be sufficient to hold Q1 in the ON state.


Elements of auxiliary power circuits 704a, 704b and 715 may be variously combined. For example, auxiliary power circuit 714 of FIG. 7B may be added to safety switch 702a of FIG. 7A, auxiliary power circuit 714 functioning as a PLC circuit as well as being configured to provide power to controller 710 in case of a malfunction in auxiliary power circuit 704. In some embodiments, auxiliary power circuit 714 may provide initial power to controller 710 at system setup, with auxiliary power circuit 704 providing power to controller 710 during “steady state” operation.


Reference is now made to FIG. 7I, which illustrates part of a MOSFET datasheet according to an illustrative embodiment. Plot 770 may depict relationships between drain-to-source voltage and drain-to-source current through a MOSFET. Curve 771 may depict a current-voltage relationship when the gate-to-source voltage applied to a MOSFET is 5V. Curve 771 may depict a current-voltage relationship when the gate-to-source voltage applied to a MOSFET is 6V. Operating point A may indicate that when a gate-to-source voltage applied to a MOSFET is 6V and the drain-to-source current flowing through the MOSFET is 10 A, the drain-to-source voltage across the MOSFET is about 65 mV. This may correspond to a possible operating point for a MOSFET operated according to FIG. 7F. Operating point B may indicate that when a gate-to-source voltage applied to a MOSFET is 5V and the drain-to-source current flowing through the MOSFET is 10 A, the drain-to-source voltage across the MOSFET is about 90 mV. This may correspond to a possible operating point for a MOSFET operated according to FIG. 7D. As noted above, these operating points are illustrative only, and may adapted by connected multiple MOSFETs in parallel to obtain new operating points.


Reference is now made to FIG. 8, which shows a photovoltaic (PV) system according to illustrative embodiments. PV system 800 may comprise a plurality of PV strings 804 coupled in parallel between a ground bus and a power bus. Each of PV strings 804 may comprise a plurality of photovoltaic generators 801, a plurality of safety switches 802 and a plurality of PV power devices 803. PV generators 801 may be similar to or the same as PV generators 101 of FIG. 1A, and safety switches 802 may be similar to or the same as safety switch 102 of FIG. 1A, safety switch 302 of FIG. 3 and/or safety switches 702a-702c of FIGS. 7A-7C.


In some embodiments, the power and ground buses may be input to system power device 810. In some embodiments, system power device 810 may include a DC/AC inverter and may output alternating current (AC) power to a power grid, home or other destinations. In some embodiments, system power device 810 may comprise a combiner box, transformer and/or safety disconnect circuit. For example, system power device 810 may comprise a DC combiner box for receiving DC power from a plurality of PV strings 804 and outputting the combined DC power. In some embodiments, system power device 810 may include a fuse coupled to each PV string 804 for overcurrent protection, and/or one or more disconnect switches for disconnecting one or more PV strings 804. In some embodiments, system power device 810 may comprise a system controller (e.g. a Digital Signal Processor (DSP), Application-Specific Integrated Circuit (ASIC) and/or a Field Programmable Gate Array (FPGA)) for providing commands to and receiving data from PV power devices 803 and safety switches 802.


Each safety switch 802 may be coupled between a first output of a first PV generator and a second output of a second output generator, and each PV power device may have two input terminals: a first input terminal coupled to the second output of the first PV generator, and a second input terminal coupled to the first output of the second PV generator. In this “two-to-one” arrangement, each pair of PV generators 801 are effectively coupled in series, with the combined voltage and power of the two PV generators provided to the input of PV power device 803. Each safety switch 802 is disposed between the two PV generators, for disconnecting the pair of PV generators in case of a potentially unsafe condition.


Some conventional PV installations feature a similar arrangement, with each pair of PV generators 801 directly connected to each other without a safety switch disposed in between the generators. In case of an unsafe condition, a PV power device 803 may stop drawing power from the PV generators, resulting in an open-circuit voltage at the PV power device input terminals which is about double the open-circuit voltage of each PV power generator. This voltage may, in some systems, be as high as 80, 100 or even 120 volts, which may be higher than the allowed safe voltage defined by safety regulations.


By operating safety switches 802 according to apparatuses and methods disclosed herein, in case of an unsafe condition (e.g. detected by system power device 810, a PV power device 803 and/or a safety switch 802), one or more safety switches 802 may move to the OFF state, reducing the voltage drop between the input terminals of each PV power device 803 to about 40-60 volts, which may be an adequately safe voltage level.


Each PV power device 803 may receive power from two photovoltaic generators 801 coupled to the inputs of PV power device 803, and may provide the combined power of the two photovoltaic generators at the outputs of PV power device 803. The outputs of a plurality of PV power devices 803 may be coupled in series to form a PV string 804, with a plurality of PV strings 804 coupled in parallel to provide power to system power device 810.


While FIG. 8 illustrates an arrangement wherein two PV generators 801 are coupled in parallel to each PV power device 803, various arrangements can be easily obtained. For example, each PV power device receive power from three or more serially-connected PV generators 801, with safety switches 802 disposed between the PV generators. In some embodiments, some PV power devices 803 may receive power from a single PV generator 801, some PV power devices may receive power from two PV generators 801, and some PV power devices may receive power from more than two PV generators 801. In some embodiments, PV power devices 803 may receive power from multiple parallel-connected serial strings of PV generators 801, with safety switches 802 disposed in the serial strings. Embodiments disclosed herein include the aforementioned modifications, and other modifications which will be evident to one of ordinary skill in the art.


Reference is now made to FIG. 9, which illustrates circuitry which may be found in a power device such as power device 903, according to an illustrative embodiment. PV power device 903 may be similar to or the same as PV power device 803 of FIG. 8. In some embodiments, PV power device 903 may include power converter 900. Power converter 900 may comprise a direct current-direct current (DC/DC) converter such as a Buck, Boost, Buck/Boost, Buck+Boost, Cuk, Flyback and/or forward converter. In some embodiments, power converter 900 may comprise a direct current alternating current (DC/AC) converter (also known as an inverter), such a micro-inverter. Power converter 900 may have two input terminals and two output terminals, which may be the same as the input terminals and output terminals of PV power device 903. In some embodiments, PV power device 903 may include Maximum Power Point Tracking (MPPT) circuit 906, configured to extract increased power from a power source the power device is coupled to. In some embodiments, power converter 900 may include MPPT functionality. In some embodiments, MPPT circuit 906 may implement impedance matching algorithms to extract increased power from a power source the power device is coupled to Power device 903 may further comprise controller 905 such as a microprocessor, Digital Signal Processor (DSP), Application-Specific Integrated Circuit (ASIC) and/or a Field Programmable Gate Array (FPGA).


Still referring to FIG. 9, controller 905 may control and/or communicate with other elements of power device 903 over common bus 920. In some embodiments, power device 903 may include circuitry and/or sensors/sensor interfaces 904 configured to measure parameters directly or receive measured parameters from connected sensors and/or sensor interfaces 904 configured to measure parameters on or near the power source, such as the voltage and/or current output by the power source and/or the power output by the power source. In some embodiments the power source may be a PV generator comprising PV cells, and a sensor or sensor interface may directly measure or receive measurements of the irradiance received by the PV cells, and/or the temperature on or near the PV generator.


Still referring to FIG. 9, in some embodiments, power device 903 may include communication device 911, configured to transmit and/or receive data and/or commands from other devices. Communication device 911 may communicate using Power Line Communication (PLC) technology, or wireless technologies such as ZigBee™, Wi-Fi, cellular communication or other wireless methods. In some embodiments, power device 903 may include memory device 909, for logging measurements taken by sensor(s)/sensor interfaces 904 to store code, operational protocols or other operating information. Memory device 909 may be flash, Electrically Erasable Programmable Read-Only Memory (EEPROM), Random Access Memory (RAM), Solid State Devices (SSD) or other types of appropriate memory devices.


Still referring to FIG. 9, in some embodiments, PV power device 903 may include safety devices 907 (e.g. fuses, circuit breakers and Residual Current Detectors). Safety devices 907 may be passive or active. For example, safety devices 907 may comprise one or more passive fuses disposed within power device 903 and designed to melt when a certain current flows through it, disconnecting part of power device 903 to avoid damage. In some embodiments, safety devices 907 may comprise active disconnect switches, configured to receive commands from a controller (e.g. controller 905, or an external controller) to disconnect portions of power device 903, or configured to disconnect portions of power device 903 in response to a measurement measured by a sensor (e.g. a measurement measured or obtained by sensors/sensor interfaces 904). In some embodiments, power device 903 may comprise auxiliary power circuit 908, configured to receive power from a power source coupled to power device 903, and output power suitable for operating other circuitry components (e.g. controller 905, communication device 911, etc.). Communication, electrical coupling and/or data-sharing between the various components of power device 903 may be carried out over common bus 920.


Still referring to FIG. 9, in some embodiments, PV power device 903 may comprise transistor Q9 coupled between the inputs of power converter 900. Transistor Q9 may be controlled by controller 905. If an unsafe condition is detected, controller 905 may set transistor Q9 to ON, short-circuiting the input to power converter 900. Transistor Q9 may be controlled in conjunction with safety switch 802 of FIG. 8. When safety switch 802 and transistor Q9 are OFF, each pair of PV generators 801 of FIG. 8 are disconnected, each PV generator providing an open-circuit voltage at its output terminals. When safety switch 802 and transistor Q9 are ON, each pair of PV generators 801 of FIG. 8 are connected and short-circuited, the pair of PV generators providing a voltage of about zero to power converter 900. In both scenarios, a safe voltage at all system locations may be maintained, and the two scenarios may be staggered to alternate between open-circuiting and short-circuiting PV generators. This mode of operation may allow continuous power supply to system control devices, as well as provide backup mechanisms for maintaining a safe voltage (i.e. in case a safety switch 802 malfunctions, operation of transistor Q9 may allow continued safe operating conditions).


Reference is now made to FIG. 10, which shows a photovoltaic (PV) system according to illustrative embodiments. PV system 1000 may comprise a plurality of PV strings 1004 coupled in parallel between a ground bus and a power bus. Each of PV strings 1004 may comprise a plurality of photovoltaic generators 1001 and a plurality of PV power devices 1003. PV generators 1001 may be similar to or the same as PV generators 801 of FIG. 8. In some embodiments, the power and ground buses may be input to system power device 1010, which may be similar to or the same as system power device 810 of FIG. 8.


Each of photovoltaic power devices 1003 may comprise four input terminals: T1, T2, T3 and T4. T1 and T2 may be coupled to and receive power from a first PV generator, and T3 and T4 may be coupled to and receive power from a second PV generator. In some embodiments, PV power device 1003 may be substantially the same as PV power device 803 of FIG. 8, with the addition of safety switch 802 integrated into PV power device 1003 and connected in between terminals T2 and T3 of PV power device 1003.


Reference is now made to FIG. 11A, which shows a photovoltaic power device according to illustrative embodiments. PV power device 1103a may be used as PV power device 1003 of FIG. 10. PV power device 1103a may comprise a PV power device similar to or the same as PV power device 803 of FIG. 8 or PV power device 903 of FIG. 9. For convenience, in the illustrative embodiments of FIG. 11A and FIG. 11B, PV power device 1103a will be assumed to comprise PV power device 903 of FIG. 9.


PV power device 1103a may comprise transistors Q3, Q4 and Q5. Transistors Q3-Q5 may be MOSFETs, JFETs, IGBTs, BJTs or other appropriate transistors. For the illustrative embodiment of FIG. 11A, transistors Q3-Q5 will be assumed to be MOSFETs. Transistor Q3 may be connected between input terminals T2 and T3. Transistor Q4 may be connected between input terminals T2 and T4. Transistor Q1 may be connected between input terminals T1 and T3. Transistors Q3-Q5 may be controlled (e.g. have gate signals provided) by one or more controllers such as controller 905 of PV power device 903. The elements comprising PV power device 1103a may be jointly enclosed by enclosure 1108.


A first PV generator (not explicitly depicted) may be coupled between terminals T1 and T2, and a second PV generator (not explicitly depicted) may be coupled between terminals T3 and T4. Under normal operating conditions, transistor Q3 may be ON, and transistors Q4 and Q5 may be OFF. Under these conditions, the two photovoltaic generators may be serially connected, with the combined serial voltage of the two PV generators provided between terminals T1 and T4. When a potentially unsafe condition is detected, the controller controlling transistor Q3 may turn Q3 to the OFF state, reducing the voltage drop between terminals T1 and T4.


Even when transistor Q3 is OFF, power may still be provided at the input to PV power device 903. For example, in some embodiments, controller(s) controlling transistors Q4 and Q5 may switch Q4 and Q5 to the ON state when Q3 is OFF, resulting in terminal T1 being short-circuited to terminal T3, and terminal T2 being short-circuited to terminal T4. Under these conditions, the first and second photovoltaic generator may be coupled in parallel between terminal T1 and T4, allowing PV power device 903 to draw power from the PV generators (e.g. for powering devices such as controller 905, communication device 911, auxiliary power circuit 908 and other devices depicted in FIG. 9). In some embodiments, Q4 or Q5 might not be included in PV power device 1103a. For example, Q4 might not be included, in which case by turning Q5 to the ON position when Q3 is OFF, power is provided to PV power device 903 by a single PV generator (coupled between T3 and T4). Similarly, Q5 might not be included, in which case by turning Q4 to the ON position when Q3 is OFF, power is provided to PV power device 903 by a single PV generator (coupled between T1 and T2).


Reference is now made to FIG. 11B, which shows a photovoltaic power device according to illustrative embodiments. PV power device 1103b may be used as PV power device 1003 of FIG. 10. PV power device 1103b may comprise a PV power device similar to or the same as PV power device 803 of FIG. 8 or PV power device 903 of FIG. 9. For convenience, in the illustrative embodiments of FIG. 11A and FIG. 11B, PV power device 1103a will be assumed to comprise PV power device 903 of FIG. 9.


Transistor Q6 may be similar to or the same as transistor Q3 of FIG. 11A. PV power device 1103b may further comprise diodes D3 and D4. The anode of diode D3 may be coupled to terminal T3 and the cathode of diode D3 may be coupled to the positive input of PV power device 903 at node N1. The anode of diode D4 may be coupled to terminal T1 and the cathode of diode D3 may be coupled to the positive input of PV power device 903 at node N1. The elements comprising PV power device 1103b may be jointly enclosed by enclosure 1108.


Still referring to FIG. 11B, a first PV generator (not explicitly depicted) may be coupled between terminals T1 and T2, and a second PV generator (not explicitly depicted) may be coupled between terminals T3 and T4. Under normal operating conditions, transistor Q3 may be ON, connecting terminals T2 and T3. The voltage at terminal T1 may be higher than the voltage at terminal T2 (e.g. if the positive output of a PV generator is coupled to terminal T1 and the negative output of the PV generator is coupled to terminal T2), so diode D4 may be forward-biased and diode D3 may be reverse-biased. The voltage at node N1 may be about the voltage at terminal T1 (assuming an insignificant voltage drop across diode D4), resulting in a voltage input to PV power device 903 about equal to the voltage between terminals T1 and T4.


When a potentially unsafe condition is detected, the controller controlling transistor Q6 may turn Q6 to the OFF state, disconnecting the coupling of terminals T2 and T3. The voltage at node N1 may be the voltage at terminal T1 or the voltage at terminal T3, the greater of the two. While the voltage at node N1 might not be predetermined, in either possible scenario, a PV generator may be coupled to the inputs of PV power device 903, providing power to PV power device 903 (e.g. for powering devices such as controller 905, communication device 911, auxiliary power circuit 908 and other devices depicted in FIG. 9).


Reference is now made to FIG. 12, which shows a photovoltaic (PV) system according to illustrative embodiments. PV system 1200 may comprise a plurality of PV strings 1204 coupled in parallel between a ground bus and a power bus. Each of PV strings 1204 may comprise a plurality of photovoltaic generators 1201, a plurality of safety switches 1202 and a plurality of PV power devices 1203. PV generators 1001 may be similar to or the same as PV generators 801 of FIG. 8. In some embodiments, the power and ground buses may be input to system power device 1210, which may be similar to or the same as system power device 810 of FIG. 8.


Each PV power device 1203 may be designed to be coupled to more than one PV power generator 1201. For example, in PV system 1200, each PV power device 1203 (except for the PV power devices coupled to the power bus) is coupled to two PV power generators and to two safety switches 1202, with each safety switch 1202 (except for the safety switch 1202 which is coupled to the ground bus) coupled to two PV generators 1201 and two PV power devices 1203.


Under normal operating conditions, each PV power device 1203 may receive power from two PV generators 1201, and may forward the power along PV string 1204 towards the power bus. Under normal operating conditions, each safety switch 1202 may provide a connection between two PV generators 1201 and may provide a connection between two PV power devices 1203 for forwarding power along PV string 1204. For example, under normal operating conditions, safety switch 1202a provides a connection between PV generators 1201a and 1201b. PV power device 1203a may receive power generated by PV generators 1201a and 1201b, with safety switches 1202b disposed between PV power devices 1203a and 1203b, providing PV power device 1203a with a connection for forwarding power to PV power device 1203b. Similarly, safety switch 1202b provides a connection between PV generators 1201c and 1201d, with PV power device 1203b receiving power from PV generators 1201c and 1201d.


In case of an unsafe condition, safety switch 1202a may be operated to disconnect PV generator 1201a from PV generator 1201b, and to disconnect PV power device 1203a from the ground bus. Similarly, safety switch 1202b may be operated to disconnect PV generator 1201c from PV generator 1201d, and to disconnect PV power device 1203a PV power device 1203b. Operating safety switches 1202 in this manner may reduce the voltage in various locations in PV system 1200 to safe voltage levels.


Reference is now made to FIG. 13A, which shows safety switch 1205 according to an illustrative embodiment. Safety switch 1205 may comprise terminals T1-T4, transistors (e.g. MOSFETs) Q7 and Q8, capacitors C4 and C5, and inductors L4 and L5. Inductor L4 may be provided between terminal T3 and terminal T1 to reduce ripples and/or spikes in a current flowing from terminal T1 to terminal T3, and inductor L5 may be provided between terminal T4 and midpoint node X to reduce ripples and/or spikes in a current flowing from transistor Q7 to terminal T4. In some embodiments, inductors L4 and L5 might not be provided. In some embodiments, transistors Q7 and Q8 may be replaced by alternative switching elements, such as IGBTs, BJTs, JFETs or other switching elements. Capacitor C4 may be coupled between terminals T1 and T2. Transistor Q7 may be coupled between terminal T2 and midpoint node X, and capacitor C5 may be coupled between terminal T1 and midpoint node X. Transistor Q8 may be coupled in parallel to capacitor C5, between terminal T1 and midpoint node X. In some embodiments, capacitor C5 and/or capacitor C4 might not be provided.


During normal system operation, transistor Q7 may be held in the ON state, and transistor Q8 may be in the OFF state. Capacitor C5 may then be in parallel with capacitor C4, and a first PV generator may be coupled between terminals T1 and T2, applying a voltage to capacitors C4 and C5 and providing electrical power at terminals T1 and T2. Terminal T4 may be coupled to an output terminal of a second PV generator, and terminal T3 may be coupled to an input terminal of a PV power device 1203. The power input to safety switch 1205 at terminals T1 and T2 may be output at terminals T3 and T4 to the second PV generators and the PV power device 1203.


Transistors Q7 and Q8 may be controlled by a controller (not explicitly depicted) similar to or the same as controller 710 of FIG. 7A. In some embodiments, the controller may be powered by capacitor C4 (e.g. a controller input power terminal may be coupled to terminal T2 or terminal T1 for receiving power from capacitor C4). Safety switch 1205 may further comprise a communication device (e.g. similar to or the same as communication device 305 of FIG. 3) for receiving operational commands from a system control device.


When an unsafe condition is detected, the controller may switch transistor Q7 to the OFF state and transistor Q8 to the ON state. Capacitor C5 may be short-circuited by transistor Q8, while capacitor C4 may maintain the voltage imposed between terminals T1 and T2.


Reference is now made to FIG. 13B, which shows some of the internal circuitry of a photovoltaic power device according to one illustrative embodiment. In some embodiments, PV power device 1203 may comprise a variation of a Buck+Boost DC/DC converter. The power device may include a circuit having two input terminals, denoted Vin and common, and two output terminals which output the same voltage Vout. The output voltage is in relation to the common terminal. The circuit may include an input capacitor Cin coupled between the common terminal and the Vin terminal, an output capacitor coupled between the common terminal and the Vout terminals. The circuit may include two central points used for reference. The circuit may include a plurality of switches (e.g. MOSFET transistors) Q11, Q12, Q13 and Q14 with Q11 connected between Vin and the first central point, and Q12 connected between the common terminal and the first central point. Q13 may be connected between the Vout terminal and the second central point, and Q14 may be connected between the common terminal and the second central point. The circuit may further include inductor L6 coupled between the two central points.


The operation of the Buck+Boost DC/DC converter in PV power device 1203 may be variously configured. If an output voltage lower than he input voltage is desired, Q13 may be statically ON, Q14 may be statically OFF, and with Q11 and Q12 being Pulse-Width-Modulation (PWM)-switched in a complementary manner to one another, the circuit is temporarily equivalent to a Buck converter and the input voltage is bucked. If an output voltage higher than he input voltage is desired, Q11 may be statically ON, Q12 may be statically OFF, and with Q13 and Q14 being PWM-switched in a complementary manner to one another, the input voltage is boosted. Staggering the switching of switches Q11 and Q12, the circuit may convert the input voltage Vin to output voltage Vout. If current is input to the circuit by the Vin and common terminals, and the voltage drop across capacitors Cin and Cout are about constant voltages Vin and Vout respectively, the currents input to the circuit are combined at inductor L6 to form an inductor current which is equal to the sum of the current input at the Vin and common terminals. The inductor current may contain a ripple due to the charging and discharging of capacitors Cin and Cout, but if the voltage drop across capacitors Cin and Cout are about constant, the voltage ripples over the capacitors are small, and similarly the inductor current ripple may be small. The inductor current may be output by the pair of output terminals Vout. In some embodiments, a single output terminal may be included, and system designers may split the output terminal externally (i.e. outside of the PV power device circuit), if desired.


In illustrative embodiments, PV power device 1203 may be similar to or the same as PV power device 903 of FIG. 9, with power converter 900 of FIG. 9 comprising the Buck+Boost converter of FIG. 13B. In some embodiments, boosting the voltage input to a PV power device 1203 might not be necessary, in which case PV power device 1203 may comprise a Buck converter similar to the Buck+Boost converter of FIG. 13B, with switch Q14 removed (i.e. replaced by an open-circuit) and switch Q13 replaced with a wire (i.e. connecting the Vout terminal to the second central point).


