Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
The figures are not drawn to scale, and are only schematically shown to aid the understanding of the invention and the drawings show an exemplary embodiment of the claimed invention.
The axially-moveable rod 3 is