Referring back to FIG. 12, safety switch 1202b may be coupled to photovoltaic generators 1201c and 1201d, and to PV power devices 1203a and 1203b. Terminal T2 may be connected to the positive output of PV generator 1201c, and terminal T4 may be connected to the negative output of PV generator 1201d. Terminal T1 may be coupled to a first Vout terminal of PV power device 1203a, and terminal T3 may be coupled to the common terminal of PV power device 1203b. The positive output terminal of PV generator 1201d may be coupled to the Vin terminal of PV power device 1203b, and the negative output terminal of PV generator 1201c may be coupled to a second Vout terminal of PV power device 1203a. Under normal operating conditions, PV generators 1201c and 1201d are serially coupled, the combined voltage of PV generators 1201c and 1201d input between the common and Vin terminals of PV power device 1203b. If an unsafe condition is detected, safety switch 1202b may disconnect the connection between terminals T2 and T4 (e.g. by setting transistor Q7 of FIG. 13A to OFF) and couple terminals T3 and T4 (e.g. by setting transistor Q8 of FIG. 13A to ON). As a result, PV generator 1201d may be coupled between the common and Vin terminals of PV power device 1203b, and PV generator 1201c may be coupled between terminals T1 and T2 of safety switch 1202b.


The system topology illustrated in FIG. 12 may provide certain advantages. For example, during normal system operation, two PV generators 1201 provide a combined voltage and power to a PV power device 1203, requiring a reduced number of PV power devices for processing power generated by the PV generators. Furthermore, continuous operational power (i.e. power used for powering device components such as controllers and transistors) is provided to all PV power devices 1203 and safety switches 1202 both during normal operations and during a potentially unsafe condition.


Reference is now made to FIG. 14, which shows part of a chain of photovoltaic devices according to an illustrative embodiment. Chain 1400 may comprise a plurality of PV power devices 1203 and a plurality of safety switches 1202. Each safety switch 1202 may be connected, using conductors, between two PV power devices 1203. Terminal T1 of safety switch 1202 may be connected to a Vout terminal of a first PV power device, and terminal T3 of safety switch 1202 may be connected to a common terminal of a second PV power device. Terminals T2 and T4 may be accessible via external connectors similar to or the same as connectors 406 and 407 of FIG. 4A. Similarly, a Vout terminal and a Vin terminal of each PV power device 1203 may be accessible via external connectors similar to or the same as connectors 406 and 407 of FIG. 4A. Conductors connecting a PV power device terminal (e.g. the common terminal) to a safety switch terminal (e.g. terminal T3) may be sized to facilitate connecting chain 1400 to a plurality of PV generators, as depicted in FIG. 12. For example, in locales where PV generators are commonly 1-2 meters wide, each conductor disposed between a safety switch 1202 and a PV power device 1203 may be about 1-2 meters long. Chain 1400 may be assembled and sold as a single unit, saving cost and time when constructing a PV installation similar to or the same as PV system 1200 of FIG. 12.


Referring to FIG. 15, an illustrative application running on a smart phone, tablet, computer, workstation, mobile device (such as a cellular device) and/or a similar computing device is shown. The application may provide a list of safety switches disposed in a electrical power system (e.g. system 100 of FIG. 1). The application may indicate a serial number or other identifying information of each safety switch, as well as identifying information of coupled PV generators and/or identifying information of a PV string each safety switch is coupled to. In some embodiments, the application may indicate the state of each safety switch and/or electrical parameters of one or more safety switches, for example, the voltage across or current through one or more safety switches. In some embodiments, the application may provide touch-screen buttons or similar input controllers for controlling the state of one or more switches. For example, activating a button 151 may move an associated safety switch to the OFF state, and activating a button 152 may move an associated safety switch to the ON state. Activating button 153 may move all safety switches to the OFF state, and activating button 154 may move all safety switches to the ON state. In some embodiments, activating buttons 151-154 may be restricted based on a user access level. For example, the application may enable buttons 151-154 only when running in “Installer/Administrator” mode, to restrict the actions of unsophisticated users.


Still referring to FIG. 15, activating button 155 may enable a user to reconfigure a threshold. For example, an electrical voltage, current or power threshold which may be indicative of an arcing condition and trigger a system response (e.g. moving one or more safety switches to the OFF state) may be reconfigured by a user using the application of FIG. 15. Activating button 156 may display a graphical layout of an electrical system represented by the application, including physical location details of one or more safety switches. Activating button 157 may download current or past operational system data such as the state of safety switches, and/or electrical parameter measurement measured by safety switches. Buttons 155-157 may similarly be restricted depending on the level of user authorization.


The application of FIG. 15 may communicate directly with safety switches via wireless communications (e.g. cellular communication, or over the internet). In some embodiments, the application may communicate with a system power device (e.g. system power device 110 of FIG. 1), with the system power device configured to relay communication between the application and the safety switches via wireless communication or wired communication (e.g. power line communication).


Reference is now made to FIG. 16, which illustrates another aspect of the present disclosure. A PV power device 1603 may be similar to or the same as PV power device 903 of FIG. 9, and correspondingly, PV power device 803 of FIG. 8. Components depicted and described above with reference to FIG. 9 are correspondingly depicted in FIG. 16. Hence, power converter 1600 may be analogous to power converter 900 of FIG. 9. Likewise, sensor(s) 1604 may be analogous to sensor(s) 904 of FIG. 9; controller 1605 may be analogous to controller 905 of FIG. 9; and so forth for the other components of the PV power device 903, such as Maximum Power Point Tracking (MPPT) circuit 1606; safety devices 1607; auxiliary power circuit 1608; memory device 1609; communication device 1611; and common bus 1620, and so forth.


According to some aspects of the disclosure, PV power device 1603 may include power converter 1600 similar to, for example, PV power converter 900. Power converter 1600 may comprise a direct current-direct current (DC/DC) converter such as a Buck, Boost, Buck/Boost, Buck+Boost, Cuk, Flyback and/or forward converter. According to some aspects, power converter 1600 may comprise a direct current-alternating current (DC/AC) converter (also known as an inverter), such a micro-inverter. PV power device 1603 may have three input terminals, Tin1, Tin2, and Tin3, and two output terminals (not labelled, for clarity of depiction).


Still referring to FIG. 16, according to some aspects of the disclosure, PV power device 1603 may comprise switch S16, which may be coupled between input terminals Tin1, Tin2. Photovoltaic generator 1601a may comprise an output terminal connected to an input terminal of PV power device 1603, for instance, to input terminal Tin1. Photovoltaic generator 1601a may also comprise a second output terminal which may be connected to a negative output terminal of photovoltaic generator 1601b. The output from photovoltaic generator 1601a to the negative output terminal of photovoltaic generator 1601b may also connect to PV power device 1603 at input terminal Tin2. The connection to both the negative output terminal of photovoltaic generator 1601b and to an input terminal of PV power device 1603 may be via, for example, T-connector 1631. T-connector 1631 may, over input terminal Tin2, connect to PV power device 1603. Terminal Tin2 may terminate at a switch S16, which is comprised in PV power device 1603. Switch S16 may comprise a transistor, similar to transistor Q9 of FIG. 9. Alternatively, the switch S16 may comprise a relay or a different type of switch (e.g. an IGBT, BJT and the like). Photovoltaic generator 1601b may comprise an output terminal connected to an input terminal of PV power device 1603 via terminal Tin3.


Switch S16 may comprise a control terminal. The control terminal of switch S16 may be controlled by controller 1605. Correspondingly, controller 1605 may be configured to control switch S16. If an unsafe condition, such as a grid-outage, overvoltage, undervoltage, a problem with the inverter (such as, but not limited to, the inverter described above with reference to power converter 900), or any other problem which may result in a potentially unsafe condition, or a failure in the photovoltaic generator 1601a, is detected, controller 1605 may turn on switch S16, short-circuiting the input terminals of photovoltaic generator 1601a in order to protect, reduce the risk for, and so forth, power converter 1600 and/or personnel in the physical proximity of PV power device 1603. When switch S16 is OFF, the two PV generators 1601a and 1601b may be connected in series and to the input terminals of power converter 1600. In both scenarios, a safe voltage at locations within the system may be maintained. When switch S16 is ON, PV generator 1601a is short-circuited, and a reduced voltage between terminals Tin3 and Tin1 is obtained. Switch S16 being OFF may be indicative of normal operating conditions, and under normal operating conditions an increased voltage between terminals Tin3 and Tin1 may be permissible.


In an example of an aspect of system operation, communication device 1611 may enable sensor(s) 1604 to monitor the system described herein across above the common bus 1620 for a “keep alive” signal, as described above with reference to FIG. 6. In the absence of said “keep alive” signal, sensor(s) 1604 signals controller 1605 that a potentially unsafe condition might be occurring. Controller 1605 then may actuate switch S16 (which may comprise a transistor, for instance, as already noted) in order to short circuit PV generator 1601a. Upon receipt of a wakeup or “keep alive” signal, in the event that switch S16 is ON, the controller may eliminate the short circuit across PV generator 1601a by turning switch S16 OFF.


It is appreciated that in the aspect of the present disclosure described herein above, in the event that PV generator 1601a fails, PV power device 1603 may continue working as long as switch S16 is turned ON. In such a case, PV power device 1603 may continue to receive power from PV generator 1601b. It is also appreciated that T-connector 1631 may provide a test point for measuring voltage across the PV generator 1601a, thereby enabling calculation of the individual operating parameters of each of PV generator 1601a and PV generator 1601b. Voltmeter 1642 is depicted in FIG. 16 in parallel to switch S16 to indicate this aspect.


According to another aspect of the present disclosure, an additional switch (not depicted) might be positioned between terminals, Tin2 and Tin3. The additional switch may also be controlled by controller 1605. In such an aspect, the when both the additional switch is OFF, and switch S16 is OFF, the two PV generators 1601a and 1601b are connected in series and the to input terminals of power converter 1600. When switch S16 is ON, and the additional switch is OFF, the output terminals of photovoltaic generator 1601a are short circuited and photovoltaic generator 1601b provides the power to the input terminals to power converter 1600. Correspondingly, when the additional switch is ON and switch S16 is OFF, the output terminals of photovoltaic generator 1601b are short circuited and photovoltaic generator 1601a provides the power to the input terminals of power converter 1600. The ability to short circuit either one of photovoltaic generator 1601a or photovoltaic generator 1601b may make the system failure proof for each of the two photovoltaic generators 1601a and 1601b. When both switch S16 is ON, and the additional switch is ON, the output terminals of both PV generators 1601a and 1601b are short-circuited, thereby the input terminals of power converter 1600 are also short-circuited. Switch S16 (as noted above) and the additional switch may comprise a relay, a transistor, including, but not limited to a MOSFET, an IGBT, a BJT, a JFET, and so forth, or another appropriate switching element.


In still another aspect of the present disclosure, a single photovoltaic generator (not depicted) may be utilized rather than photovoltaic generator 1601a and photovoltaic generator 1601b. The single photovoltaic generator may have at least three output terminals (e.g., a first series string of solar cells connected between first and second output terminals, and a second series string of solar cells connected between the second output terminal and a third output terminal). The three output terminals may, respectively, connect to the PV power device 1603 over input terminals Tin1, Tin2, and Tin3. As described above, if an unsafe condition, such as a grid-outage, overvoltage, undervoltage, a problem with the inverter (such as, but not limited to, the inverter described above with reference to power converter 900), or any other problem which may result in a potentially unsafe condition, or a failure in the single photovoltaic generator, is detected, controller 1605 may turn on switch S16, short-circuiting the two of the terminals of the single photovoltaic generator in order to protect, reduce the risk for, and so forth, power converter 1600 and/or personnel in the physical proximity of PV power device 1603. When switch S16 is OFF, the output terminals of the single photovoltaic generator may be connected in series to the input terminals of power converter 1600, (i.e., “normal operation”) as described herein above.


In illustrative embodiments disclosed herein, photovoltaic generators are used as examples of power sources which may make use of the novel features disclosed. Each PV generator may comprise one or more solar cells, one or more solar cell strings, one or more solar panels, one or more solar shingles, or combinations thereof. In some embodiments, the power sources may include batteries, flywheels, wind or hydroelectric turbines, fuel cells or other energy sources in addition to or instead of photovoltaic panels. Systems, apparatuses and methods disclosed herein which use PV generators may be equally applicable to alternative systems using additional power sources, and these alternative systems are included in embodiments disclosed herein.


It is noted that various connections are set forth between elements herein. These connections are described in general and, unless specified otherwise, may be direct or indirect; this specification is not intended to be limiting in this respect. Further, elements of one embodiment may be combined with elements from other embodiments in appropriate combinations or subcombinations. For example, PV power device circuitry of one embodiments may be combined with and/or exchanged for power device circuitry of a different embodiment. For example, transistor Q9 of PV power device 903 may be disposed between electrical connections 512 and 513 of junction box 511 and operated to short-circuit the input to PV generator 101 of FIG. 5A.

Claims
  • 1. A system comprising: a power generation installation comprising: a plurality of power sources comprising a first power source and a second power source connected to each other at a first node, andat least one switching element connected, in parallel with the first power source, between the first node and a second node, wherein the second power source is serially connected, at the first node, to the parallel connected at least one switching element and first power source, and wherein the parallel connected at least one switching element and first power source are connected, at the second node, to a power converter; anda controller configured to: detect a sensor measurement indicative of a potentially unsafe condition at the power generation installation;control the at least one switching element to create a short circuit across the first power source but not across the second power source;receive a sensor measurement indicating that the potentially unsafe condition is no longer present; andcontrol the at least one switching element to eliminate the short circuit across the first power source.
  • 2. The system according to claim 1, wherein the first power source and the second power source are connected to the power converter.
  • 3. The system according to claim 1, further comprising an electrical T-connector disposed at the first node.
  • 4. The system according to claim 1, wherein at least one of the first power source or the second power source comprises a photovoltaic generator.
  • 5. The system according to claim 1, wherein the at least one switching element comprises at least one of a transistor or a relay.
  • 6. The system according to claim 1, further comprising a communication device coupled to the controller, wherein the communication device is configured to receive a message indicative of the potentially unsafe condition and to provide an indication of the potentially unsafe condition to the controller, and wherein the communication device comprises at least one of a power line communication device or a wireless communication device.
  • 7. The system according to claim 1, further comprising a sensor coupled to the controller, wherein the sensor is configured to measure one or more electrical parameters and to provide one or more measurements of the one or more electrical parameters to the controller, and wherein the one or more measurements include the sensor measurement indicative of the potentially unsafe condition.
  • 8. The system according to claim 7, wherein the sensor comprises a current sensor, and wherein the sensor measurement indicative of the potentially unsafe condition includes at least one of: a high current measurement, a measurement indicating a change in current flow or a measurement indicating a mismatch with another electrical parameter.
  • 9. A method comprising: detecting, by a controller, a sensor measurement indicative of a potentially unsafe condition at a power generation installation comprising a first power source, a second power source connected to the first power source at a first node, and at least one switching element connected, in parallel with the first power source, between the first node and a second node, wherein the second power source is serially connected, at the first node, to the parallel connected at least one switching element and first power source, and wherein the parallel connected at least one switching element and first power source are connected, at the second node, to a power converter;controlling, by the controller, the at least one switching element to create a short circuit across the first power source but not across the second power source;receiving, by the controller, a sensor measurement indicating that the potentially unsafe condition is no longer present; andcontrolling, by the controller, the at least one switching element to eliminate the short circuit across the first power source.
  • 10. The method according to claim 9, wherein the first power source and the second power source are connected to an electrical T-connector disposed at the first node.
  • 11. The method according to claim 9, further comprising: receiving, by a communication device, a message indicative of the potentially unsafe condition and providing an indication of the potentially unsafe condition to the controller,wherein the communication device comprises at least one of a power line communication device or a wireless communication device.
  • 12. The method according to claim 9, further comprising measuring, by a sensor, one or more electrical parameters and providing one or more measurements of the one or more electrical parameters to the controller, wherein the one or more measurements include the sensor measurement indicative of the potentially unsafe condition.
  • 13. The method according to claim 12, wherein the sensor comprises a current sensor, and wherein the sensor measurement indicative of the potentially unsafe condition includes at least one of: a high current measurement, a measurement indicating a change in current flow, or a measurement indicating a mismatch with another electrical parameter.
  • 14. The method according to claim 9, further comprising drawing, by an auxiliary power circuit coupled to at least one of the first power source or the second power source, power from the at least one of the first power source or the second power source, and providing the drawn power to the controller.
  • 15. A system comprising: a first power source having at least a first terminal and a second terminal;a second power source having at least a first terminal and a second terminal, the second terminal of the second power source connected to the first terminal of the first power source; anda power device comprising: a first input terminal connected to the second terminal of the first power source;a second input terminal connected to the first terminal of the first power source and the second terminal of the second power source;a third input terminal connected to the first terminal of the second power source;a power converter connected between the first and third input terminals;a switch disposed between the first and second input terminals; anda controller configured to control the switch to be OFF during normal operating conditions and to be ON in response to an unsafe condition.
  • 16. The system according to claim 15, wherein the second input terminal, the first terminal of the first power source and the second terminal of the second power source are connected using a T-connector.
  • 17. The system according to claim 15, wherein the first power source and the second power source are connected to one another at an electrical T-connector disposed at a midpoint.
  • 18. The system according to claim 15, wherein at least one of the first power source or the second power source comprises a photovoltaic generator.
  • 19. The system according to claim 15, further comprising a communication device coupled to the controller, wherein the communication device is configured to receive a message indicative of the unsafe condition and to provide an indication of the unsafe condition to the controller, and wherein the communication device comprises at least one of a power line communication device or a wireless communication device.
  • 20. The system according to claim 15, further comprising a sensor coupled to the controller, wherein the sensor is configured to measure one or more electrical parameters and to provide one or more measurements of the one or more electrical parameters to the controller, wherein the one or more measurements include a sensor measurement indicative of the unsafe condition.
  • 21. The system according to claim 20, wherein the sensor comprises a current sensor, and wherein the sensor measurement indicative of the unsafe condition includes at least one of: a high current measurement, a measurement indicating a change in current flow, or a measurement indicating a mismatch with another electrical parameter.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application a continuation-in-part and claims priority to U.S. nonprovisional application Ser. No. 15/250,068, filed Aug. 29, 2016, entitled “Safety Switch for Photovoltaic Systems,” hereby incorporated by reference in its entirety. The present application claims priority to U.S. provisional patent application Ser. No. 62/318,303, filed Apr. 5, 2016, entitled “Optimizer Garland,” hereby incorporated by reference in its entirety. Additionally, the present application claims priority to U.S. provisional patent application Ser. No. 62/341,147, filed May 25, 2016, entitled “Photovoltaic Power Device and Wiring,” hereby incorporated by reference in its entirety.

US Referenced Citations (1291)
Number Name Date Kind
2367925 Brown Jan 1945 A
2586804 Fluke Feb 1952 A
2758219 Miller Aug 1956 A
2852721 Harders et al. Sep 1958 A
2958171 Deckers Nov 1960 A
3369210 Manickella Feb 1968 A
3392326 Lamberton Jul 1968 A
3496029 King et al. Feb 1970 A
3566143 Paine et al. Feb 1971 A
3643564 Uchiyama Feb 1972 A
3696286 Ule Oct 1972 A
3740652 Burgener Jun 1973 A
3958136 Schroeder May 1976 A
3982105 Eberle Sep 1976 A
4060757 McMurray Nov 1977 A
4101816 Shepter Jul 1978 A
4104687 Zulaski Aug 1978 A
4127797 Perper Nov 1978 A
4129788 Chavannes Dec 1978 A
4129823 van der Pool et al. Dec 1978 A
4146785 Neale Mar 1979 A
4161771 Bates Jul 1979 A
4171861 Hohorst Oct 1979 A
4183079 Wachi Jan 1980 A
4257087 Cuk Mar 1981 A
4296461 Mallory et al. Oct 1981 A
4321581 Tappeiner et al. Mar 1982 A
4324225 Trihey Apr 1982 A
4327318 Kwon et al. Apr 1982 A
4346341 Blackburn et al. Aug 1982 A
4363040 Inose Dec 1982 A
4367557 Stern et al. Jan 1983 A
4375662 Baker Mar 1983 A
4384321 Rippel May 1983 A
4404472 Steigerwald Sep 1983 A
4412142 Ragonese et al. Oct 1983 A
4452867 Conforti Jun 1984 A
4453207 Paul Jun 1984 A
4460232 Sotolongo Jul 1984 A
4470213 Thompson Sep 1984 A
4479175 Gille et al. Oct 1984 A
4481654 Daniels et al. Nov 1984 A
4488136 Hansen et al. Dec 1984 A
4526553 Guerrero Jul 1985 A
4533986 Jones Aug 1985 A
4545997 Wong et al. Oct 1985 A
4549254 Kissel Oct 1985 A
4554502 Rohatyn Nov 1985 A
4554515 Burson et al. Nov 1985 A
4580090 Bailey et al. Apr 1986 A
4591965 Dickerson May 1986 A
4598330 Woodworth Jul 1986 A
4602322 Merrick Jul 1986 A
4604567 Chetty Aug 1986 A
4611090 Catella et al. Sep 1986 A
4623753 Feldman et al. Nov 1986 A
4626983 Harada et al. Dec 1986 A
4631565 Tihanyi Dec 1986 A
4637677 Barkus Jan 1987 A
4639844 Gallios et al. Jan 1987 A
4641042 Miyazawa Feb 1987 A
4641079 Kato et al. Feb 1987 A
4644458 Harafuji et al. Feb 1987 A
4649334 Nakajima Mar 1987 A
4652770 Kumano Mar 1987 A
4683529 Bucher, II Jul 1987 A
4685040 Steigerwald et al. Aug 1987 A
4686617 Colton Aug 1987 A
4706181 Mercer Nov 1987 A
4719553 Hinckley Jan 1988 A
4720667 Lee et al. Jan 1988 A
4720668 Lee et al. Jan 1988 A
4736151 Dishner Apr 1988 A
4746879 Ma et al. May 1988 A
4772994 Harada et al. Sep 1988 A
4783728 Hoffman Nov 1988 A
4797803 Carroll Jan 1989 A
4819121 Saito et al. Apr 1989 A
RE33057 Clegg et al. Sep 1989 E
4864213 Kido Sep 1989 A
4868379 West Sep 1989 A
4873480 Lafferty Oct 1989 A
4888063 Powell Dec 1989 A
4888702 Gerken et al. Dec 1989 A
4899246 Tripodi Feb 1990 A
4899269 Rouzies Feb 1990 A
4903851 Slough Feb 1990 A
4906859 Kobayashi et al. Mar 1990 A
4910518 Kim et al. Mar 1990 A
4951117 Kasai Aug 1990 A
4978870 Chen et al. Dec 1990 A
4987360 Thompson Jan 1991 A
5001415 Watkinson Mar 1991 A
5027051 Lafferty Jun 1991 A
5027059 de Montgolfier et al. Jun 1991 A
5045988 Griller et al. Sep 1991 A
5081558 Mahler Jan 1992 A
5097196 Schoneman Mar 1992 A
5138422 Fujii et al. Aug 1992 A
5143556 Matlin Sep 1992 A
5144222 Herbert Sep 1992 A
5155670 Brian Oct 1992 A
5191519 Kawakami Mar 1993 A
5196781 Jamieson et al. Mar 1993 A
5210519 Moore May 1993 A
5235266 Schaffrin Aug 1993 A
5237194 Takahashi Aug 1993 A
5268832 Kandatsu Dec 1993 A
5280133 Nath Jan 1994 A
5280232 Kohl et al. Jan 1994 A
5287261 Ehsani Feb 1994 A
5289361 Vinciarelli Feb 1994 A
5289998 Bingley et al. Mar 1994 A
5327071 Frederick et al. Jul 1994 A
5329222 Gyugyi et al. Jul 1994 A
5345375 Mohan Sep 1994 A
5379209 Goff Jan 1995 A
5381327 Yan Jan 1995 A
5391235 Inoue Feb 1995 A
5402060 Erisman Mar 1995 A
5404059 Loffler Apr 1995 A
5412558 Sakurai et al. May 1995 A
5413313 Mutterlein et al. May 1995 A
5428286 Kha Jun 1995 A
5446645 Shirahama et al. Aug 1995 A
5460546 Kunishi et al. Oct 1995 A
5472614 Rossi Dec 1995 A
5477091 Fiorina et al. Dec 1995 A
5493154 Smith et al. Feb 1996 A
5497289 Sugishima et al. Mar 1996 A
5501083 Kim Mar 1996 A
5504415 Podrazhansky et al. Apr 1996 A
5504418 Ashley Apr 1996 A
5504449 Prentice Apr 1996 A
5513075 Capper et al. Apr 1996 A
5517378 Asplund et al. May 1996 A
5530335 Decker et al. Jun 1996 A
5539238 Malhi Jul 1996 A
5548504 Takehara Aug 1996 A
5563780 Goad Oct 1996 A
5565855 Knibbe Oct 1996 A
5566022 Segev Oct 1996 A
5576941 Nguyen et al. Nov 1996 A
5580395 Yoshioka et al. Dec 1996 A
5585749 Pace et al. Dec 1996 A
5604430 Decker et al. Feb 1997 A
5616913 Litterst Apr 1997 A
5631534 Lewis May 1997 A
5636107 Lu et al. Jun 1997 A
5644212 Takahashi Jul 1997 A
5644219 Kurokawa Jul 1997 A
5646501 Fishman et al. Jul 1997 A
5648731 Decker et al. Jul 1997 A
5654740 Schulha Aug 1997 A
5659465 Flack et al. Aug 1997 A
5677833 Bingley Oct 1997 A
5684385 Guyonneau et al. Nov 1997 A
5686766 Tamechika Nov 1997 A
5696439 Presti et al. Dec 1997 A
5703390 Itoh Dec 1997 A
5708576 Jones et al. Jan 1998 A
5719758 Nakata et al. Feb 1998 A
5722057 Wu Feb 1998 A
5726505 Yamada et al. Mar 1998 A
5726615 Bloom Mar 1998 A
5731603 Nakagawa et al. Mar 1998 A
5734258 Esser Mar 1998 A
5734259 Sisson et al. Mar 1998 A
5734565 Mueller et al. Mar 1998 A
5747967 Muljadi et al. May 1998 A
5751120 Zeitler et al. May 1998 A
5773963 Blanc et al. Jun 1998 A
5777515 Kimura Jul 1998 A
5777858 Rodulfo Jul 1998 A
5780092 Agbo et al. Jul 1998 A
5793184 O'Connor Aug 1998 A
5798631 Spee et al. Aug 1998 A
5801519 Midya et al. Sep 1998 A
5804894 Leeson et al. Sep 1998 A
5812045 Ishikawa et al. Sep 1998 A
5814970 Schmidt Sep 1998 A
5821734 Faulk Oct 1998 A
5822186 Bull et al. Oct 1998 A
5838148 Kurokami et al. Nov 1998 A
5847549 Dodson, III Dec 1998 A
5859772 Hilpert Jan 1999 A
5869956 Nagao et al. Feb 1999 A
5873738 Shimada et al. Feb 1999 A
5886882 Rodulfo Mar 1999 A
5886890 Ishida et al. Mar 1999 A
5892354 Nagao et al. Apr 1999 A
5898585 Sirichote et al. Apr 1999 A
5903138 Hwang et al. May 1999 A
5905645 Cross May 1999 A
5917722 Singh Jun 1999 A
5919314 Kim Jul 1999 A
5923100 Lukens et al. Jul 1999 A
5923158 Kurokami et al. Jul 1999 A
5929614 Copple Jul 1999 A
5930128 Dent Jul 1999 A
5930131 Feng Jul 1999 A
5932994 Jo et al. Aug 1999 A
5933327 Leighton et al. Aug 1999 A
5945806 Faulk Aug 1999 A
5946206 Shimizu et al. Aug 1999 A
5949668 Schweighofer Sep 1999 A
5955885 Kurokami et al. Sep 1999 A
5959438 Jovanovic et al. Sep 1999 A
5961739 Osborne Oct 1999 A
5963010 Hayashi et al. Oct 1999 A
5963078 Wallace Oct 1999 A
5982253 Perrin et al. Nov 1999 A
5986909 Hammond et al. Nov 1999 A
5990659 Frannhagen Nov 1999 A
6002290 Avery et al. Dec 1999 A
6002603 Carver Dec 1999 A
6008971 Duba et al. Dec 1999 A
6021052 Unger et al. Feb 2000 A
6031736 Takehara et al. Feb 2000 A
6037720 Wong et al. Mar 2000 A
6038148 Farrington et al. Mar 2000 A
6046470 Williams et al. Apr 2000 A
6046919 Madenokouji et al. Apr 2000 A
6050779 Nagao et al. Apr 2000 A
6058035 Madenokouji et al. May 2000 A
6064086 Nakagawa et al. May 2000 A
6078511 Fasullo et al. Jun 2000 A
6081104 Kern Jun 2000 A
6082122 Madenokouji et al. Jul 2000 A
6087738 Hammond Jul 2000 A
6091329 Newman Jul 2000 A
6093885 Takehara et al. Jul 2000 A
6094129 Baiatu Jul 2000 A
6101073 Takehara Aug 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6111188 Kurokami et al. Aug 2000 A
6111391 Cullen Aug 2000 A
6111767 Handleman Aug 2000 A
6130458 Takagi et al. Oct 2000 A
6150739 Baumgartl et al. Nov 2000 A
6151234 Oldenkamp Nov 2000 A
6163086 Choo Dec 2000 A
6166455 Li Dec 2000 A
6166527 Dwelley et al. Dec 2000 A
6169678 Kondo et al. Jan 2001 B1
6175219 Imamura et al. Jan 2001 B1
6175512 Hagihara et al. Jan 2001 B1
6191456 Stoisiek et al. Feb 2001 B1
6215286 Scoones et al. Apr 2001 B1
6219623 Wills Apr 2001 B1
6225793 Dickmann May 2001 B1
6255360 Domschke et al. Jul 2001 B1
6255804 Herniter et al. Jul 2001 B1
6256234 Keeth et al. Jul 2001 B1
6259234 Perol Jul 2001 B1
6262558 Weinberg Jul 2001 B1
6268559 Yamawaki Jul 2001 B1
6274804 Psyk et al. Aug 2001 B1
6275016 Ivanov Aug 2001 B1
6281485 Siri Aug 2001 B1
6285572 Onizuka et al. Sep 2001 B1
6292379 Edevold et al. Sep 2001 B1
6297621 Hui et al. Oct 2001 B1
6301128 Jang et al. Oct 2001 B1
6304065 Wittenbreder Oct 2001 B1
6307749 Daanen et al. Oct 2001 B1
6311137 Kurokami et al. Oct 2001 B1
6316716 Hilgrath Nov 2001 B1
6320769 Kurokami et al. Nov 2001 B2
6329808 Enguent Dec 2001 B1
6331670 Takehara et al. Dec 2001 B2
6339538 Handleman Jan 2002 B1
6344612 Kuwahara et al. Feb 2002 B1
6346451 Simpson et al. Feb 2002 B1
6348781 Midya et al. Feb 2002 B1
6350944 Sherif et al. Feb 2002 B1
6351130 Preiser et al. Feb 2002 B1
6369461 Jungreis et al. Apr 2002 B1
6369462 Siri Apr 2002 B1
6380719 Underwood et al. Apr 2002 B2
6396170 Laufenberg et al. May 2002 B1
6396239 Benn et al. May 2002 B1
6400579 Cuk Jun 2002 B2
6425248 Tonomura et al. Jul 2002 B1
6429546 Ropp et al. Aug 2002 B1
6429621 Arai Aug 2002 B1
6433522 Siri Aug 2002 B1
6433978 Neiger et al. Aug 2002 B1
6441597 Lethellier Aug 2002 B1
6445599 Nguyen Sep 2002 B1
6448489 Kimura et al. Sep 2002 B2
6452814 Wittenbreder Sep 2002 B1
6465910 Young et al. Oct 2002 B2
6465931 Knowles et al. Oct 2002 B2
6469919 Bennett Oct 2002 B1
6472254 Cantarini et al. Oct 2002 B2
6483203 McCormack Nov 2002 B1
6493246 Suzui et al. Dec 2002 B2
6501362 Hoffman et al. Dec 2002 B1
6507176 Wittenbreder, Jr. Jan 2003 B2
6509712 Landis Jan 2003 B1
6512444 Morris, Jr. et al. Jan 2003 B1
6515215 Mimura Feb 2003 B1
6519165 Koike Feb 2003 B2
6528977 Arakawa Mar 2003 B2
6531848 Chitsazan et al. Mar 2003 B1
6545211 Mimura Apr 2003 B1
6548205 Leung et al. Apr 2003 B2
6560131 vonBrethorst May 2003 B1
6587051 Takehara et al. Jul 2003 B2
6590793 Nagao et al. Jul 2003 B1
6590794 Carter Jul 2003 B1
6593520 Kondo et al. Jul 2003 B2
6593521 Kobayashi Jul 2003 B2
6600100 Ho et al. Jul 2003 B2
6603672 Deng et al. Aug 2003 B1
6608468 Nagase Aug 2003 B2
6611130 Chang Aug 2003 B2
6611441 Kurokami et al. Aug 2003 B2
6628011 Droppo et al. Sep 2003 B2
6633824 Dollar, II Oct 2003 B2
6636431 Seki et al. Oct 2003 B2
6650031 Goldack Nov 2003 B1
6650560 MacDonald et al. Nov 2003 B2
6653549 Matsushita et al. Nov 2003 B2
6655987 Higashikozono et al. Dec 2003 B2
6657419 Renyolds Dec 2003 B2
6664762 Kutkut Dec 2003 B2
6672018 Shingleton Jan 2004 B2
6678174 Suzui et al. Jan 2004 B2
6690590 Stamenic et al. Feb 2004 B2
6693327 Priefert et al. Feb 2004 B2
6693781 Kroker Feb 2004 B1
6708507 Sem et al. Mar 2004 B1
6709291 Wallace et al. Mar 2004 B1
6724593 Smith Apr 2004 B1
6731136 Knee May 2004 B2
6738692 Schienbein et al. May 2004 B2
6744643 Luo et al. Jun 2004 B2
6750391 Bower et al. Jun 2004 B2
6765315 Hammerstrom et al. Jul 2004 B2
6768047 Chang et al. Jul 2004 B2
6768180 Salama et al. Jul 2004 B2
6788033 Vinciarelli Sep 2004 B2
6788146 Forejt et al. Sep 2004 B2
6795318 Haas et al. Sep 2004 B2
6800964 Beck Oct 2004 B2
6801442 Suzui et al. Oct 2004 B2
6807069 Nieminen et al. Oct 2004 B2
6809942 Madenokouji et al. Oct 2004 B2
6810339 Wills Oct 2004 B2
6812396 Makita et al. Nov 2004 B2
6828503 Yoshikawa et al. Dec 2004 B2
6828901 Birchfield et al. Dec 2004 B2
6837739 Gorringe et al. Jan 2005 B2
6838611 Kondo et al. Jan 2005 B2
6838856 Raichle Jan 2005 B2
6842354 Tallam et al. Jan 2005 B1
6844739 Kasai et al. Jan 2005 B2
6850074 Adams et al. Feb 2005 B2
6856102 Lin et al. Feb 2005 B1
6882131 Takada et al. Apr 2005 B1
6888728 Takagi et al. May 2005 B2
6894911 Telefus et al. May 2005 B2
6897370 Kondo et al. May 2005 B2
6914418 Sung Jul 2005 B2
6919714 Delepaut Jul 2005 B2
6927955 Suzui et al. Aug 2005 B2
6933627 Wilhelm Aug 2005 B2
6933714 Fasshauer et al. Aug 2005 B2
6936995 Kapsokavathis et al. Aug 2005 B2
6940735 Deng et al. Sep 2005 B2
6949843 Dubovsky Sep 2005 B2
6950323 Achleitner et al. Sep 2005 B2
6963147 Kurokami et al. Nov 2005 B2
6966184 Toyomura et al. Nov 2005 B2
6970365 Turchi Nov 2005 B2
6980783 Liu et al. Dec 2005 B2
6984967 Notman Jan 2006 B2
6984970 Capel Jan 2006 B2
6987444 Bub et al. Jan 2006 B2
6996741 Pittelkow et al. Feb 2006 B1
7030597 Bruno et al. Apr 2006 B2
7031176 Kotsopoulos et al. Apr 2006 B2
7038430 Itabashi et al. May 2006 B2
7042195 Tsunetsugu et al. May 2006 B2
7045991 Nakamura et al. May 2006 B2
7046531 Zocchi et al. May 2006 B2
7053506 Alonso et al. May 2006 B2
7061211 Satoh et al. Jun 2006 B2
7061214 Mayega et al. Jun 2006 B2
7064967 Ichinose et al. Jun 2006 B2
7068017 Willner et al. Jun 2006 B2
7072194 Nayar et al. Jul 2006 B2
7078883 Chapman et al. Jul 2006 B2
7079406 Kurokami et al. Jul 2006 B2
7087332 Harris Aug 2006 B2
7088595 Nino Aug 2006 B2
7090509 Gilliland et al. Aug 2006 B1
7091707 Cutler Aug 2006 B2
7097516 Werner et al. Aug 2006 B2
7099169 West et al. Aug 2006 B2
7126053 Kurokami et al. Oct 2006 B2
7126294 Minami et al. Oct 2006 B2
7138786 Ishigaki et al. Nov 2006 B2
7142997 Widner Nov 2006 B1
7148669 Maksimovic et al. Dec 2006 B2
7150938 Munshi et al. Dec 2006 B2
7157888 Chen et al. Jan 2007 B2
7158359 Bertele et al. Jan 2007 B2
7158395 Deng et al. Jan 2007 B2
7161082 Matsushita et al. Jan 2007 B2
7174973 Lysaght Feb 2007 B1
7176667 Chen et al. Feb 2007 B2
7183667 Colby et al. Feb 2007 B2
7193872 Siri Mar 2007 B2
7202653 Pai Apr 2007 B2
7208674 Aylaian Apr 2007 B2
7218541 Price et al. May 2007 B2
7248946 Bashaw et al. Jul 2007 B2
7256566 Bhavaraju et al. Aug 2007 B2
7259474 Blanc Aug 2007 B2
7262979 Wai et al. Aug 2007 B2
7276886 Kinder et al. Oct 2007 B2
7277304 Stancu et al. Oct 2007 B2
7281141 Elkayam et al. Oct 2007 B2
7282814 Jacobs Oct 2007 B2
7282924 Wittner Oct 2007 B1
7291036 Daily et al. Nov 2007 B1
RE39976 Schiff et al. Jan 2008 E
7315052 Alter Jan 2008 B2
7319313 Dickerson et al. Jan 2008 B2
7324361 Siri Jan 2008 B2
7336004 Lai Feb 2008 B2
7336056 Dening Feb 2008 B1
7339287 Jepsen et al. Mar 2008 B2
7348802 Kasanyal et al. Mar 2008 B2
7352154 Cook Apr 2008 B2
7361952 Miura et al. Apr 2008 B2
7371963 Suenaga et al. May 2008 B2
7372712 Stancu et al. May 2008 B2
7385380 Ishigaki et al. Jun 2008 B2
7385833 Keung Jun 2008 B2
7388348 Mattichak Jun 2008 B2
7391190 Rajagopalan Jun 2008 B1
7394237 Chou et al. Jul 2008 B2
7405117 Zuniga et al. Jul 2008 B2
7414870 Rottger et al. Aug 2008 B2
7420354 Cutler Sep 2008 B2
7420815 Love Sep 2008 B2
7432691 Cutler Oct 2008 B2
7435134 Lenox Oct 2008 B2
7435897 Russell Oct 2008 B2
7443052 Wendt et al. Oct 2008 B2
7443152 Utsunomiya Oct 2008 B2
7450401 Iida Nov 2008 B2
7456510 Ito et al. Nov 2008 B2
7456523 Kobayashi Nov 2008 B2
7463500 West Dec 2008 B2
7466566 Fukumoto Dec 2008 B2
7471014 Lum et al. Dec 2008 B2
7471524 Batarseh et al. Dec 2008 B1
7479774 Wai et al. Jan 2009 B2
7482238 Sung Jan 2009 B2
7485987 Mori et al. Feb 2009 B2
7495419 Ju Feb 2009 B1
7504811 Watanabe et al. Mar 2009 B2
7518346 Prexl et al. Apr 2009 B2
7538451 Nomoto May 2009 B2
7560915 Ito et al. Jul 2009 B2
7589437 Henne et al. Sep 2009 B2
7595616 Prexl et al. Sep 2009 B2
7596008 Iwata et al. Sep 2009 B2
7599200 Tomonaga Oct 2009 B2
7600349 Liebendorfer Oct 2009 B2
7602080 Hadar et al. Oct 2009 B1
7602626 Iwata et al. Oct 2009 B2
7605498 Ledenev et al. Oct 2009 B2
7612283 Toyomura et al. Nov 2009 B2
7615981 Wong et al. Nov 2009 B2
7626834 Chisenga et al. Dec 2009 B2
7646116 Batarseh et al. Jan 2010 B2
7649434 Xu et al. Jan 2010 B2
7701083 Savage Apr 2010 B2
7709727 Roehrig et al. May 2010 B2
7719140 Ledenev et al. May 2010 B2
7723865 Kitanaka May 2010 B2
7733069 Toyomura et al. Jun 2010 B2
7748175 Liebendorfer Jul 2010 B2
7759575 Jones et al. Jul 2010 B2
7763807 Richter Jul 2010 B2
7772716 Shaver, II et al. Aug 2010 B2
7780472 Lenox Aug 2010 B2
7782031 Qiu et al. Aug 2010 B2
7783389 Yamada et al. Aug 2010 B2
7787273 Lu et al. Aug 2010 B2
7804282 Bertele Sep 2010 B2
7807919 Powell et al. Oct 2010 B2
7808125 Sachdeva et al. Oct 2010 B1
7812592 Prior et al. Oct 2010 B2
7812701 Lee et al. Oct 2010 B2
7821225 Chou et al. Oct 2010 B2
7824189 Lauermann et al. Nov 2010 B1
7839022 Wolfs Nov 2010 B2
7843085 Ledenev et al. Nov 2010 B2
7864497 Quardt et al. Jan 2011 B2
7868599 Rahman et al. Jan 2011 B2
7880334 Evans et al. Feb 2011 B2
7883808 Norimatsu et al. Feb 2011 B2
7884278 Powell et al. Feb 2011 B2
7893346 Nachamkin et al. Feb 2011 B2
7898112 Powell et al. Mar 2011 B2
7900361 Adest et al. Mar 2011 B2
7906007 Gibson et al. Mar 2011 B2
7906870 Ohm Mar 2011 B2
7919952 Fahrenbruch Apr 2011 B1
7919953 Porter et al. Apr 2011 B2
7925552 Tarbell et al. Apr 2011 B2
7944191 Xu May 2011 B2
7945413 Krein May 2011 B2
7948221 Watanabe et al. May 2011 B2
7952897 Nocentini et al. May 2011 B2
7960650 Richter et al. Jun 2011 B2
7960950 Glovinsky Jun 2011 B2
7969133 Zhang et al. Jun 2011 B2
7977810 Choi et al. Jul 2011 B2
8003885 Richter et al. Aug 2011 B2
8004113 Sander et al. Aug 2011 B2
8004116 Ledenev et al. Aug 2011 B2
8004117 Adest et al. Aug 2011 B2
8004866 Bucella et al. Aug 2011 B2
8013472 Adest et al. Sep 2011 B2
8018748 Leonard Sep 2011 B2
8035249 Shaver, II et al. Oct 2011 B2
8039730 Hadar et al. Oct 2011 B2
8049363 McLean et al. Nov 2011 B2
8050804 Kernahan Nov 2011 B2
8058747 Avrutsky et al. Nov 2011 B2
8058752 Erickson, Jr. et al. Nov 2011 B2
8067855 Mumtaz et al. Nov 2011 B2
8077437 Mumtaz et al. Dec 2011 B2
8080986 Lai et al. Dec 2011 B2
8089780 Mochikawa et al. Jan 2012 B2
8089785 Rodriguez Jan 2012 B2
8090548 Abdennadher et al. Jan 2012 B2
8093756 Porter et al. Jan 2012 B2
8093757 Wolfs Jan 2012 B2
8097818 Gerull et al. Jan 2012 B2
8098055 Avrutsky et al. Jan 2012 B2
8102074 Hadar et al. Jan 2012 B2
8102144 Capp et al. Jan 2012 B2
8111052 Glovinsky Feb 2012 B2
8116103 Zacharias et al. Feb 2012 B2
8138631 Allen et al. Mar 2012 B2
8138914 Wong et al. Mar 2012 B2
8139335 Quardt et al. Mar 2012 B2
8139382 Zhang et al. Mar 2012 B2
8148849 Zanarini et al. Apr 2012 B2
8158877 Klein et al. Apr 2012 B2
8169252 Fahrenbruch et al. May 2012 B2
8179147 Dargatz et al. May 2012 B2
8184460 O'Brien et al. May 2012 B2
8188610 Scholte-Wassink May 2012 B2
8204709 Presher, Jr. et al. Jun 2012 B2
8212408 Fishman Jul 2012 B2
8212409 Bettenwort et al. Jul 2012 B2
8248804 Han et al. Aug 2012 B2
8271599 Eizips et al. Sep 2012 B2
8274172 Hadar et al. Sep 2012 B2
8279644 Zhang et al. Oct 2012 B2
8284574 Chapman et al. Oct 2012 B2
8289183 Foss Oct 2012 B1
8289742 Adest et al. Oct 2012 B2
8294451 Hasenfus Oct 2012 B2
8299773 Jang et al. Oct 2012 B2
8304932 Ledenev et al. Nov 2012 B2
8310101 Amaratunga et al. Nov 2012 B2
8310102 Raju Nov 2012 B2
8314375 Arditi et al. Nov 2012 B2
8324921 Adest et al. Dec 2012 B2
8325059 Rozenboim Dec 2012 B2
8344548 Stern Jan 2013 B2
8369113 Rodriguez Feb 2013 B2
8378656 de Rooij et al. Feb 2013 B2
8379418 Falk Feb 2013 B2
8391031 Garrity Mar 2013 B2
8391032 Garrity et al. Mar 2013 B2
8395366 Uno Mar 2013 B2
8405248 Mumtaz et al. Mar 2013 B2
8405349 Kikinis et al. Mar 2013 B2
8405367 Chisenga et al. Mar 2013 B2
8410359 Richter Apr 2013 B2
8410889 Garrity et al. Apr 2013 B2
8410950 Takehara et al. Apr 2013 B2
8415552 Hadar et al. Apr 2013 B2
8415937 Hester Apr 2013 B2
8427009 Shaver, II et al. Apr 2013 B2
8436592 Saitoh May 2013 B2
8461809 Rodriguez Jun 2013 B2
8466789 Muhlberger et al. Jun 2013 B2
8472220 Garrity et al. Jun 2013 B2
8473250 Adest et al. Jun 2013 B2
8509032 Rakib Aug 2013 B2
8526205 Garrity Sep 2013 B2
8531055 Adest et al. Sep 2013 B2
8542512 Garrity Sep 2013 B2
8570017 Perichon et al. Oct 2013 B2
8581441 Rotzoll et al. Nov 2013 B2
8587151 Adest et al. Nov 2013 B2
8618692 Adest et al. Dec 2013 B2
8624443 Mumtaz Jan 2014 B2
8653689 Rozenboim Feb 2014 B2
8669675 Capp et al. Mar 2014 B2
8670255 Gong et al. Mar 2014 B2
8674548 Mumtaz Mar 2014 B2
8674668 Chisenga et al. Mar 2014 B2
8686333 Arditi et al. Apr 2014 B2
8710351 Robbins Apr 2014 B2
8751053 Hadar et al. Jun 2014 B2
8773236 Makhota et al. Jul 2014 B2
8791598 Jain Jul 2014 B2
8796884 Naiknaware et al. Aug 2014 B2
8809699 Funk Aug 2014 B2
8811047 Rodriguez Aug 2014 B2
8816535 Adest et al. Aug 2014 B2
8823212 Garrity et al. Sep 2014 B2
8823218 Hadar et al. Sep 2014 B2
8823342 Williams Sep 2014 B2
8835748 Frolov et al. Sep 2014 B2
8841916 Avrutsky Sep 2014 B2
8853886 Avrutsky et al. Oct 2014 B2
8854193 Makhota et al. Oct 2014 B2
8859884 Dunton et al. Oct 2014 B2
8860241 Hadar et al. Oct 2014 B2
8860246 Hadar et al. Oct 2014 B2
8878563 Robbins Nov 2014 B2
8917156 Garrity et al. Dec 2014 B2
8922061 Arditi Dec 2014 B2
8933321 Hadar et al. Jan 2015 B2
8934269 Garrity Jan 2015 B2
8963375 DeGraaff Feb 2015 B2
8963378 Fornage et al. Feb 2015 B1
8972765 Krolak et al. Mar 2015 B1
9130401 Adest et al. Sep 2015 B2
9257848 Coccia et al. Feb 2016 B2
9291696 Adest et al. Mar 2016 B2
9397497 Ledenev Jul 2016 B2
9401664 Perreault et al. Jul 2016 B2
9407161 Adest et al. Aug 2016 B2
9466737 Ledenev Oct 2016 B2
9647442 Yoscovich et al. May 2017 B2
9660527 Glovinski May 2017 B2
9673630 Ledenev et al. Jun 2017 B2
9819178 Gazit et al. Nov 2017 B2
9831916 Behrends Nov 2017 B2
9843193 Getsla Dec 2017 B2
9865411 Friebe et al. Jan 2018 B2
9923516 Har-Shai et al. Mar 2018 B2
9991717 Rowe et al. Jun 2018 B1
10032939 Ledenev et al. Jul 2018 B2
20010000957 Birchfield et al. May 2001 A1
20010023703 Kondo et al. Sep 2001 A1
20010032664 Takehara et al. Oct 2001 A1
20010034982 Naga et al. Nov 2001 A1
20010035180 Kimura et al. Nov 2001 A1
20010048605 Kurokami et al. Dec 2001 A1
20010050102 Matsumi et al. Dec 2001 A1
20010054881 Watanabe Dec 2001 A1
20020002040 Kline et al. Jan 2002 A1
20020014262 Matsushita et al. Feb 2002 A1
20020017900 Takeda et al. Feb 2002 A1
20020034083 Ayyanar et al. Mar 2002 A1
20020038667 Kondo et al. Apr 2002 A1
20020041505 Suzui et al. Apr 2002 A1
20020044473 Toyomura et al. Apr 2002 A1
20020047309 Droppo et al. Apr 2002 A1
20020047693 Chang Apr 2002 A1
20020056089 Houston May 2002 A1
20020063552 Arakawa May 2002 A1
20020063625 Takehara et al. May 2002 A1
20020078991 Nagao et al. Jun 2002 A1
20020080027 Conley Jun 2002 A1
20020085397 Suzui et al. Jul 2002 A1
20020105765 Kondo et al. Aug 2002 A1
20020113689 Gehlot et al. Aug 2002 A1
20020118559 Kurokami et al. Aug 2002 A1
20020127980 Amanullah et al. Sep 2002 A1
20020134567 Rasmussen et al. Sep 2002 A1
20020148497 Sasaoka et al. Oct 2002 A1
20020149950 Takebayashi Oct 2002 A1
20020162585 Sugawara et al. Nov 2002 A1
20020165458 Carter et al. Nov 2002 A1
20020177401 Judd et al. Nov 2002 A1
20020179140 Toyomura Dec 2002 A1
20020180408 McDaniel et al. Dec 2002 A1
20020190696 Darshan Dec 2002 A1
20030002303 Riggio et al. Jan 2003 A1
20030025594 Akiyama et al. Feb 2003 A1
20030038615 Elbanhawy Feb 2003 A1
20030047207 Aylaian Mar 2003 A1
20030058593 Bertele et al. Mar 2003 A1
20030058662 Baudelot et al. Mar 2003 A1
20030066076 Minahan Apr 2003 A1
20030066555 Hui et al. Apr 2003 A1
20030075211 Makita et al. Apr 2003 A1
20030080741 LeRow et al. May 2003 A1
20030085621 Potega May 2003 A1
20030090233 Browe May 2003 A1
20030090246 Shenai et al. May 2003 A1
20030094931 Renyolds May 2003 A1
20030107352 Downer et al. Jun 2003 A1
20030111103 Bower et al. Jun 2003 A1
20030116154 Butler et al. Jun 2003 A1
20030121514 Davenport et al. Jul 2003 A1
20030140960 Baum et al. Jul 2003 A1
20030156439 Ohmichi et al. Aug 2003 A1
20030164695 Fasshauer et al. Sep 2003 A1
20030185026 Matsuda et al. Oct 2003 A1
20030193821 Krieger et al. Oct 2003 A1
20030201674 Droppo et al. Oct 2003 A1
20030214274 Lethellier Nov 2003 A1
20030223257 Onoe Dec 2003 A1
20040004402 Kippley Jan 2004 A1
20040027112 Kondo et al. Feb 2004 A1
20040041548 Perry Mar 2004 A1
20040056642 Nebrigic et al. Mar 2004 A1
20040056768 Matsushita et al. Mar 2004 A1
20040061527 Knee Apr 2004 A1
20040076028 Achleitner et al. Apr 2004 A1
20040117676 Kobayashi et al. Jun 2004 A1
20040118446 Toyomura Jun 2004 A1
20040123894 Erban Jul 2004 A1
20040124816 DeLepaut Jul 2004 A1
20040125618 De Rooij et al. Jul 2004 A1
20040140719 Vulih et al. Jul 2004 A1
20040141345 Cheng et al. Jul 2004 A1
20040144043 Stevenson et al. Jul 2004 A1
20040150410 Schoepf et al. Aug 2004 A1
20040164718 McDaniel et al. Aug 2004 A1
20040165408 West et al. Aug 2004 A1
20040167676 Mizumaki Aug 2004 A1
20040169499 Huang et al. Sep 2004 A1
20040170038 Ichinose et al. Sep 2004 A1
20040189090 Yanagida et al. Sep 2004 A1
20040189432 Yan et al. Sep 2004 A1
20040201279 Templeton Oct 2004 A1
20040201933 Blanc Oct 2004 A1
20040207366 Sung Oct 2004 A1
20040211458 Gui et al. Oct 2004 A1
20040213169 Allard et al. Oct 2004 A1
20040223351 Kurokami et al. Nov 2004 A1
20040230343 Zalesski Nov 2004 A1
20040233685 Matsuo et al. Nov 2004 A1
20040246226 Moon Dec 2004 A1
20040255999 Matsushita et al. Dec 2004 A1
20040258141 Tustison et al. Dec 2004 A1
20040262998 Kunow et al. Dec 2004 A1
20040263183 Naidu et al. Dec 2004 A1
20040264225 Bhavaraju et al. Dec 2004 A1
20050002214 Deng et al. Jan 2005 A1
20050005785 Poss et al. Jan 2005 A1
20050006958 Dubovsky Jan 2005 A1
20050017697 Capel Jan 2005 A1
20050017701 Hsu Jan 2005 A1
20050030772 Phadke Feb 2005 A1
20050040800 Sutardja Feb 2005 A1
20050041442 Balakrishnan Feb 2005 A1
20050057214 Matan Mar 2005 A1
20050057215 Matan Mar 2005 A1
20050068012 Cutler Mar 2005 A1
20050068820 Radosevich et al. Mar 2005 A1
20050077879 Near Apr 2005 A1
20050099138 Wilhelm May 2005 A1
20050103376 Matsushita et al. May 2005 A1
20050105224 Nishi May 2005 A1
20050105306 Deng et al. May 2005 A1
20050109386 Marshall May 2005 A1
20050110454 Tsai et al. May 2005 A1
20050121067 Toyomura et al. Jun 2005 A1
20050122747 Gaksch Jun 2005 A1
20050135031 Colby et al. Jun 2005 A1
20050139258 Liu et al. Jun 2005 A1
20050140335 Lee et al. Jun 2005 A1
20050162018 Realmuto et al. Jul 2005 A1
20050163063 Kuchler et al. Jul 2005 A1
20050172995 Rohrig et al. Aug 2005 A1
20050179420 Satoh et al. Aug 2005 A1
20050194937 Jacobs Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050213272 Kobayashi Sep 2005 A1
20050218876 Nino Oct 2005 A1
20050225090 Wobben Oct 2005 A1
20050226017 Kotsopoulos et al. Oct 2005 A1
20050242795 Al-Kuran et al. Nov 2005 A1
20050257827 Gaudiana et al. Nov 2005 A1
20050269988 Thrap Dec 2005 A1
20050275386 Jepsen et al. Dec 2005 A1
20050275527 Kates Dec 2005 A1
20050275979 Xu Dec 2005 A1
20050281064 Olsen et al. Dec 2005 A1
20050286510 Nakajima et al. Dec 2005 A1
20050287402 Maly et al. Dec 2005 A1
20060001406 Matan Jan 2006 A1
20060017327 Siri et al. Jan 2006 A1
20060034106 Johnson Feb 2006 A1
20060038692 Schnetker Feb 2006 A1
20060043792 Hjort et al. Mar 2006 A1
20060043942 Cohen Mar 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060066349 Murakami Mar 2006 A1
20060068239 Norimatsu et al. Mar 2006 A1
20060077046 Endo Apr 2006 A1
20060103360 Cutler May 2006 A9
20060108979 Daniel et al. May 2006 A1
20060109009 Banke et al. May 2006 A1
20060113843 Beveridge Jun 2006 A1
20060113979 Ishigaki et al. Jun 2006 A1
20060116968 Arisawa Jun 2006 A1
20060118162 Saelzer et al. Jun 2006 A1
20060125449 Unger Jun 2006 A1
20060132102 Harvey Jun 2006 A1
20060149396 Templeton Jul 2006 A1
20060152085 Flett et al. Jul 2006 A1
20060162772 Presher et al. Jul 2006 A1
20060163946 Henne et al. Jul 2006 A1
20060164065 Hoouk et al. Jul 2006 A1
20060171182 Siri et al. Aug 2006 A1
20060174939 Matan Aug 2006 A1
20060176029 McGinty et al. Aug 2006 A1
20060176031 Forman et al. Aug 2006 A1
20060176036 Flatness et al. Aug 2006 A1
20060176716 Balakrishnan et al. Aug 2006 A1
20060185727 Matan Aug 2006 A1
20060192540 Balakrishnan et al. Aug 2006 A1
20060208660 Shinmura et al. Sep 2006 A1
20060222916 Norimatsu et al. Oct 2006 A1
20060225781 Locher Oct 2006 A1
20060227577 Horiuchi et al. Oct 2006 A1
20060227578 Datta et al. Oct 2006 A1
20060231132 Neussner Oct 2006 A1
20060232220 Melis Oct 2006 A1
20060235717 Sharma et al. Oct 2006 A1
20060237058 McClintock et al. Oct 2006 A1
20060238750 Shimotomai Oct 2006 A1
20060261751 Okabe et al. Nov 2006 A1
20060266408 Horne et al. Nov 2006 A1
20060267515 Burke et al. Nov 2006 A1
20060290317 McNulty et al. Dec 2006 A1
20070001653 Xu Jan 2007 A1
20070013349 Bassett Jan 2007 A1
20070019613 Frezzolini Jan 2007 A1
20070024257 Boldo Feb 2007 A1
20070027644 Bettenwort et al. Feb 2007 A1
20070029636 Kanemaru et al. Feb 2007 A1
20070030068 Motonobu et al. Feb 2007 A1
20070035975 Dickerson et al. Feb 2007 A1
20070040540 Cutler Feb 2007 A1
20070044837 Simburger et al. Mar 2007 A1
20070075689 Kinder et al. Apr 2007 A1
20070075711 Blanc et al. Apr 2007 A1
20070081364 Andreycak Apr 2007 A1
20070085523 Scoones et al. Apr 2007 A1
20070089778 Horne et al. Apr 2007 A1
20070103108 Capp et al. May 2007 A1
20070107767 Hayden et al. May 2007 A1
20070115635 Low et al. May 2007 A1
20070119718 Gibson et al. May 2007 A1
20070121648 Hahn May 2007 A1
20070133241 Mumtaz et al. Jun 2007 A1
20070133421 Young Jun 2007 A1
20070147075 Bang Jun 2007 A1
20070158185 Andelman et al. Jul 2007 A1
20070159866 Siri Jul 2007 A1
20070164612 Wendt et al. Jul 2007 A1
20070164750 Chen et al. Jul 2007 A1
20070165347 Wendt et al. Jul 2007 A1
20070205778 Fabbro et al. Sep 2007 A1
20070209656 Lee Sep 2007 A1
20070211888 Corcoran et al. Sep 2007 A1
20070223165 Itri Sep 2007 A1
20070227574 Cart Oct 2007 A1
20070235071 Work et al. Oct 2007 A1
20070236187 Wai et al. Oct 2007 A1
20070241720 Sakamoto et al. Oct 2007 A1
20070246546 Yoshida Oct 2007 A1
20070247135 Koga Oct 2007 A1
20070247877 Kwon et al. Oct 2007 A1
20070271006 Golden et al. Nov 2007 A1
20070273339 Haines Nov 2007 A1
20070273342 Kataoka et al. Nov 2007 A1
20070273351 Matan Nov 2007 A1
20070284451 Uramoto Dec 2007 A1
20070290636 Beck et al. Dec 2007 A1
20070290656 Lee Tai Keung Dec 2007 A1
20080021707 Bou-Ghazale et al. Jan 2008 A1
20080023061 Clemens et al. Jan 2008 A1
20080024098 Hojo Jan 2008 A1
20080036440 Garmer Feb 2008 A1
20080055941 Victor et al. Mar 2008 A1
20080080177 Chang Apr 2008 A1
20080088184 Tung et al. Apr 2008 A1
20080089277 Alexander et al. Apr 2008 A1
20080097655 Hadar et al. Apr 2008 A1
20080106250 Prior et al. May 2008 A1
20080111529 Shah et al. May 2008 A1
20080115823 Kinsey May 2008 A1
20080121272 Besser et al. May 2008 A1
20080122449 Besser et al. May 2008 A1
20080122518 Besser et al. May 2008 A1
20080136367 Adest et al. Jun 2008 A1
20080142071 Dorn et al. Jun 2008 A1
20080143188 Adest et al. Jun 2008 A1
20080143462 Belisle et al. Jun 2008 A1
20080144294 Adest et al. Jun 2008 A1
20080147335 Adest et al. Jun 2008 A1
20080149167 Liu Jun 2008 A1
20080150366 Adest et al. Jun 2008 A1
20080150484 Kimball et al. Jun 2008 A1
20080164766 Adest et al. Jul 2008 A1
20080179949 Besser et al. Jul 2008 A1
20080186004 Williams Aug 2008 A1
20080191560 Besser et al. Aug 2008 A1
20080191675 Besser et al. Aug 2008 A1
20080192519 Iwata et al. Aug 2008 A1
20080198523 Schmidt et al. Aug 2008 A1
20080205096 Lai et al. Aug 2008 A1
20080218152 Bo Sep 2008 A1
20080224652 Zhu et al. Sep 2008 A1
20080236647 Gibson et al. Oct 2008 A1
20080236648 Klein et al. Oct 2008 A1
20080238195 Shaver et al. Oct 2008 A1
20080238372 Cintra et al. Oct 2008 A1
20080246460 Smith Oct 2008 A1
20080246463 Sinton et al. Oct 2008 A1
20080252273 Woo et al. Oct 2008 A1
20080264470 Masuda et al. Oct 2008 A1
20080266913 Brotto et al. Oct 2008 A1
20080266919 Mallwitz Oct 2008 A1
20080283118 Rotzoll et al. Nov 2008 A1
20080291707 Fang Nov 2008 A1
20080294472 Yamada Nov 2008 A1
20080297963 Lee et al. Dec 2008 A1
20080298608 Wilcox Dec 2008 A1
20080303503 Wolfs Dec 2008 A1
20080304296 NadimpalliRaju et al. Dec 2008 A1
20080304298 Toba et al. Dec 2008 A1
20090012917 Thompson et al. Jan 2009 A1
20090014050 Haaf Jan 2009 A1
20090014057 Croft et al. Jan 2009 A1
20090014058 Croft et al. Jan 2009 A1
20090015071 Iwata et al. Jan 2009 A1
20090020151 Fornage Jan 2009 A1
20090021877 Fornage et al. Jan 2009 A1
20090039833 Kitagawa Feb 2009 A1
20090039852 Fishelov et al. Feb 2009 A1
20090064252 Howarter et al. Mar 2009 A1
20090066357 Fornage Mar 2009 A1
20090066399 Chen et al. Mar 2009 A1
20090069950 Kurokami et al. Mar 2009 A1
20090073726 Babcock Mar 2009 A1
20090078300 Ang et al. Mar 2009 A1
20090080226 Fornage Mar 2009 A1
20090084570 Gherardini et al. Apr 2009 A1
20090097172 Bremicker et al. Apr 2009 A1
20090097283 Krein et al. Apr 2009 A1
20090101191 Beck et al. Apr 2009 A1
20090102440 Coles Apr 2009 A1
20090114263 Powell et al. May 2009 A1
20090120485 Kikinis May 2009 A1
20090121549 Leonard May 2009 A1
20090133736 Powell et al. May 2009 A1
20090140715 Adest et al. Jun 2009 A1
20090141522 Adest et al. Jun 2009 A1
20090145480 Adest et al. Jun 2009 A1
20090146667 Adest et al. Jun 2009 A1
20090146671 Gazit Jun 2009 A1
20090147554 Adest et al. Jun 2009 A1
20090150005 Hadar et al. Jun 2009 A1
20090160258 Allen et al. Jun 2009 A1
20090179500 Ragonese et al. Jul 2009 A1
20090179662 Moulton et al. Jul 2009 A1
20090182532 Stoeber et al. Jul 2009 A1
20090184746 Fahrenbruch Jul 2009 A1
20090189456 Skutt Jul 2009 A1
20090190275 Gilmore et al. Jul 2009 A1
20090195081 Quardt et al. Aug 2009 A1
20090206666 Sella et al. Aug 2009 A1
20090207543 Boniface et al. Aug 2009 A1
20090217965 Dougal et al. Sep 2009 A1
20090224817 Nakamura et al. Sep 2009 A1
20090234692 Powell et al. Sep 2009 A1
20090237042 Glovinski Sep 2009 A1
20090237043 Glovinsky Sep 2009 A1
20090242011 Proisy et al. Oct 2009 A1
20090243547 Andelfinger Oct 2009 A1
20090273241 Gazit et al. Nov 2009 A1
20090278496 Nakao et al. Nov 2009 A1
20090282755 Abbott et al. Nov 2009 A1
20090283129 Foss Nov 2009 A1
20090283130 Gilmore et al. Nov 2009 A1
20090284232 Zhang et al. Nov 2009 A1
20090284240 Zhang et al. Nov 2009 A1
20090284998 Zhang et al. Nov 2009 A1
20090295225 Asplund et al. Dec 2009 A1
20090296434 De Rooij et al. Dec 2009 A1
20090322494 Lee Dec 2009 A1
20090325003 Aberle et al. Dec 2009 A1
20100001587 Casey et al. Jan 2010 A1
20100002349 La Scala et al. Jan 2010 A1
20100013452 Tang et al. Jan 2010 A1
20100020576 Falk Jan 2010 A1
20100026097 Avrutsky et al. Feb 2010 A1
20100026736 Plut Feb 2010 A1
20100038907 Hunt et al. Feb 2010 A1
20100052735 Burkland et al. Mar 2010 A1
20100057267 Liu et al. Mar 2010 A1
20100060000 Scholte-Wassink Mar 2010 A1
20100071742 de Rooij et al. Mar 2010 A1
20100085670 Palaniswami et al. Apr 2010 A1
20100115093 Rice May 2010 A1
20100124027 Handelsman et al. May 2010 A1
20100124087 Falk May 2010 A1
20100126550 Foss May 2010 A1
20100127570 Hadar et al. May 2010 A1
20100127571 Hadar et al. May 2010 A1
20100131108 Meyer May 2010 A1
20100132757 He et al. Jun 2010 A1
20100132758 Gilmore Jun 2010 A1
20100132761 Echizenya et al. Jun 2010 A1
20100133911 Williams et al. Jun 2010 A1
20100139734 Hadar et al. Jun 2010 A1
20100139743 Hadar et al. Jun 2010 A1
20100141041 Bose et al. Jun 2010 A1
20100141153 Recker et al. Jun 2010 A1
20100147362 King et al. Jun 2010 A1
20100154858 Jain Jun 2010 A1
20100176773 Capel Jul 2010 A1
20100181957 Goeltner Jul 2010 A1
20100191383 Gaul Jul 2010 A1
20100195357 Fornage et al. Aug 2010 A1
20100195361 Stem Aug 2010 A1
20100206378 Erickson, Jr. et al. Aug 2010 A1
20100207764 Muhlberger et al. Aug 2010 A1
20100207770 Thiemann Aug 2010 A1
20100208501 Matan et al. Aug 2010 A1
20100213897 Tse Aug 2010 A1
20100214808 Rodriguez Aug 2010 A1
20100217551 Goff et al. Aug 2010 A1
20100229915 Ledenev et al. Sep 2010 A1
20100241375 Kumar et al. Sep 2010 A1
20100244575 Coccia et al. Sep 2010 A1
20100246223 Xuan Sep 2010 A1
20100264736 Mumtaz et al. Oct 2010 A1
20100269430 Haddock Oct 2010 A1
20100277001 Wagoner Nov 2010 A1
20100282290 Schwarze et al. Nov 2010 A1
20100286836 Shaver, II et al. Nov 2010 A1
20100288327 Lisi et al. Nov 2010 A1
20100289337 Stauth et al. Nov 2010 A1
20100294528 Sella et al. Nov 2010 A1
20100294903 Shmukler et al. Nov 2010 A1
20100295680 Dumps Nov 2010 A1
20100297860 Shmukler et al. Nov 2010 A1
20100301991 Sella et al. Dec 2010 A1
20100308662 Schatz et al. Dec 2010 A1
20100309692 Chisenga et al. Dec 2010 A1
20100321148 Gevorkian Dec 2010 A1
20100326809 Lang et al. Dec 2010 A1
20100327657 Kuran Dec 2010 A1
20100327659 Lisi et al. Dec 2010 A1
20100332047 Arditi et al. Dec 2010 A1
20110006743 Fabbro Jan 2011 A1
20110012430 Cheng et al. Jan 2011 A1
20110025130 Hadar et al. Feb 2011 A1
20110031816 Buthker et al. Feb 2011 A1
20110031946 Egan et al. Feb 2011 A1
20110037600 Takehara et al. Feb 2011 A1
20110043172 Dearn Feb 2011 A1
20110045802 Bland et al. Feb 2011 A1
20110049990 Amaratunga et al. Mar 2011 A1
20110050002 De Luca Mar 2011 A1
20110050190 Avrutsky Mar 2011 A1
20110056533 Kuan Mar 2011 A1
20110061705 Croft et al. Mar 2011 A1
20110061713 Powell et al. Mar 2011 A1
20110062784 Wolfs Mar 2011 A1
20110068633 Quardt et al. Mar 2011 A1
20110079263 Avrutsky Apr 2011 A1
20110080147 Schoenlinner et al. Apr 2011 A1
20110083733 Marroquin et al. Apr 2011 A1
20110084553 Adest et al. Apr 2011 A1
20110088741 Dunton et al. Apr 2011 A1
20110108087 Croft et al. May 2011 A1
20110114154 Lichy et al. May 2011 A1
20110115295 Moon et al. May 2011 A1
20110121441 Halstead et al. May 2011 A1
20110121652 Sella et al. May 2011 A1
20110125431 Adest et al. May 2011 A1
20110132424 Rakib Jun 2011 A1
20110133552 Binder et al. Jun 2011 A1
20110139213 Lee Jun 2011 A1
20110140536 Adest et al. Jun 2011 A1
20110161722 Makhota et al. Jun 2011 A1
20110172842 Makhota et al. Jul 2011 A1
20110173276 Eizips et al. Jul 2011 A1
20110181251 Porter et al. Jul 2011 A1
20110181340 Gazit Jul 2011 A1
20110183537 Fornage et al. Jul 2011 A1
20110198935 Hinman et al. Aug 2011 A1
20110210610 Mitsuoka et al. Sep 2011 A1
20110210611 Ledenev et al. Sep 2011 A1
20110210612 Leutwein Sep 2011 A1
20110218687 Hadar et al. Sep 2011 A1
20110227411 Arditi Sep 2011 A1
20110232714 Bhavaraju et al. Sep 2011 A1
20110240100 Lu et al. Oct 2011 A1
20110245989 Makhota et al. Oct 2011 A1
20110246338 Eich Oct 2011 A1
20110254372 Haines et al. Oct 2011 A1
20110260866 Avrutsky et al. Oct 2011 A1
20110267721 Chaintreuil et al. Nov 2011 A1
20110267859 Chapman Nov 2011 A1
20110271611 Maracci et al. Nov 2011 A1
20110273015 Adest et al. Nov 2011 A1
20110273016 Adest et al. Nov 2011 A1
20110273017 Borup et al. Nov 2011 A1
20110273302 Fornage et al. Nov 2011 A1
20110278955 Signorelli et al. Nov 2011 A1
20110285205 Ledenev et al. Nov 2011 A1
20110285375 Deboy Nov 2011 A1
20110290317 Naumovitz et al. Dec 2011 A1
20110291486 Adest et al. Dec 2011 A1
20110298288 Cho et al. Dec 2011 A1
20110301772 Zuercher et al. Dec 2011 A1
20110304204 Avrutsky et al. Dec 2011 A1
20110304213 Avrutsky et al. Dec 2011 A1
20110304215 Avrutsky et al. Dec 2011 A1
20110316346 Porter et al. Dec 2011 A1
20120007434 Perreault et al. Jan 2012 A1
20120007613 Gazit Jan 2012 A1
20120019966 DeBoer Jan 2012 A1
20120026763 Humphrey et al. Feb 2012 A1
20120026769 Schroeder et al. Feb 2012 A1
20120032515 Ledenev et al. Feb 2012 A1
20120033392 Golubovic et al. Feb 2012 A1
20120033463 Rodriguez Feb 2012 A1
20120039099 Rodriguez Feb 2012 A1
20120042588 Erickson, Jr. Feb 2012 A1
20120043818 Stratakos et al. Feb 2012 A1
20120043823 Stratakos et al. Feb 2012 A1
20120044014 Stratakos et al. Feb 2012 A1
20120044717 Suntio et al. Feb 2012 A1
20120048325 Matsuo et al. Mar 2012 A1
20120049627 Matsuo et al. Mar 2012 A1
20120049801 Chang Mar 2012 A1
20120056483 Capp et al. Mar 2012 A1
20120063177 Garrity Mar 2012 A1
20120080943 Phadke Apr 2012 A1
20120081009 Shteynberg et al. Apr 2012 A1
20120081933 Garrity Apr 2012 A1
20120081934 Garrity et al. Apr 2012 A1
20120081937 Phadke Apr 2012 A1
20120087159 Chapman et al. Apr 2012 A1
20120091810 Aiello et al. Apr 2012 A1
20120091817 Seymour et al. Apr 2012 A1
20120098344 Bergveld et al. Apr 2012 A1
20120104861 Kojori et al. May 2012 A1
20120104863 Yuan May 2012 A1
20120113554 Paoletti et al. May 2012 A1
20120119584 Hadar et al. May 2012 A1
20120127764 Phadke et al. May 2012 A1
20120133372 Tsai et al. May 2012 A1
20120138123 Newdoll et al. Jun 2012 A1
20120139343 Adest et al. Jun 2012 A1
20120146420 Wolfs Jun 2012 A1
20120146583 Gaul et al. Jun 2012 A1
20120161526 Huang et al. Jun 2012 A1
20120161528 Mumtaz et al. Jun 2012 A1
20120169124 Nakashima et al. Jul 2012 A1
20120174961 Larson et al. Jul 2012 A1
20120175961 Har-Shai et al. Jul 2012 A1
20120175963 Adest et al. Jul 2012 A1
20120187769 Spannhake et al. Jul 2012 A1
20120194003 Schmidt et al. Aug 2012 A1
20120199172 Avrutsky Aug 2012 A1
20120212066 Adest et al. Aug 2012 A1
20120215367 Eizips et al. Aug 2012 A1
20120217973 Avrutsky Aug 2012 A1
20120240490 Gangemi Sep 2012 A1
20120253533 Eizips et al. Oct 2012 A1
20120253541 Arditi et al. Oct 2012 A1
20120255591 Arditi et al. Oct 2012 A1
20120268969 Cuk Oct 2012 A1
20120271576 Kamel et al. Oct 2012 A1
20120274145 Taddeo Nov 2012 A1
20120274264 Mun et al. Nov 2012 A1
20120280571 Hargis Nov 2012 A1
20120299380 Haupt Nov 2012 A1
20120318320 Robbins Dec 2012 A1
20130002335 DeGraaff Jan 2013 A1
20130026839 Grana Jan 2013 A1
20130026840 Arditi et al. Jan 2013 A1
20130026842 Arditi et al. Jan 2013 A1
20130026843 Arditi et al. Jan 2013 A1
20130038124 Newdoll et al. Feb 2013 A1
20130039028 Korman et al. Feb 2013 A1
20130049710 Kraft et al. Feb 2013 A1
20130062958 Erickson, Jr. et al. Mar 2013 A1
20130063119 Lubomirsky Mar 2013 A1
20130082724 Noda et al. Apr 2013 A1
20130094112 Burghardt et al. Apr 2013 A1
20130094262 Avrutsky Apr 2013 A1
20130134790 Amaratunga et al. May 2013 A1
20130181533 Capp et al. Jul 2013 A1
20130192657 Hadar et al. Aug 2013 A1
20130193765 Yoscovich Aug 2013 A1
20130194706 Har-Shai Aug 2013 A1
20130214607 Harrison Aug 2013 A1
20130222144 Hadar et al. Aug 2013 A1
20130229834 Garrity et al. Sep 2013 A1
20130229842 Garrity Sep 2013 A1
20130234518 Mumtaz et al. Sep 2013 A1
20130235637 Rodriguez Sep 2013 A1
20130269181 McBride et al. Oct 2013 A1
20130279210 Chisenga et al. Oct 2013 A1
20130285459 Jaoui et al. Oct 2013 A1
20130294126 Garrity et al. Nov 2013 A1
20130307556 Ledenev et al. Nov 2013 A1
20130313909 Storbeck et al. Nov 2013 A1
20130320778 Hopf et al. Dec 2013 A1
20130321013 Pisklak et al. Dec 2013 A1
20130332093 Adest et al. Dec 2013 A1
20130335861 Laschinski et al. Dec 2013 A1
20140062206 Bryson Mar 2014 A1
20140077756 Kataoka et al. Mar 2014 A1
20140097808 Clark et al. Apr 2014 A1
20140119076 Chang et al. May 2014 A1
20140167715 Wu et al. Jun 2014 A1
20140169053 Ilic et al. Jun 2014 A1
20140191583 Chisenga et al. Jul 2014 A1
20140233136 Heerdt Aug 2014 A1
20140246915 Mumtaz Sep 2014 A1
20140246927 Mumtaz Sep 2014 A1
20140252859 Chisenga et al. Sep 2014 A1
20140265551 Willis Sep 2014 A1
20140265579 Mumtaz Sep 2014 A1
20140265629 Gazit et al. Sep 2014 A1
20140265638 Orr et al. Sep 2014 A1
20140293491 Robbins Oct 2014 A1
20140306543 Garrity et al. Oct 2014 A1
20140327313 Arditi et al. Nov 2014 A1
20140327995 Panjwani Nov 2014 A1
20140354245 Batikoff et al. Dec 2014 A1
20150022006 Garrity et al. Jan 2015 A1
20150028683 Hadar et al. Jan 2015 A1
20150028692 Makhota et al. Jan 2015 A1
20150061409 Dunton Mar 2015 A1
20150131187 Krein et al. May 2015 A1
20150188415 Abido et al. Jul 2015 A1
20150263609 Weida et al. Sep 2015 A1
20150318410 Higuma Nov 2015 A1
20150364918 Singh et al. Dec 2015 A1
20150372490 Bakas et al. Dec 2015 A1
20150381108 Hoft Dec 2015 A1
20150381111 Nicolescu et al. Dec 2015 A1
20160006392 Hoft Jan 2016 A1
20160036235 Getsla Feb 2016 A1
20160126367 Dunton May 2016 A1
20160172900 Welch, Jr. Jun 2016 A1
20160181802 Jacobson et al. Jun 2016 A1
20160211841 Harrison Jul 2016 A1
20160226252 Kravtiz Aug 2016 A1
20160226257 Porter et al. Aug 2016 A1
20160241039 Cheng et al. Aug 2016 A1
20160268809 Ledenev et al. Sep 2016 A1
20160276820 Olivas et al. Sep 2016 A1
20160329715 Orr Nov 2016 A1
20160336899 Ledenev et al. Nov 2016 A1
20160380436 Porter et al. Dec 2016 A1
20170104413 Busch et al. Apr 2017 A1
20170179876 Freeman et al. Jun 2017 A1
20170184343 Freer et al. Jun 2017 A1
20170207746 Yoscovich et al. Jul 2017 A1
20170211190 Glasscock et al. Jul 2017 A1
20170271879 Ledenev et al. Sep 2017 A1
20170278375 Galin Sep 2017 A1
20170288384 Loewenstern et al. Oct 2017 A1
20170331325 Ristau Nov 2017 A1
20180145593 Xi et al. May 2018 A1
20180191292 Ehlmann Jul 2018 A1
20190379279 Adest et al. Dec 2019 A1
Foreign Referenced Citations (649)
Number Date Country
2073800 Sep 2000 AU
2005262278 Jan 2006 AU
2012225199 Oct 2013 AU
1183574 Mar 1985 CA
2063243 Dec 1991 CA
2301657 Mar 1999 CA
2394761 Jun 2001 CA
2658087 Jun 2001 CA
2443450 Mar 2005 CA
2572452 Jan 2006 CA
2613038 Jan 2007 CA
2704605 May 2009 CA
2702392 Sep 2015 CA
2071396 Feb 1991 CN
1106523 Aug 1995 CN
2284479 Jun 1998 CN
1188453 Jul 1998 CN
2305016 Jan 1999 CN
1236213 Nov 1999 CN
1244745 Feb 2000 CN
1262552 Aug 2000 CN
1064487 Apr 2001 CN
1309451 Aug 2001 CN
1362655 Aug 2002 CN
2514538 Oct 2002 CN
1122905 Oct 2003 CN
2579063 Oct 2003 CN
1474492 Feb 2004 CN
1523726 Aug 2004 CN
1551377 Dec 2004 CN
1185782 Jan 2005 CN
2672938 Jan 2005 CN
1588773 Mar 2005 CN
1201157 May 2005 CN
1614854 May 2005 CN
2706955 Jun 2005 CN
1245795 Mar 2006 CN
1787717 Jun 2006 CN
1794537 Jun 2006 CN
1838191 Sep 2006 CN
1841254 Oct 2006 CN
1841823 Oct 2006 CN
1892239 Jan 2007 CN
1902809 Jan 2007 CN
1929276 Mar 2007 CN
1930925 Mar 2007 CN
1933315 Mar 2007 CN
2891438 Apr 2007 CN
101030752 Sep 2007 CN
101050770 Oct 2007 CN
101107712 Jan 2008 CN
100371843 Feb 2008 CN
101128974 Feb 2008 CN
101136129 Mar 2008 CN
101180781 May 2008 CN
101257221 Sep 2008 CN
100426175 Oct 2008 CN
201167381 Dec 2008 CN
201203438 Mar 2009 CN
101488271 Jul 2009 CN
101521459 Sep 2009 CN
101523230 Sep 2009 CN
101647172 Feb 2010 CN
101672252 Mar 2010 CN
101697462 Apr 2010 CN
101779291 Jul 2010 CN
101847939 Sep 2010 CN
201601477 Oct 2010 CN
201623478 Nov 2010 CN
201623651 Nov 2010 CN
101902051 Dec 2010 CN
101904015 Dec 2010 CN
201663167 Dec 2010 CN
101939660 Jan 2011 CN
101951011 Jan 2011 CN
101951190 Jan 2011 CN
101953051 Jan 2011 CN
101953060 Jan 2011 CN
101976855 Feb 2011 CN
101976952 Feb 2011 CN
101980409 Feb 2011 CN
102084584 Jun 2011 CN
102089883 Jun 2011 CN
102117815 Jul 2011 CN
102148584 Aug 2011 CN
201926948 Aug 2011 CN
201956938 Aug 2011 CN
202034903 Nov 2011 CN
102273039 Dec 2011 CN
202103601 Jan 2012 CN
102362550 Feb 2012 CN
102386259 Mar 2012 CN
202178274 Mar 2012 CN
102474112 May 2012 CN
102771017 Nov 2012 CN
202871823 Apr 2013 CN
203367304 Dec 2013 CN
104685785 Jun 2015 CN
105075046 Nov 2015 CN
105164915 Dec 2015 CN
1161639 Jan 1964 DE
3236071 Jan 1984 DE
3525630 Jan 1987 DE
3729000 Mar 1989 DE
4019710 Jan 1992 DE
4032569 Apr 1992 DE
4041672 Jun 1992 DE
9312710 Oct 1993 DE
4232356 Mar 1994 DE
4325436 Feb 1995 DE
4328511 Mar 1995 DE
19515786 Nov 1995 DE
19502762 Aug 1996 DE
19614861 Jul 1997 DE
19609189 Sep 1997 DE
19618882 Nov 1997 DE
19701897 Jul 1998 DE
19718046 Nov 1998 DE
19732218 Mar 1999 DE
19737286 Mar 1999 DE
19838230 Feb 2000 DE
19846818 Apr 2000 DE
19859732 Jun 2000 DE
19904561 Aug 2000 DE
19928809 Jan 2001 DE
019937410 Feb 2001 DE
19961705 Jul 2001 DE
10064039 Dec 2001 DE
10060108 Jun 2002 DE
10103431 Aug 2002 DE
10136147 Feb 2003 DE
10219956 Apr 2003 DE
10222621 Nov 2003 DE
202004001246 Apr 2004 DE
10345302 Apr 2005 DE
102004043478 Apr 2005 DE
102004053942 May 2006 DE
102004037446 Jun 2006 DE
69734495 Jul 2006 DE
69735169 Aug 2006 DE
102005012213 Aug 2006 DE
102005018173 Oct 2006 DE
20 2005 020161 Nov 2006 DE
102005036153 Dec 2006 DE
102005030907 Jan 2007 DE
102005032864 Jan 2007 DE
102006023563 Nov 2007 DE
102006026073 Dec 2007 DE
202007002077 Apr 2008 DE
102006060815 Jun 2008 DE
602004011201 Dec 2008 DE
102007051134 Mar 2009 DE
202008012345 Mar 2009 DE
102007037130 Apr 2009 DE
102007050031 Apr 2009 DE
202009007318 Aug 2009 DE
102008042199 Apr 2010 DE
102008057874 May 2010 DE
102009051186 May 2010 DE
102009022569 Dec 2010 DE
102010023549 Dec 2011 DE
102013101314 Aug 2014 DE
102013106255 Dec 2014 DE
102013106808 Dec 2014 DE
0027405 Apr 1981 EP
169673 Jan 1986 EP
0178757 Apr 1986 EP
0206253 Dec 1986 EP
0231211 Aug 1987 EP
0293219 Nov 1988 EP
0340006 Nov 1989 EP
0418612 Mar 1991 EP
419093 Mar 1991 EP
420295 Apr 1991 EP
0521467 Jan 1993 EP
0576271 Dec 1993 EP
0577334 Jan 1994 EP
604777 Jul 1994 EP
0628901 Dec 1994 EP
0642199 Mar 1995 EP
653692 May 1995 EP
0670915 Sep 1995 EP
677749 Oct 1995 EP
0677749 Jan 1996 EP
756178 Jan 1997 EP
0756372 Jan 1997 EP
0780750 Jun 1997 EP
0809293 Nov 1997 EP
824273 Feb 1998 EP
827254 Mar 1998 EP
0895146 Feb 1999 EP
0906660 Apr 1999 EP
0947905 Oct 1999 EP
964415 Dec 1999 EP
964457 Dec 1999 EP
0978884 Mar 2000 EP
1012886 Jun 2000 EP
1024575 Aug 2000 EP
1034465 Sep 2000 EP
1035640 Sep 2000 EP
1039361 Sep 2000 EP
1039620 Sep 2000 EP
1039621 Sep 2000 EP
1047179 Oct 2000 EP
1130770 Sep 2001 EP
1143594 Oct 2001 EP
1187291 Mar 2002 EP
1235339 Aug 2002 EP
1239573 Sep 2002 EP
1239576 Sep 2002 EP
1254505 Nov 2002 EP
1271742 Jan 2003 EP
1291997 Mar 2003 EP
1330009 Jul 2003 EP
1339153 Aug 2003 EP
1369983 Dec 2003 EP
1376706 Jan 2004 EP
1388774 Feb 2004 EP
1400988 Mar 2004 EP
1407534 Apr 2004 EP
1120895 May 2004 EP
1418482 May 2004 EP
1429393 Jun 2004 EP
1442473 Aug 2004 EP
1447561 Aug 2004 EP
1457857 Sep 2004 EP
1463188 Sep 2004 EP
1475882 Nov 2004 EP
1503490 Feb 2005 EP
1521345 Apr 2005 EP
1526633 Apr 2005 EP
1531542 May 2005 EP
1531545 May 2005 EP
1532727 May 2005 EP
1552563 Jul 2005 EP
1562281 Aug 2005 EP
1580862 Sep 2005 EP
1603212 Dec 2005 EP
1610571 Dec 2005 EP
1623495 Feb 2006 EP
1642355 Apr 2006 EP
0964457 May 2006 EP
1657557 May 2006 EP
1657797 May 2006 EP
1691246 Aug 2006 EP
1706937 Oct 2006 EP
1708070 Oct 2006 EP
1716272 Nov 2006 EP
1728413 Dec 2006 EP
1734373 Dec 2006 EP
1750193 Feb 2007 EP
1766490 Mar 2007 EP
1782146 May 2007 EP
1785800 May 2007 EP
1837985 Sep 2007 EP
1842121 Oct 2007 EP
1609250 Jan 2008 EP
1887675 Feb 2008 EP
1901419 Mar 2008 EP
1902349 Mar 2008 EP
1911101 Apr 2008 EP
1914857 Apr 2008 EP
2048679 Apr 2009 EP
2054944 May 2009 EP
2061088 May 2009 EP
2092625 Aug 2009 EP
2092631 Aug 2009 EP
2130286 Dec 2009 EP
2135296 Dec 2009 EP
2135348 Dec 2009 EP
2144133 Jan 2010 EP
2179451 Apr 2010 EP
2206159 Jul 2010 EP
2232690 Sep 2010 EP
2234237 Sep 2010 EP
2249457 Nov 2010 EP
2256819 Dec 2010 EP
2315328 Apr 2011 EP
2355268 Aug 2011 EP
2374190 Oct 2011 EP
2386122 Nov 2011 EP
2393178 Dec 2011 EP
2395648 Dec 2011 EP
2495766 Sep 2012 EP
2515424 Oct 2012 EP
2533299 Dec 2012 EP
2549635 Jan 2013 EP
2561596 Feb 2013 EP
2615644 Jul 2013 EP
2621045 Jul 2013 EP
2666222 Nov 2013 EP
2722979 Apr 2014 EP
2779251 Sep 2014 EP
3176933 Jun 2017 EP
2139104 Oct 2017 EP
2249147 Mar 2006 ES
2249149 Mar 2006 ES
2796216 Jan 2001 FR
2819653 Jul 2002 FR
2894401 Jun 2007 FR
310362 Sep 1929 GB
612859 Nov 1948 GB
1211885 Nov 1970 GB
1231961 May 1971 GB
1261838 Jan 1972 GB
1571681 Jul 1980 GB
1597508 Sep 1981 GB
2128017 Apr 1984 GB
2327208 Jan 1999 GB
2339465 Jan 2000 GB
2376801 Dec 2002 GB
2399463 Sep 2004 GB
2399465 Sep 2004 GB
2415841 Jan 2006 GB
2419968 May 2006 GB
2421847 Jul 2006 GB
2434490 Jul 2007 GB
2476508 Jun 2011 GB
2480015 Nov 2011 GB
2480015 Dec 2011 GB
2482653 Feb 2012 GB
2483317 Mar 2012 GB
2485527 May 2012 GB
2486408 Jun 2012 GB
2487368 Jul 2012 GB
2497275 Jun 2013 GB
2498365 Jul 2013 GB
2498790 Jul 2013 GB
2498791 Jul 2013 GB
2499991 Sep 2013 GB
S56042365 Apr 1981 JP
S60027964 Feb 1985 JP
S60148172 Aug 1985 JP
61065320 Apr 1986 JP
S62154121 Jul 1987 JP
S62154122 Jul 1987 JP
H01311874 Dec 1989 JP
H04219982 Aug 1992 JP
H04364378 Dec 1992 JP
H05003678 Jan 1993 JP
H06035555 Feb 1994 JP
H06141261 May 1994 JP
H07026849 Jan 1995 JP
H07058843 Mar 1995 JP
H07-222436 Aug 1995 JP
8009557 Jan 1996 JP
H08033347 Feb 1996 JP
H08066050 Mar 1996 JP
H0897460 Apr 1996 JP
H08116628 May 1996 JP
H08181343 Jul 1996 JP
H08185235 Jul 1996 JP
H08204220 Aug 1996 JP
H08227324 Sep 1996 JP
H08316517 Nov 1996 JP
H08317664 Nov 1996 JP
H094692 Jan 1997 JP
H09097918 Apr 1997 JP
H09148611 Jun 1997 JP
H09148613 Jun 1997 JP
H09275644 Oct 1997 JP
2676789 Nov 1997 JP
H1017445 Jan 1998 JP
H1075580 Mar 1998 JP
H10201086 Jul 1998 JP
H10201105 Jul 1998 JP
H10308523 Nov 1998 JP
11041832 Feb 1999 JP
H1146457 Feb 1999 JP
11103538 Apr 1999 JP
2892183 May 1999 JP
11206038 Jul 1999 JP
H11266545 Sep 1999 JP
11289891 Oct 1999 JP
11318042 Nov 1999 JP
H11332088 Nov 1999 JP
2000020150 Jan 2000 JP
3015512 Mar 2000 JP
2000-112545 Apr 2000 JP
2000-116010 Apr 2000 JP
2000160789 Jun 2000 JP
2000166097 Jun 2000 JP
2000174307 Jun 2000 JP
2000232791 Aug 2000 JP
2000232793 Aug 2000 JP
2000316282 Nov 2000 JP
2000324852 Nov 2000 JP
2000339044 Dec 2000 JP
2000341974 Dec 2000 JP
2000347753 Dec 2000 JP
2000358330 Dec 2000 JP
2001060120 Mar 2001 JP
2001075662 Mar 2001 JP
2001086765 Mar 2001 JP
2001178145 Jun 2001 JP
2001189476 Jul 2001 JP
2001224142 Aug 2001 JP
2001238466 Aug 2001 JP
2001250964 Sep 2001 JP
2002073184 Mar 2002 JP
2002231578 Aug 2002 JP
2002238246 Aug 2002 JP
2002-262461 Sep 2002 JP
2002270876 Sep 2002 JP
2002300735 Oct 2002 JP
2002339591 Nov 2002 JP
2002354677 Dec 2002 JP
2003102134 Apr 2003 JP
2003124492 Apr 2003 JP
2003134661 May 2003 JP
2003134667 May 2003 JP
2003282916 Oct 2003 JP
2003289674 Oct 2003 JP
3499941 Feb 2004 JP
2004055603 Feb 2004 JP
2004-096090 Mar 2004 JP
2004111754 Apr 2004 JP
2004-147465 May 2004 JP
2004194500 Jul 2004 JP
2004260944 Sep 2004 JP
2004312994 Nov 2004 JP
2004334704 Nov 2004 JP
2005-151662 Jun 2005 JP
3656531 Jun 2005 JP
2005192314 Jul 2005 JP
2005-235082 Sep 2005 JP
2005251039 Sep 2005 JP
2005-276942 Oct 2005 JP
2005-312287 Nov 2005 JP
2006041440 Feb 2006 JP
2006262619 Sep 2006 JP
2006271083 Oct 2006 JP
2006278755 Oct 2006 JP
2007058845 Mar 2007 JP
2007104872 Apr 2007 JP
2007225625 Sep 2007 JP
4174227H Oct 2008 JP
2010-146047 Jul 2010 JP
2010245532 Oct 2010 JP
2011-249790 Dec 2011 JP
2012-60714 Mar 2012 JP
2012511299 May 2012 JP
2012178535 Sep 2012 JP
20010044490 Jun 2001 KR
20040086088 Oct 2004 KR
100468127 Jan 2005 KR
200402282 Nov 2005 KR
20060060825 Jun 2006 KR
20070036528 Apr 2007 KR
100725755 May 2007 KR
20080092747 Oct 2008 KR
100912892 Aug 2009 KR
101073143 Oct 2011 KR
1011483 Sep 2000 NL
497326 Aug 2002 TW
200913291 Mar 2009 TW
8202134 Jun 1982 WO
1982002134 Jun 1982 WO
1984003402 Aug 1984 WO
1988004801 Jun 1988 WO
9003680 Apr 1990 WO
1992007418 Apr 1992 WO
1993013587 Jul 1993 WO
9525374 Sep 1995 WO
9534121 Dec 1995 WO
1996007130 Mar 1996 WO
1996013093 May 1996 WO
1998023021 May 1998 WO
1999028801 Jun 1999 WO
0000839 Jan 2000 WO
0021178 Apr 2000 WO
0075947 Dec 2000 WO
0077522 Dec 2000 WO
0113502 Feb 2001 WO
01047095 Jun 2001 WO
0217469 Feb 2002 WO
0231517 Apr 2002 WO
02056126 Jul 2002 WO
2002073785 Sep 2002 WO
0278164 Oct 2002 WO
02078164 Oct 2002 WO
02093655 Nov 2002 WO
03012569 Feb 2003 WO
2003012569 Feb 2003 WO
03026114 Mar 2003 WO
2003036688 May 2003 WO
2003050938 Jun 2003 WO
2003071655 Aug 2003 WO
03084041 Oct 2003 WO
2003098703 Nov 2003 WO
2004001942 Dec 2003 WO
2004006342 Jan 2004 WO
2004008619 Jan 2004 WO
2004023278 Mar 2004 WO
2004053993 Jun 2004 WO
2004090993 Oct 2004 WO
2004098261 Nov 2004 WO
2004100344 Nov 2004 WO
2004100348 Nov 2004 WO
2004107543 Dec 2004 WO
2005015584 Feb 2005 WO
2005027300 Mar 2005 WO
2005036725 Apr 2005 WO
2005053189 Jun 2005 WO
2005069096 Jul 2005 WO
2005076444 Aug 2005 WO
2005076445 Aug 2005 WO
2005089030 Sep 2005 WO
2005112551 Dec 2005 WO
2005119278 Dec 2005 WO
2005119609 Dec 2005 WO
2005124498 Dec 2005 WO
2006002380 Jan 2006 WO
2006005125 Jan 2006 WO
2006007198 Jan 2006 WO
2006011071 Feb 2006 WO
2006011359 Feb 2006 WO
2006013600 Feb 2006 WO
2006033143 Mar 2006 WO
2006013600 May 2006 WO
2006048688 May 2006 WO
2006048689 May 2006 WO
2006074561 Jul 2006 WO
2006071436 Jul 2006 WO
2006078685 Jul 2006 WO
2006079503 Aug 2006 WO
2006089778 Aug 2006 WO
2006110613 Oct 2006 WO
2006125664 Nov 2006 WO
2006117551 Nov 2006 WO
2006130520 Dec 2006 WO
2006137948 Dec 2006 WO
2007006564 Jan 2007 WO
2007007360 Jan 2007 WO
2007010326 Jan 2007 WO
2007020419 Feb 2007 WO
2007048421 May 2007 WO
2007072517 Jun 2007 WO
2007073951 Jul 2007 WO
2007080429 Jul 2007 WO
2007084196 Jul 2007 WO
2007090476 Aug 2007 WO
2007113358 Oct 2007 WO
2007124518 Nov 2007 WO
2007129808 Nov 2007 WO
2007142693 Dec 2007 WO
2008008528 Jan 2008 WO
2008026207 Mar 2008 WO
2008046370 Apr 2008 WO
2008077473 Jul 2008 WO
2008069926 Aug 2008 WO
2008097591 Aug 2008 WO
2008119034 Oct 2008 WO
2008121266 Oct 2008 WO
2008125915 Oct 2008 WO
2008132551 Nov 2008 WO
2008132553 Nov 2008 WO
2008142480 Nov 2008 WO
2009003680 Jan 2009 WO
2009006879 Jan 2009 WO
2009007782 Jan 2009 WO
2009011780 Jan 2009 WO
2009020917 Feb 2009 WO
2009026602 Mar 2009 WO
2009007782 Mar 2009 WO
2009046533 Apr 2009 WO
2009051221 Apr 2009 WO
2009051222 Apr 2009 WO
2009051853 Apr 2009 WO
2009051854 Apr 2009 WO
2009051870 Apr 2009 WO
2009055474 Apr 2009 WO
2009059877 May 2009 WO
2009056957 May 2009 WO
2009059028 May 2009 WO
2009064683 May 2009 WO
2009072075 Jun 2009 WO
2009073867 Jun 2009 WO
2009072076 Jun 2009 WO
2009072077 Jun 2009 WO
2009073868 Jun 2009 WO
2009073995 Jun 2009 WO
2009075985 Jun 2009 WO
2009075985 Jul 2009 WO
2009114341 Sep 2009 WO
2009118682 Oct 2009 WO
2009118683 Oct 2009 WO
2009118683 Nov 2009 WO
2009136358 Nov 2009 WO
2009140536 Nov 2009 WO
2009140539 Nov 2009 WO
2009140543 Nov 2009 WO
2009140551 Nov 2009 WO
2009118682 Dec 2009 WO
2009155392 Dec 2009 WO
2010002960 Jan 2010 WO
2010003941 Jan 2010 WO
2009136358 Jan 2010 WO
2009140536 Feb 2010 WO
2009140543 Feb 2010 WO
2009140551 Feb 2010 WO
2010014116 Feb 2010 WO
2010020385 Feb 2010 WO
2010042124 Apr 2010 WO
2010037393 Apr 2010 WO
2010056777 May 2010 WO
2010071855 Jun 2010 WO
2010062410 Jun 2010 WO
2010062662 Jun 2010 WO
2010065043 Jun 2010 WO
2010065388 Jun 2010 WO
2010072717 Jul 2010 WO
2010078303 Jul 2010 WO
2010080672 Jul 2010 WO
2010091025 Aug 2010 WO
2010094012 Aug 2010 WO
2010118503 Oct 2010 WO
2010120315 Oct 2010 WO
2010132369 Nov 2010 WO
2010134057 Nov 2010 WO
20100134057 Nov 2010 WO
2011005339 Jan 2011 WO
2011011711 Jan 2011 WO
2011014275 Feb 2011 WO
2011017721 Feb 2011 WO
2011019936 Feb 2011 WO
2011023732 Mar 2011 WO
2011028456 Mar 2011 WO
2011028457 Mar 2011 WO
2011044641 Apr 2011 WO
2011049985 Apr 2011 WO
2011059067 May 2011 WO
2011074025 Jun 2011 WO
2011076707 Jun 2011 WO
2011085259 Jul 2011 WO
2011089607 Jul 2011 WO
2011109746 Sep 2011 WO
2011119587 Sep 2011 WO
2011133843 Oct 2011 WO
2011133928 Oct 2011 WO
2011151672 Dec 2011 WO
2012024538 May 2012 WO
2012100263 Jul 2012 WO
2013015921 Jan 2013 WO
2013019899 Feb 2013 WO
2013130563 Sep 2013 WO
2014143021 Sep 2014 WO
2017125375 Jul 2017 WO
2018122835 Jul 2018 WO
Non-Patent Literature Citations (399)
Entry
Chinese Office Action—CN Appl. 201310035221.8—dated Aug. 11, 2016.
Zhou, Wilson and Theo Phillips—“Industry's First 4-Switch Buck-Boost Controller Achieves Highest Efficiency Using a Single Inducutor—Design Note 369”—Linear Technology Corporation—www.linear.com—2005.
“Micropower Synchronous Buck-Boost DC/DC Converter”—Linear Technology Corporation—www.linear.com/LTC3440—2001.
Mar. 5-9, 1995—Caricchi, F. et al—20 kW Water-Cooled Prototype of a Buck-Boost Bidirectional DC-DC Converter Topology for Electrical Vehicle Motor Drives—University of Rome—IEEE 1995—pp. 887-892.
Roy, Arunanshu et al—“Battery Charger using Bicycle”—EE318 Electronic Design Lab Project Report, EE Dept, IIT Bombay, Apr. 2006.
Jun. 20-25, 2004—Viswanathan, K. et al—Dual-Mode Control of Cascade Buck-Boost PFC Converter—35th Annual IEEE Power Electronics Specialists Conference—Aachen, Germany, 2004.
Zhang, Pei et al.—“Hardware Design Experiences in ZebraNet”—Department of Electrical Engineering, Princeton University—SenSys '04, Nov. 3-5, 2004.
“High Efficiency, Synchronous, 4-Switch Buck-Boost Controller”—Linear Technology Corporation—www.linear.com/LTC3780—2005.
May 19-24, 2002—Chomsuwan, Komkrit et al. “Photovoltaic Grid-Connected Inverter Using Two-Switch Buck-Boost Converter”—Department of Electrical Engineering, King Mongkut's Institute of Technology Ladkrabang, Thailand, National Science and Technology Development Agency, Thailand—IEEE—2002.
Midya, Pallab et al.—“Buck or Boost Tracking Power Converter”—IEEE Power Electronics Letters, vol. 2, No. 4—Dec. 2004.
Chinese Office Action—CN Appl. 201510111948.9—dated Sep. 14, 2016.
Chinese Office Action—CN Appl. 201310066888.4—dated Nov. 2, 2016.
“Power-Switching Converters—the Principle, Simulation and Design of the Switching Power (the Second Edition)”, Ang, Oliva, et al., translated by Xu Dehong, et al., China Machine Press, Aug. 2010, earlier publication 2005.
European Notice of Opposition—EP Patent 2092625—mailed Nov. 26, 2016.
Mar. 8, 2003—Vishay Siliconix “Si 7884DP—n-Channel 40-V (D-S) MOSFET” (2003).
Chinese Office Action—CN 201510423458.2—dated Jan. 3, 2017 (english translation provided).
Chinese Office Action—CN 201410098154.9—dated Mar. 3, 2017 (english translation provided).
European Search Report—EP Appl. 13150911.9—dated Apr. 7, 2017.
Howard et al, “Relaxation on a Mesh: a Formalism for Generalized Localization.” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001). Wailea, Hawaii, Oct. 2001.
Chinese Office Action and Search Report—CN 201510578586.4—dated Apr. 19, 2017.
Jul. 13, 2017—Chinese Office Action—CN201210007491.3.
Jul. 31, 2014—Huimin Zhou et al.—“PV Balancers: Concept, Architectures, and Realization”—IEEE Transactions on Power Electronics, vol. 30, No. 7, pp. 3479-3487.
Sep. 15, 2012—Huimin Zhou et. al—“PV balancers: Concept, architectures, and realization”—Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, IEEE pp. 3749-3755.
Jul. 17, 2017—International Search Report—PCT/US2017/031571.
Aug. 4, 2017—European Search Report—EP 17165027.
Jul. 19, 2016—Notice of Opposition—EP 2374190—EP App No. 08878650.4.
Sep. 28, 2017—European Office Action—EP 08857835.6.
Nov. 2, 2017—EP Search Report App No. 13157876.7.
Nov. 11, 2017—EP Search Report—App No. 17171489.2.
Dec. 14, 2017—EP Search Report App No. 17188362.2.
Dec. 15, 2017—EP Search Report App No. 17188365.5.
2000; Bascope, G.V.T. Barbi, I; “Generation of Family of Non-isolated DC-DC PWM Converters Using New Three-state Switching Cells”; 2000 IEEE 31st Annual Power Electronics Specialists Conference in Galway, Ireland; vol. 2.
Jan. 20, 2005; Duncan, Joseph, A Global Maximum Power Point Tracking DC-DC Converter, Massachussetts Institute of Technology, Dept. of Electrical Engineering and Computer Science Dissertation; 8 pages.
2005; Edelmoser, K.H. et al.; High Efficiency DC-to-AC Power Inverter with Special DC Interface; Professional Paper, ISSN 0005-1144, Automatika 46 (2005) 3-4, 143-148, 6 pages.
2006; Esmaili, Gholamreza; “Application of Advanced Power Electornics in Renewable Energy Sources and Hygrid Generating Systems” Ohio State Univerty, Graduate Program in Electrical and Computer Engineering, Dissertation. 169 pages.
Nov. 13, 2007; Gomez, M; “Consulting in the Solar Power Age,” IEEE-CNSV: Consultants' Network of Scilion Valley; 30 pages.
Jul. 25, 1995-Jun. 30, 1998; Kern, G; “SunSine (TM)300: Manufacture of an AC Photovoltaic Module,” Final Report, Phases I & II; National Renewable Energy Laboratory, Mar. 1999; NREL-SR-520-26085; 33 pages.
May 1, 2000; Kroposki, H. Thomas and Witt, B & C; “Progress in Photovoltaic Components and Systems,” National Renewable Energy Laboratory; NREL-CP-520-27460; 7 pages.
Jan. 22-23, 1998 Oldenkamp, H. et al; “AC Modules: Past, Present and Future” Workshop Installing the Solar Solution; Hatfield, UK; 6 pages.
Linear Technology Specification Sheet, LTC3443—“High Current Micropower 600kHz Synchronous Buck-Boost DC/DC Converter”—2004.
Linear Technology Specification Sheet, LTC3780—“High Efficiency Synchronous, 4-Switch Buck-Boost Controller”—2005.
Apr. 22, 2004—MICREL—MIC2182 High Efficiency Synchronous Buck Controller.
Apr. 1972—Methods for Utilizing Maximum Power From a Solar Array—Decker, DK.
2000—Evaluating MPPT converter topologies using a MATLAB PV model—Walker, Geoffrey.
Jun. 30, 2008—Wang, Ucilia; Greentechmedia; “National Semi Casts Solarmagic”; www.greentechmedia.com; 3 pages; accessed Oct. 24, 2017.
Sep. 2004; Yuvarajan, S; Dchuan Yu; Shanguang, Xu; “A Novel Power Converter for PHotovoltaic Applications,” Journal of Power Sources; vol. 135, No. 1-2, pp. 327-331.
Jun. 1998—Stern M., et al., “Development of a Low-Cost Integrated 20-kW-AC Solar Tracking Subarray for Grid-connected PV Power System Applications—Final Technical Report”—National Renewable Energy Laboratory; 41 pages.
1997; Verhoeve, C.W.G., et al., “Recent Test Results of AC_Module inverters,” Netherlands Energy Research Foundation ECN, 1997; 3 pages.
2004—Nobuyoshi, M. et al., “A Controlling Method for Charging Photovoltaic Generation Power Obtained by a MPPT control Method to Series Connected Ultra-Electric Double Layer Capacitors”—Industry Application Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE.
Feb. 23-27, 1992—Miwa, Brett et al., “High Efficiency Power Factor Correction Using Interleaving Techniques”—Applied Power Electronics Conference and Exposition, 1992. APEC '92. Conference Proceedings 1992., Seventh Annual.
GB Combined Search and Examination Report—GB1203763.6—dated Jun. 25, 2012.
Mohammad Reza Amini et al., “Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit”, Journal of Power Electronics, vol. 11, No. 1, Jan. 2011.
Khairy Fathy et al., “A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link”, Journal of Power Electronics, vol. 7, No. 2, Apr. 2007.
May 22, 1998—Cheng K.W.E., “New Generation of Switched Capacitor Converters”, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Power Electronics Conference, PESC 98.
1999—Per Karlsson, “Quasi Resonant DC Link Converters—Analysis and Design for a Battery Charger Application”, Universitetstryckeriet, Lund University, 1999, ISBN 91-88934-14-4; Added to Lund University Publications on Jun. 4, 2012.
Hisiao Sung-Hsin et al., “ZCS Switched-Capacitor Bidirectional Converters with Secondary Output Power Amplifier for Biomedical Applications”, Power Electronics Conference (IPEC) Jun. 21, 2010.
Nov. 27-30, 2007—Yuang-Shung Lee et al.,“A Novel QR ZCS Switched-Capacitor Bidirectional Converter”, IEEE, 2007.
Antti Tolvanen et al., “Seminar on Solar Simulation Standards and Measurement Principles”, May 9, 2006 Hawaii.
J.A. Eikelboom and M.J. Jansen, “Characterisation of PV Modules of New Generations—Results of tests and simulations”, Jun. 2000.
Yeong-Chau Kuo et al., “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System”, IEEE Transactions on Industrial Electronics, vol. 48, No. 3, Jun. 2001.
C. Liu et al., “Advanced Algorithm for MPPT Control of Photovoltaic Systems”, Canadian Solar Buildings Conference, Montreal, Aug. 20-24, 2004.
May 22, 1998—Chihchiang Hua and Chihming Shen, “Study of Maximum Power Tracking Techniques and Control of DC/DC Converters for Photovoltaic Power System”, IEEE.
Tore Skjellnes et al., “Load sharing for parallel inverters without communication”, Nordic Workshop in Power and Industrial Electronics, Aug. 12-14, 2002.
Jun. 23, 2000—Giorgio Spiazzi at el., “A New Family of Zero-Current-Switching Variable Frequency dc-dc Converters”, IEEE.
Nayar, C.V., M. Ashari and W.W.L Keerthiphala, “A Grid Interactive Photovoltaic Uninterruptible Power Supply System Using Battery Storage and a Back up Diesel Generator”, IEEE Transactions on Energy Conversion, vol. 15, No. 3, Sep. 2000, pp. 348-353.
Ph. Strauss et al., “AC coupled PV Hybrid systems and Micro Grids-state of the art and future trends”, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, 2003.
Jul. 16-20, 2000—Nayar, C.V., abstract, Power Engineering Society Summer Meeting, 2000. IEEE, 2000, pp. 1280-1282 vol. 2.
Mar. 15, 2004—D. C. Martins et al., “Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter”, Asian J. Energy Environ., vol. 5, Issue 2, (2004), pp. 115-137.
Rafael C. Beltrame et al., “Decentralized Multi String PV System With Integrated ZVT Cell”, Congresso Brasileiro de Automática / 12 a Sep. 16, 2010, Bonito-MS.
Sergio Busquets-Monge et al., “Multilevel Diode-clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array”, IEEE Transactions on Industrial Electronics, vol. 55, No. 7, Jul. 2008.
Soeren Baekhoej Kjaer et al., “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules”, IEEE Transactions on Industry Applications, vol. 41, No. 5, Sep./Oct. 2005.
Office Action—JP 2011-539491—dated Mar. 26, 2013.
Supplementary European Search Report—EP08857456—dated Dec. 6, 2013.
Extended European Search Report—EP14151651.8—dated Feb. 25, 2014.
Iyomori H et al: “Three-phase bridge power block module type auxiliary resonant AC link snubber-assisted soft switching inverter for distributed AC power supply”, INTELEC 2003. 25th. International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 650-656, XP031895550, ISBN: 978-4-88552-196-6.
Yuqing Tang: “High Power Inverter EMI characterization and Improvement Using Auxiliary Resonant Snubber Inverter”, Dec. 17, 1998 (Dec. 17, 1998), XP055055241, Blacksburg, Virginia Retrieved from the Internet: URL:http:jscholar.lib.vt.edu/theses/available/etd-012299-165108/unrestricted/THESIS. PDF, [retrieved on Mar. 5, 2013].
Yoshida M et al: “Actual efficiency and electromagnetic noises evaluations of a single inductor resonant AC link snubber-assisted three-phase soft-switching inverter”, INTLEC 2003. 25th. International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 721-726, XP031895560, ISBN: 978-4-88552-196-6.
Third party observation—EP07874025.5—dated Aug. 6, 2011.
Extended European Search Report—EP 13152967.9—dated Aug. 28, 2014.
Extended European Search Report—EP 14159696—dated Jun. 20, 2014.
Gow Ja A et al: “A Modular DC-DC Converter and Maximum Power Tracking Controller for Medium to Large Scale Photovoltaic Generating Plant” 8<SUP>th </SUP> European Conference on Power Electronics and Applications. Lausaane, CH, Sep. 7-9, 1999, EPE. European Conference on Power Electronics and Applications, Brussls: EPE Association, BE, vol. Conf. 8, Sep. 7, 1999, pp. 1-8, XP000883026.
Chihchiang Hua et al: “Comparative Study of Peak Power Tracking Techniques for Solar Storage System” Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998, Thirteenth Annual Anaheim, CA USA Feb. 15-19, 1998, New York, NY, USA, IEEE, US, Feb. 15, 1998, pp. 679-685, XP010263666.
Matsuo H et al: “Novel Solar Cell Power Supply System Using the Multiple-input DC-DC Converter” 20<SUP>th</SUP> International telecommunications Energy Conference. Intelec '98 San Francisco, CA, Oct. 4-8, 1998, Intelec International Telecommunications Energy Conference, New York, NY: IEEE, US, Oct. 4, 1998, pp. 797-802, XP000896384.
Chihchiang Hua et al: “DSP-based controller application in battery storage of photovoltaic system” Industrial Electronics, Control, and Instrumentation, 1996, Proceedings of the 1996 IEEE IECON 22<SUP>nd</SUP> International Conference on Taipei, Taiwan Aug. 5-10, 1996, New York, NY, USA, IEEE, US, Aug. 5, 1996, pp. 1705-1710, XP010203239.
Hua C et al: “Implementation of a DSP-Controlled Photovoltaic System with Peak Power Tracking” IEEE Transactions on industrial Electronics, IEEE, Inc. New York, US, vol. 45, No. 1, Feb. 1, 1998, pp. 99-107, XP000735209.
I. Weiss et al.: “A new PV system technology—the development of a magnetic power transmission from the PV module to the power bus” 16th European Photovoltaic Solar Energy Conference, vol. III, May 1-5, 2000, pp. 2096-2099, XP002193468 Glasgow,UK.
Basso, Tim, “IEEE Standard for Interconnecting Distributed Resources With the Electric Power System,” IEEE PES Meeting, Jun. 9, 2004.
Feb. 11, 2003—Boostbuck.com, “The Four Boostbuck Topologies,” located at http://www.boostbuck.com/TheFourTopologies.html.
Apr. 2002—Gautam, Nalin K. et al., “An Efficient Algorithm to Simulate the Electrical Performance of Solar Photovoltaic Arrays,” Energy, vol. 27, No. 4, pp. 347-361, 2002.
Nordmann, T. et al., “Performance of PV Systems Under Real Conditions,” European Workshop on Life Cycle Analysis and Recycling of Solar Modules, The “Waste” Challenge, Brussels, Belgium, Mar. 18-19, 2004.
Wiles, John, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices,” Sandia National Laboratories, document No. SAND2001-0674, Mar. 2001.
Hewes, J. “Relays,” located at http://web.archive.org/web/20030816010159/www.kpsec.freeuk.com/components/relay.htm, Aug. 16, 2003.
Jan. 1, 1993—Definition of “remove” from Webster's Third New International Dictionary, Unabridged, 1993.
Jan. 1, 1993—Definition of “removable” from Webster's Third New International Dictionary, Unabridged, 1993.
Advanced Energy Group, “The Basics of Solar Power Systems,” located at http://web.archive.org/web/20010331044156/http://www.solar4power.com/solar-power-basics.html, Mar. 31, 2001.
International Patent Application No. PCT/AU2005/001017, International Search Report and Written Opinion, dated Aug. 18, 2005.
Baek, Ju-Won et al., “High Boost Converter using Voltage Multiplier,” 2005 IEEE Conference, IECON 05, pp. 567-572, Nov. 2005.
Wikimedia Foundation, Inc., “Electric Power Transmission,” located at http://web.archive.org/web/20041210095723/en.wikipedia.org/wiki/Electric-power-transmission, Nov. 17, 2004.
Jacobsen, K.S., “Synchronized Discrete Multi-Tone (SDMT) Modulation for Cable Modems: Making the Most of the Scarce Reverse Channel Bandwidth,” Conference Proceedings of Wescon/97, pp. 374-380, Nov. 4, 1997.
Loyola, L. et al., “A Multi-Channel Infrastructure based on DCF Access Mechanism for Wireless LAN Mesh Networks Compliant with IEEE 802.11,” 2005 Asia-Pacific Conference on Communications, pp. 497-501, Oct. 5, 2005.
Jul. 12, 2019—European Search Report—EP 19170538.3.
Ciobotaru, et al., Control of single-stage single-phase PV inverter, Aug. 7, 2006.
International Search Report and Written Opinion for PCT/IB2007/004591 dated Jul. 5, 2010.
European Communication for EP07873361.5 dated Jul. 12, 2010.
European Communication for EP07874022.2 dated Oct. 18, 2010.
European Communication for EP07875148.4 dated Oct. 18, 2010.
Chen, et al., “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications”, IEEE Applied Power Electronics Conference, Feb. 2001, Colorado Power Electronics Center Publications.
Chen, et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches”, IEEE Power Electronics Specialists Conference, Jun. 2001, Colorado Power Electronics Center Publications.
Esram, et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol. 22, No. 2, Jun. 2007, pp. 439-449.
Walker, et al., “Photovoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies—Design and Optimisation”, 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, Jeju, Korea.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010.
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009.
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009.
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009.
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009.
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009.
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009.
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009.
Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, 2005 IEEE, pp. 866-870.
Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC.
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solar Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2.
Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003.
Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138.
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291.
Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300.
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773.
Sep. 7-9, 1999—Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne.
Jun. 20-25, 2004—Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 3266-3271.
Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy.
Jun. 17-21, 2007—Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638.
Sep. 16-19, 1996—Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824.
Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073.
Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2249-2252.
Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139.
Oct. 3-7, 1999—Matsui, et al., “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link”, IEEE, 1999, pp. 804-809.
Hou, et al., Application of Adaptive Algorithm of Solar Cell Battery Charger, Apr. 2004.
Sep. 15-22, 2000—Stamenic, et al., “Maximum Power Point Tracking for Building Integrated Photovoltaic Ventilation Systems”.
International Preliminary Report on Patentability for PCT/IB2008/055092 dated Jun. 8, 2010.
International Search Report for PCT/IB2008/055092 dated Sep. 8, 2009.
International Search Report and Opinion of International Patent Application WO2009136358 (PCT/IB2009/051831), dated Sep. 16, 2009.
Informal Comments to the International Search Report dated Dec. 3, 2009.
PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010.
UK Intellectual Property office, Combined Search and Examination Report for GB1100450.4 under Sections 17 and 18 (3), Jul. 14, 2011.
Jain, et al., “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking”, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007, pp. 1928-1940.
Lynch, et al., “Flexible DER Utility Interface System: Final Report”, Sep. 2004-May 2006, Northern Power Systems, Inc., Waitsfield, Vermont B. Kroposki, et al., National Renewable Energy Laboratory Golden, Colorado Technical Report NREL/TP-560-39876, Aug. 2006.
Schimpf, et al., “Grid Connected Converters for Photovoltaic, State of the Art, Ideas for improvement of Transformerless Inverters”, NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, Jun. 9-11, 2008.
Sandia Report SAND96-2797 I UC-1290 Unlimited Release, Printed Dec. 1996, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices”, by John Wiles, Southwest Technology Development Institute New Mexico State University Las Cruces, NM.
United Kingdom Intellectual Property Office, Combined Search and Examination Report Under Sections 17 and 18(3), GB10208621, dated Jun. 16, 2011.
Sep. 4, 2019—Extended European Search Report—EP 19181247.8.
Jan. 1, 2005; Linear Technology Specification Sheet, LTC3780—“High Efficiency Synchronous, 4-Switch Buck-Boost Controller”.
Dec. 19, 2005; Edelmoser, K.H. et al.; High Efficiency DC-to-AC Power Inverter with Special DC Interface; Professional Paper, ISSN 0005-1144, Automatika 46 (2005) 3-4, 143-148, 6 pages.
Mar. 4-8, 2001—Andersen Gert, et al.,—Aalborg University, Institute of Energy Technology, Denmark—“Currect Programmed Control of a Single Phase Two-Switch Buck-Boost Power Factor Correction Circut”—Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE.
Feb. 22-26, 2004—Andersen, Gert et al.,—“Utilizing the free running Current Programmed Control as a Power Factor Correction Technique for the two switch Buck-Boost converter”—Applied Power Electronic Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE.
Mar. 3-7, 1996—Caricchi F et al.,—“Prototype of Innovative Wheel Direct Drive With Water-Cooled Exial-Flux Motor for Electric Vehicle Applications”—Applied Power Electronics Conference and Expositions, 1996. APEC '96. Conference Proceedings 1996., Eleventh Annual IEEE.
Feb. 15-19, 1998—Caricchi, F. et al.,—“Study of Bi-Directional Buck-Boost Converter Topologies for Application in Electrical Vehicle Motor Drives”—Applied Power Electronics Conference and Exposition, 1998, APEC '98. COnference Proeedings 1998., Thirteenth Annual IEEE.
Nov. 27-30, 1990—Ensling, JHR—“Maximum Power Point Tracking: A Cost Saving Necessity in Solar Energy Systems”—Industrial Electornics Society, 1990. IECON '90., 16th Annual Conference of IEEE.
Feb. 22-26, 2004—Gaboriault, Mark et al.,—“A High Efficiency, Non-Inverting, Buck-Boost DC-DC Converter”—Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE.
Feb. 15-19, 1998—Hua, et al.,—“Comparative Study of Peak Power Tracking Techniques for Solar Storage System”—Applied POwer Electronics Conference and Exposition, 1998. APEC'98. Conferenced Proceedings 1998., Thirteenth Annual IEEE.
Jun. 20-24, 1993—Sullivan, et al., “A High-Efficiency Maximum Power Point Tracker for Photovoltaic Arrays in a Solar-Powered Race Vehicle”—University of California, Berkeley, Department of Electrical Engineering and OCmputer Sciences—Power Electronics Specialists Conference, 1993. PESC '93 Record., 24th Annual IEEE.
May 19-24, 2002—Bower et at.,—“Certification of Photovoltaic Inverters: The Initial Step Toward PV System Certification”—Photovoltaic Specialists Conferences, 2002. Conference Record of the Twenty-Ninth IEEE.
Jun. 17-21, 2001—Tse et al., “A Novel Maximum Power Point Tracking Technique for PV Panels”—Power Electronics Specialists Conferences, 2001. PESC. 2001 IEEE 32nd Annual.
May 12-18, 2008—Cuadras et al., “Smart Interfaces for Low Power Energy Harvesting Systems”—Instrumentation and Measurement Technology Conferences Proceedings, 2008. IMTC 2008. IEEE.
Dec. 5-9, 1994—Haan, et al., “Test Results of a 130 W AC Module; a modular solar as power station”—Photovoltaic Energy Conversion 1994. Conference Record of the Twenty Fourth. IEEE Phtovoltaic Specialists Conference—1994.
Sep. 1-3, 2008—Jung, et al., “Soft Switching Boost Converter for Photovoltaic Power Generation System”—Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008.
Jun. 3-5, 2008—Duan, et al., “A Novel High-Efficiency Inverter for Stand Alone and Grid-Connected Systems”—Industrial Electronics and Applications, 2008. ICIEA 2008.
Nov. 7, 2002—Ertl, et al., “A Novel Multicell DC-AC Converter for Applicaiton in Renewable Energy Systems”—IEEE Transactions on Industrial Electronics (vol. 49, Issue 5, Oct. 2002).
Oct. 8-12, 2000 Hashimoto, et al., “A Novel High Peforamance Utility Interactive Photovoltain Inverter System”—Industry Applications Conference, 2000. Conference Record of the 2000 IEEE.
Feb. 22-26, 2004—Ho, et al., “An Integrated Inverter with Maximum Power Tracking for Grid-Connected PV Systems”—Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE.
Nov. 14, 1997, Hua et al., “Control of DC/DC Converters for Solar Energy System with Maximum Power Tracking”—Industrial Electronics, Control and Instrumentation, 1997. IECON 97. 23rd International Conference on Industrial Electronics, Control and Instrumentation vol. 4 of 4.
Sep. 1-3, 2008, Lee et al., “Soft Switching Mutli-Phase Boost Converter for Photovoltaic System”—Power Electronics and Motnion Control Conference, 2008. EPE-PEMC 2008.
Jul. 5, 2005, Yao et al., “Tapped-Inductor Buck Converter for High-Step-Down DC-DC Conversion”—IEEE Transactions on Power Electronics (vol. 20, Issue 4, Jul. 2005).
Sep. 21-23, 1998, Kretschmar, et al., “An AC Converter with a Small DC Link Capacitor for a 15KW Permanent Magnet Synchronous Integral Motor”—Power Electronics and Variable Speed Drives, 1998. Sevent International Converterest (Conf. Publ. No. 456).
May 25, 2000—Hong Lim, et al., “Simple Maximum Power Point Tracker for Photovoltaic Arrays”—Electronics Letters (vol. 36, Issue 11, May 25, 2000).
Aug. 14-16, 2004, Nishida et al., “A Novel Type of Utility-Interactive Inverter for Phtovoltaic System”—Power Electronics and Mtion Control Conference, 2004. IPEMC 2004.
May 30-Jun. 3, 2011, Jung, et al., “DC-Link Ripple Reduction of Series-connected Module Integrated Converter for Photovoltaic Systems.”—Power Electronics and ECCE Asia (ICPE & ECCE).
Jan. 8, 2007, Li et al., “An Analysis of ZVS Two-Inductor Boost Converter under Variable Frequency Operation”—IEEE Transactions on Power Electronics (vol. 22, Issue 1, Jan. 2007).
Sep. 17, 2007, Rodriguez et al., “Analytic Solution to the Photovoltaic Maximum Power Point Problem”—IEEE Transactions on Circuits and Systems I: Regular Papers (vol. 54, Issue 9, Sep. 2007).
Jun. 27, 1997 Reimann et al., “A Novel Control Principle of Bi-Directional DC-DC Power Conversion”—Powre Electronics Specialists Conference 1997. PESC '97 Record.
Sep. 15-22, 2000 Russell et al., “The Massachusetts Electric Solar Project: A Pilot Project to Commercialize Residential PV Systems”—Photovoltaic Specialists Conference, 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference—2000.
May 2001, Shimizu et al., “Generation Control Circuit for Photvoltaic Modules”—IEEE Transactions of Power Electronics (vol. 16, Issue 3, May 2001).
Feb. 6-10, 2000 Siri, Kasemsan “Study of System Instability in Current-Mode Converter Power Systems Operating in Solar Array Voltage Regulation Mode”—Applied Power Electronics Conference and Exposition, 2000. APEC 2000. Fiftheenth Annual IEEE.
Aug. 13-16, 1990—Rajan, Anita “A Maximum Power Point Tracker Optimized for Solar Powered Cars”—Future Transportation Technology Conference and Expostion.
Jul. 10, 1995—“Battery I.D. chip from Dallas Semiconductor monitors and reports battery pack temperature”—Business Wire.
Nov. 3, 1999—Takahashi et al., “Development of a Long-Life Three-Phase Flywheel UPS Using an Electrolytic Capacitorless Converter/Inverter”—Electrical Engineering in Japan, vol. 127.
Jan. 2001—Walker, Geoffrey “Evaluating MPPT Converter Topologies Using a Matlab PV Model”—“Journal of Electrical and Electronics Engineering, Australia”.
Feb. 13, 2007—Roman et al., “Experimental Results of Controlled PV Module for Building Integrated PV Systems”—Solar Energy 82 (2008) 471-480.
2006—Bower et al., “Innovative PV Micro-Inverter Topology Eliminates Electrolytic Capacitors for Longer Lifetime”—IEEE Jan. 1-4244-0016-3/06/ pp. 2038-2041.
Aug. 23-27, 1993—Case et al., “A Minimum Component Photovoltaic Array Maximum Power Point Tracker”—European Space Power Conference vol. 1. Power Systems, Power Electronics.
Jun. 4, 1997—Maranda et al., “Optimization of the Master-Slave Inverter System for Grid-Connected Photovoltaic Plants”—Energy Convers. Mgmt. vol. 39, No. 12 pp. 1239-1246.
2005—Kang et al., “Photovoltaic Power Interface Circuit Incorporated with a Buck-Boost Converter and a Full-Bridge Inverter”—Applied Energy 82, pp. 266-283.
Nov. 21, 1997—Feuermann et al., “Reversable Low Soalr Heat Gain Windows for Energy Savings”—Solar Energy vol. 62, No. 3 pp. 169-175.
May 16, 2005—Enrique et al., “Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies”—Solar Energy 81 (2007) p. 31-38.
Dehbonei, Hooman “Power Conditioning for Distrbuted Renewable Energy Generation”—Curtin University of Technology, School of Electrical and Computer Engineering, 2003 568 pages Dissertation: Thesis. Abstract, 1 page—retrieved on Nov. 13, 2017 on https://books.google.com/books/about/Power_Conditioning_for_Distributed_Renew_html?id=3wVXuAAACAAJ.
Korean Patent Application No. 102005-7008700, filed May 13, 2015. Applicant: Exar Corporation.
Jan. 23, 2018—EP Search Report, EP App No. 17187230.2.
Apr. 16, 2018—EP Examination Report 12707899.6.
Aug. 9, 2010, Hong, Wei, et al., “Charge Equalization of Battery POwer Modules in Series”—The 2010 International Power Electronics Conference, IEEE, p. 1568-1572.
Jun. 6 2018—EP Search Report EP App No. 18151594.1.
Jun. 29, 2018—EP Search Report—EP App No. 18175980.4.
Jun. 23, 2000; Bascope, G.V.T. Barbi, I; “Generation of Family of Non-isolated DC-DC PWM Converters Using New Three-state Switching Cells”; 2000 IEEE 31st Annual Power Electronics Specialists Conference in Galway, Ireland; vol. 2.
Oct. 3-7, 2004; Nobuyoshi, M. et al., “A Controlling Method for Charging Photovoltaic Generation Power Obtained by a MPPT Control Method to Series Connected Ultra-Electric Double Layer Capacitors”—Industry Application Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE.
International Search Report for corresponding PCT/GB2004/001965, completed Aug. 16, 2004 by A. Roider.
Mar. 5-9, 1995—Naik et al., A Novel Grid Interface for Photovoltaic, Wind-Electric, and Fuel-Cell Systems With a Controllable Power Factor or Operation, IEEE, 1995, pp. 995-998.
Petkanchin, Processes following changes of phase angle between current and voltage in electric circuits, Aug. 1999, Power Engineering Review, IEEE vol. 19, Issue 8, pp. 59-60.
Mumtaz, Asim, et al., “Grid Connected PV Inverter Using a Commercially Available Power IC,” PV in Europe Conference, Oct. 2002, 3 pages, Rome, Italy.
Koutroulis, Eftichios, et al., “Development of a Microcontroller-Based, Photovoltaic Maximum Power Point Tracking Control System,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 46-54, vol. 16, No. 1, IEEE.
European Search Report—EP App. 14159457.2—dated Jun. 12, 2015.
European Search Report and Written Opinion—EP Appl. 12150819.6—dated Jul. 6, 2015.
Alonso, O. et al. “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators With Independent Maximum Power Point Tracking of Each Solar Array.” IEEE 34th Annual Power Electronics Specialists Conference. vol. 2, Jun. 15, 2003.
Chinese Office Action—CN Appl. 201280006369.2—dated Aug. 4, 2015.
Chinese Office Action—CN Appl. 201210253614.1—dated Aug. 18, 2015.
Extended European Search Report, EP Application 04753488.8, dated Apr. 29, 2015.
International Search Report from PCT/US04/16668, form PCT/ISA/220, filing date May 27, 2004.
Office Action U.S. Appl. No. 13/785,857, dated Jun. 6, 2013.
Partial Extended European Search Report, EP Application 04753488.8, dated Feb. 2, 2015.
The International Search Report (Form PCT /ISA/220) Issued in corresponding international application No. PCT/US04/16668, filed May 27, 2004.
International Search Report—PCT/US2004/016668, form PCT/ISA/220—filed May 27, 2004—dated Jan. 19, 2005.
Written Opinion of the International Searching Authority—PCT/US2004/016668, form PCT/ISA/220—filing date May 27, 2004—dated Jan. 19, 2005.
Extended European Search Report—EP Appl. 04753488.8—dated Apr. 29, 2015.
Supplementary Partial European Search Report—EP Appl. 04753488.8—dated Feb. 2, 2015.
U.S. Office Action—U.S. Appl. No. 13/785,857—dated Jun. 6, 2013.
European Office Action—EP Appl. 09725443.7—dated Aug. 18, 2015.
Definition of Isomorphism by Merriam-Webster, <http://www.merriaum-webster.com/dictionary/isomorphism, dated Oct. 20, 2015.
Definition of Isomorphic by Merriam-Webster, <http://www.merriam-webster.com/dictionary/isomorphic, dated Oct. 20, 2015.
Chinese Office Action—CN Appl. 201110349734.7—dated Oct. 13, 2015.
Chinese Office Action—CN Appl. 201210007491.3—dated Nov. 23, 2015.
European Office Action—EP Appl. 12176089.6—dated Dec. 16, 2015.
Chinese Office Action—CN Appl. 201310035223.7—dated Dec. 29, 2015.
Chinese Office Action—CN Application 201210334311.2—dated Jan. 20, 2016.
European Search Report—EP Appl. 13800859.4—dated Feb. 15, 2016.
Chinese Office Action—CN App. 201310035221.8—dated Mar. 1, 2016.
PCT/2008/058473 International Preliminary Report, 6 pages, dated Nov. 2, 2009.
International Search Report and Written Opinion, WO 2010080672, dated Aug. 19, 2010.
PCT/US2010/045352 International Search Report and Written Opinion; 12 pages; dated Oct. 26, 2010.
International Search Report and Written Opinion dated Feb. 6, 2009,. In counteprart PCT/US2008/008451, 13 pages.
European Search Report: dated Jan. 10, 2013 in corresponding EP application No. 09838022.3, 7 pages.
D. Ton and W. Bower; Summary Report of the DOE High-Tech Inverter Workshop; Jan. 2005.
First Action Interview Pre-Interview Communication from U.S. Appl. No. 13/174,495 dated Jun. 18, 2014, 7 pgs.
Johnson et al., “Arc-fault detector algorithm evaluation method utilizing prerecorded arcing signatures”, Photovoltaic Specialists Conference (PVSC), Jun. 2012.
Aug. 6, 2007—Philippe Welter, et al. “Electricity at 32 kHz,” Photon International, The Photovoltaic Magazine, Http://www.photon-magazine.com/archiv/articles.aspx?criteria=4&HeftNr=0807&Title=Elec . . . printed May 27, 2011).
PCT/US2009/069582 Int. Search Report—dated Aug. 19, 2010.
Chinese Office Action—CN Appl. 201210007491.3—dated Apr. 25, 2016.
Office Action—CN Appl. 201310004123.8—dated May 5, 2016.
Law et al, “Design and Analysis of Switched-Capacitor-Based Step-Up Resonant Converters,” IEEE Transactions on Circuits and Systems, vol. 52, No. 5, published May 2005.
CN Office Action—CN Appl. 201310066888.4—dated May 30, 2016.
European Search Report—EP Appl. 13152966.1—dated Jul. 21, 2016.
European Search Report—EP Appl. 12183811.4—dated Aug. 4, 2016.
European Notice of Opposition—EP Patent 2374190—dated Jul. 19, 2016.
“Es werde Dunkelheit. Freischaltung von Solarmodulen im Brandfall”—“Let there be Darkness: Quality control of Solar Modules in Case of Fire”; PHOTON, May 2005, 75-77, ISSN 1430-5348, English translation provided.
Chinese Office Action—CN Appl. 201380029450.7—dated Jul. 28, 2016.
Storfer, Lior, “Enhancing Cable Modem TCP Performance,” Texas Instruments Inc. white paper, Jul. 2003.
Philips Semiconductors, Data Sheet PSMN005-55B; PSMN005-55P N-channel logic trenchMOS transistor, Oct. 1999, Product specification, pp. 1-11.
International Preliminary Report on Patentability Issued in corresponding international application No. PCT/US04/16668, filed May 27, 2004.
International Application No. PCT/US13/27965, International Preliminary Examination Report, dated Sep. 2, 2014.
International Patent Application PCT/US13/027965, International Search Report and Written Opinion, dated Jun. 2, 2013.
International Application No. PCT/US12/44045, International Preliminary Examination Report, dated Jan. 28, 2014.
International Patent Application No. PCT/US2012/044045, International Search Report and Written Opinion, dated Jan. 2, 2013.
International Patent Application No. PCT/US2009/047734, International Search Report and Written Opinion, dated May 4, 2010.
Linares, Leonor et al., “Improved Energy Capture in Series String Photovoltaics via Smart Distributed Power Electronics,” 24th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 904-910, Feb. 15, 2009.
International Patent Application No. PCT/US2010/029929, International Search Report and Written Opinion, dated Oct. 27, 2010.
Lowe, Electronics Basis: What is a Latch Circuit, http://www.dummies.com/how-to/content/electronics-basics-what-is-a-latch-circuit.html, from Electronics All-in-One for Dummies, Feb. 2012, downloaded Jul. 13, 2014.
International Patent Application No. PCT/US2011/020591, International Search Report and Written Opinion, dated Aug. 8, 2011.
International Patent Application No. PCT/US2011/033544, International Search Report and Written Opinion, dated Nov. 24, 2011.
J. Keller and B. Kroposki, titled, “Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources”, in a Technical Report NREL/TP-550-46698, published Jan. 2010, pp. 1 through 48.
International Patent Application No. PCT/US2008/081827, International Search Report and Written Opinion, dated Jun. 24, 2009.
International Patent Application No. PCT/US2010/046274 International Search Report and Written Opinion, dated Apr. 22, 2011.
International Patent Application No. PCT/US2011/033658, International Search Report and Written Opinion, dated Jan. 13, 2012.
International Patent Application No. PCT/US2011/029392, International Search Report and Written Opinion, dated Oct. 24, 2011.
European Patent Application No. 09829487.9, Extended Search Report, dated Apr. 21, 2011.
International Patent Application No. PCT/US2009/062536, International Search Report and Written Opinion, dated Jun. 17, 2010.
International Patent Application No. PCT/US2010/022915, International Search Report and Written Opinion, dated Aug. 23, 2010.
International Patent Application No. PCT/US2010/046272, International Search Report and Written Opinion, dated Mar. 31, 2011.
Exell et al., “The Design and Development of a Solar Powered Refrigerator”, [retrieved on Feb. 13, 2013], Retrieved from the Internet <URL: http://www.appropedia.org/The_Design_and_Development_of_a_Solar_Powered_Refrigerator>, pp. 1-64.
“Development of Water-Lithium Bromide Low-Temperature Absorption Refridgerating Machine”, 2002 Energy & Environment on Database on Noteworthy contributions for Science and Technology (Japan), Research Data (No. 1748) [online], [retrieved on Aug. 29, 2012]. Retrieved from the Internet: <URL: http://dbnstl.nii.ac.jp/english/detail/1748>, pp. 1-4.
Dictionary.com, “air conditioning” [online], [retrieved on Aug. 28, 2012]. Retrieved from the Internet: <URL: http://dictionary.reference.com/browse/air+conditioning?s=t>, pp. 1-3.
International Patent Application No. PCT/US2010/029936, International Search Report and Written Opinion, dated Nov. 12, 2010.
International Patent Application No. PCT/US08/75127, International Search Report and Written Opinion, dated Apr. 28, 2009.
International Patent Application No. PCT/US09/35890, International Search Report and Written Opinion, dated Oct. 1, 2009.
European Patent Application No. 08845104.2, Extended Search Report, dated Jul. 31, 2014.
European Patent Application No. 11772811.3, Extended Search Report, dated Dec. 15, 2014.
International Patent Application No. PCT/US2008/082935, International Search Report and Written Opinion, dated Jun. 25, 2009.
Bhatnagar et al., Silicon Carbide High Voltage (400 V) Shottky Barrier Diodes, IEEE Electron Device Letters, vol. 13 (10) p. 501-503 Oct. 10, 1992.
Jun. 6-10, 2004—Rodriguez, C., and G. A. J. Amaratunga. “Dynamic stability of grid-connected photovoltaic systems.” Power Engineering Society General Meeting, 2004. IEEE, pp. 2194-2200.
Nov. 3-Dec. 29, 1999—Kikuchi, Naoto, et al. “Single phase amplitude modulation inverter for utility interaction photovoltaic system.” Industrial Electronics Society, 1999. IECON'99 Proceedings. The 25th Annual Conference of the IEEE. vol. 1. IEEE, 1999.
Oct. 7-12, 1990—Nonaka, Sakutaro, et al. “Interconnection system with single phase IGBT PWM CSI between photovoltaic arrays and the utility line.” Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE.
Jun. 23-27, 2002—Calais, Martina, et al. “Inverters for single-phase grid connected photovoltaic systems—an overview.” Power Electronics Specialists Conference, 2002. pesc Feb. 2002 IEEE 33rd Annual. vol. 4. IEEE, 2002.
Jul. 1999—Marra, Enes Goncalves, and Jose Antenor Pomilio. “Self-excited induction generator controlled by a VS-PWM bidirectional converter for rural applications.” Industry Applications, IEEE Transactions on 35.4 (1999): 877-883.
Apr. 2-5, 2002—Xiaofeng Sun, Weiyang Wu, Xin Li, Qinglin Zhao: A Research on Photovoltaic Energy Controlling System with Maximum Power Point Tracking:; Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No. 02TH8579) IEEE—Piscataway, NJ, USA, ISBN 0-7803-7156-9, vol. 2, p. 822-826, XP010590259: the whole document.
International Search Report for corresponding PCT/GB2005/050198 completed Jun. 28, 2006 by C. Wirner of the EPO.
Brunello, Gustavo, et al., “Shunt Capacitor Bank Fundamentals and Protection,” 2003 Conference for Protective Relay Engineers, Apr. 8-10, 2003, pp. 1-17, Texas A&M University, College Station, TX, USA.
Cordonnier, Charles-Edouard, et al., “Application Considerations for Sensefet Power Devices,” PCI Proceedings, May 11, 1987, pp. 47-65.
Jun. 9-11, 2003—Kotsopoulos, Andrew, et al., “Predictive DC Voltage Control of Single-Phase PV Inverters with Small DC Link Capacitance,” IEEE International Symposium, Month Unknown, 2003, pp. 793-797.
Meinhardt, Mike, et al., “Multi-String-Converter with Reduced Specific Costs and Enhanced Functionality,” Solar Energy, May 21, 2001, pp. 217-227, vol. 69, Elsevier Science Ltd.
Mar. 6-10, 2005—Kimball, et al.: “Analysis and Design of Switched Capacitor Converters”; Grainger Center for Electric Machinery and Electromechanics, University of Illinois at Urbana-Champaign, 1406 W. Green St, Urbana, IL 61801 USA, © 2005 IEEE; pp. 1473-1477.
Martins, et al.: “Interconnection of a Photovoltaic Panels Array to a Single-Phase Utility Line From a Static Conversion System”; Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual; Jun. 18, 2000-Jun. 23, 2000; ISSN: 0275-9306; pp. 1207-1211, vol. 3.
International Search Report for corresponding PCT/GB2005/050197, completed Dec. 20, 2005 by K-R Zettler of the EPO.
Kjaer, Soeren Baekhoej, et al., “Design Optimization of a Single Phase Inverter for Photovoltaic Applications,” IEEE 34th Annual Power Electronics Specialist Conference, Jun. 15-19, 2003, pp. 1183-1190, vol. 3, IEEE.
Jun. 23-27, 2002—Shimizu, Toshihisa, et al., “A Flyback-type Single Phase Utility Interactive Inverter with Low-frequency Ripple Current Reduction on the DC Input for an AC Photovoltaic Module System,” IEEE 33rd Annual Power Electronics Specialist Conference 2002, pp. 1483-1488, vol. 3, IEEE.
Written Opinion of PCT/GB2005/050197, dated Feb. 14, 2006, Enecsys Limited.
Jun. 17-21, 2001—Yatsuki, Satoshi, et al., “A Novel AC Photovoltaic Module System based on the Impedance-Admittance Conversion Theory,” IEEE 32nd Annual Power Electronics Specialists Conference, Month Unknown, 2001, pp. 2191-2196, vol. 4, IEEE.
QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SAGE S.p.A., An ABB Group Company, L.V. Breakers, Via Baioni, 35, 24123 Bergamo-Italy, Tel.: +39 035.395.111—Telefax: +39 035.395.306-433, Sep. 2007.
Woyte, et al., “Mains Monitoring and Protection in a European Context”, 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, Oct. 22-26, 2001, ACHIM, Woyte, et al., pp. 1-4.
“Implementation and testing of Anti-Islanding Algorithms for IEEE 929-2000 Compliance of Single Phase Photovoltaic Inverters”, Raymond M. Hudson, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002.
Fairchild Semiconductor, Application Note 9016, IGBT Basics 1, by K.S. Oh Feb. 1, 2001.
“Disconnect Switches in Photovoltaic Applications”, ABB, lnc., Low Voltage Control Products & Systems, 1206 Hatton Road, Wichita Falls, TX 86302, Phone 888-385-1221, 940-397-7000, Fax: 940-397-7085, 1SXU301197B0201, Nov. 2009.
Walker, “A DC Circuit Breaker for an Electric Vehicle Battery Pack”, Australasian Universities Power Engineering Conference and IEAust Electric Energy Conference, Sep. 26-29, 1999.
Combined Search and Examination Report for GB1018872.0 dated Apr. 15, 2011, 2 pages.
International Search Report and Opinion of International Patent Application PCT/2009/051221, dated Oct. 19, 2009.
International Search Report and Opinion of International Patent Application PCT/2009/051222, dated Oct. 7, 2009.
Communication in EP07874025.5 dated Aug. 17, 2011.
IPRP for PCT/IB2008/055095 dated Jun. 8, 2010, with Written Opinion.
ISR for PCT/IB2008/055095 dated Apr. 30, 2009.
ISR for PCT/IL07/01064 dated Mar. 25, 2008.
IPRP for PCT/IB2007/004584 dated Jun. 10, 2009, with Written Opinion.
IPRP for PCT/IB2007/004591 dated Jul. 13, 2010, with Written Opinion.
IPRP for PCT/IB2007/004643 dated Jun. 10, 2009, with Written Opinion.
Written Opinion for PCT/IB2008/055092 submitted with IPRP dated Jun. 8, 2010.
IPRP for PCT/US2008/085754 dated Jun. 8, 2010, with Written Opinion dated Jan. 21, 2009.
IPRP for PCT/US2008/085755 dated Jun. 8, 2010, with Written Opinion dated Jan. 20, 2009.
IPRP for PCT/IB2009/051221 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051222 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051831 dated Nov. 9, 2010, with Written Opinion.
IPRP for PCT/US2008/085736 dated Jun. 7, 2011, with Written Opinion.
IPRP for PCT/IB2010/052287 dated Nov. 22, 2011, with Written Opinion.
ISR for PCT/IB2010/052413 dated Sep. 7, 2010.
UK Intellectual Property Office, Application No. GB1109618.7, Patents Act 1977, Examination Report Under Section 18(3), Sep. 16, 2011.
UK Intellectual Property Office, Patents Act 1977: Patents Rules Notification of Grant: Patent Serial No. GB2480015, Nov. 29, 2011.
Walker, et al. “PV String Per-Module Maximum Power Point Enabling Converters”, School of Information Technology and Electrical Engineering the University of Queensland, Sep. 28, 2003.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, 33rd Annual IEEE Power Electronics Specialists Conference. PESC 2002. Conference Proceedings. CAIRNS, Queensland, Australia, Jun. 23-27, 2002; [Annual Power Electronics Specialists Conference], New York, NY: IEEE US, vol. 1, Jun. 23, 2002, pp. 24-29, XP010596060 ISBN: 978-0-7803-7262-7, figure 1.
Baggio, “Quasi-ZVS Activity Auxiliary Commutation Circuit for Two Switches Forward Converter”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001. Conference Proceedings. Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference] New York, NY: IEEE, US.
Ilic, “Interleaved Zero-Current-Transition Buck Converter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 6, Nov. 1, 2007, pp. 1619-1627, XP011197477 ISSN: 0093-9994, pp. 1619-1922.
Lee: “Novel Zero-Voltage-Transition and Zero-Current-Transition Pulse-Width-Modulation Converters”, Power Electronics Specialists Conference, 1997, PESC '97, Record, 28th Annual IEEE St. Louis, MO, USA, Jun. 22-27, 1997, New York, NY, USA IEEE, US, vol. 1, Jun. 22, 1997, pp. 233-239, XP010241553, ISBN: 978-0-7803-3840-1, pp. 233-236.
Sakamoto, “Switched Snubber for High-Frequency Switching Converters”, Electronics & Communications in Japan, Part 1—Communications, Wiley, Hoboken, NJ, US, vol. 76, No. 2, Feb. 1, 1993, pp. 30-38, XP000403018 ISSN: 8756-6621, pp. 30-35.
Duarte, “A Family of ZVX-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis and Experimentation”, Telecommunications Energy Conference, 1995, INTELEC '95, 17th International The Hague, Netherlands, Oct. 29-Nov. 1, 1995, New York, NY, US, IEEE, US, Oct. 29, 1995, pp. 502-509, XP010161283 ISBN: 978-0-7803-2750-4 p. 503-504.
IPRP for PCT/IL2007/001064 dated Mar. 17, 2009, with Written Opinion dated Mar. 25, 2008.
IPRP for PCT/IB2007/004586 dated Jun. 10, 2009, with Written Opinion.
Gao, et al., “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions”, IEEE Transactions on Industrial Electronics, vol. 56, No. 5, May 2009, pp. 1548-1556.
IPRP PCT/IB2007/004610—date of issue Jun. 10, 2009.
Extended European Search Report—EP12176089.6—dated Nov. 8, 2012.
Gwon-Jong Yu et al: “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller”, May 13, 1996; May 13, 1996-May 17, 1996, May 13, 1996 (May 13, 1996), pp. 1429-1432, XP010208423.
Extended European Search Report—EP12177067.1—dated Dec. 7, 2012.
GB Combined Search and Examination Report—GB1200423.0—dated Apr. 30, 2012.
GB Combined Search and Examination Report—GB1201499.9—dated May 28, 2012.
GB Combined Search and Examination Report—GB1201506.1—dated May 22, 2012.
“Study of Energy Storage Capacitor Reduction for Single Phase PWM Rectifier”, Ruxi Wang et al., Virginia Polytechnic Institute and State University, Feb. 2009.
“Multilevel Inverters: A Survey of Topologies, Controls, and Applications”, José Rodríguez et al., IEEE Transactions on Industrial Electronics, vol. 49, No. 4, Aug. 2002.
Extended European Search Report—EP 08878650.4—dated Mar. 28, 2013.
Satcon Solstice—Satcon Solstice 100 kW System Solution Sheet—2010.
John Xue, “PV Module Series String Balancing Converters”, University of Queensland—School of Information Technology & Electrical Engineering, Nov. 6, 2002.
Robert W. Erickson, “Future of Power Electronics for Photovoltaics”, IEEE Applied Power Electronics Conference, Feb. 2009.
Aug. 6, 2019—Notice of Opposition of European Patent 2232663—Fronius International GmbH.
Sep. 5, 2019—Notice of Opposition of European Patent 2549635—Huawei Technologies Co.
Sep. 5, 2019—Notice of Opposition of European Patent 2549635—Fronius International GmbH.
Solide Arbeit, Heinz Neuenstein, Dec. 2007.
Spitzenwirkungsgrad mit drei Spitzen, Heinz Neuenstien and Andreas Schlumberger, Jan. 2007.
Technical Information, Temperature Derating for Sunny Boy, Sunny Mini Central, Sunny Tripower, Aug. 9, 2019.
Prinout from Energy Matters online Forum, Jul. 2011.
Wayback Machine Query for Energy Matters Online Forum Jul. 2011.
Apr. 20, 2020—European Search Report—EP 20151729.9.
Apr. 23, 2020—European Search Report—EP 19217486.0.
Jan. 30, 2020—EP Office Action—EP 18204177.2.
Feb. 3, 2020—Chinese Office Action—201710749388.9.
May 12, 2020—Extended European Search Report—EP 20161381.7.
Dec. 24, 2024—CN Office Action—CN Application 201610946835.5.
Nov. 27, 2019—European Search Report—3567562.
Baocheng, DC to AC Inverter with Improved One Cycle Control, 2003.
Brekken, Utility-Connected Power Converter for Maximizing Power Transfer From a Photovoltaic Source While Drawing Ripple-Free Current, 2002.
Cramer, Modulorientierter Stromrichter Geht in Serienfertigung , SPVSE, 1994.
Cramer, Modulorientierter Stromrichter, Juelich, Dec. 31, 1995.
Cramer, String-Wechselrichter Machen Solarstrom Billiger, Elektronik, Sep. 1996.
Dehbonei, A Combined Voltage Controlled and Current Controlled “Dual Converter” for a Weak Grid Connected Photovoltaic System with Battery Energy Storage, 2002.
Engler, Begleitende Untersuchungen zur Entwicklung eines Multi-String-Wechselrichters, SPVSE, Mar. 2002.
Geipel, Untersuchungen zur Entwicklung modulorientierter Stromrichter Modulorientierter Stromrichter für netzgekoppelte Photovoltaik-Anlagen, SPVSE, 1995.
Hoor, DSP-Based Stable Control Loops Design for a Single Stage Inverter, 2006.
Isoda, Battery Charging Characteristics in Small Scaled Photovoltaic System Using Resonant DC-DC Converter With Electric Isolation, 1990.
Jones, Communication Over Aircraft Power lines, Dec. 2006/ Jan. 2007.
Kalaivani, A Novel Control Strategy for the Boost DC-AC Inverter, 2006.
Lee, Powering the Dream, IET Computing & Control Engineering, Dec. 2006/ Jan. 2007.
Lee, A Novel Topology for Photovoltaic Series Connected DC/DC Converter with High Efficiency Under Wide Load Range, Jun. 2007.
Lin, LLC DC/DC Resonant Converter with PLL Control Scheme, 2007.
Niebauer, Solarenergie Optimal Nutzen, Stromversorgung, Elektronik, 1996.
Rodrigues, Experimental Study of Switched Modular Series Connected DC-DC Converters, 2001.
Sanchis, Buck-Boost DC-AC Inverter: Proposal for a New Control Strategy, 2004.
Sen, A New DC-To-AC Inverter With Dynamic Robust Performance, 1998.
Shaojun, Research on a Novel Inverter Based on DC/DC Converter Topology, 2003.
Siri, Sequentially Controlled Distributed Solar-Array Power System with Maximum Power Tracking, 2004.
Walko, Poised for Power, IEE Power Engineer, Feb./ Mar. 2005.
White, Electrical Isolation Requirements in Power-Over-Ethernet (PoE) Power Sourcing Equipment (PSE), 2006.
Yu, Power Conversion and Control Methods for Renewable Energy Sources, May 2005.
Zacharias, Modularisierung in der PV-Systemtechnik—Schnittstellen zur Standardisierung der Komponenten, Institut für Solare Energieversorgungstechnik (ISET), 1996.
Dec. 31, 2020—CN Invalidation Decision—CN 200780045351.2.
Dec. 31, 2020—CN Invalidation Decision—CN 201210253614.1.
Nov. 12, 2020—Preliminary Opinion by EPO—EP 12188944.8.
Jul. 8, 2020—CN Office Action—CN 201710362679.2.
Sep. 17, 2020—Extended European Search Report—EP Application 20176744.9.
Oct. 12, 2020—CN Office Action—CN 201610946835.5.
Related Publications (1)
Number Date Country
20190173421 A1 Jun 2019 US
Provisional Applications (2)
Number Date Country
62341147 May 2016 US
62318303 Apr 2016 US
Continuation in Parts (1)
Number Date Country
Parent 15250068 Aug 2016 US
Child 16248475 US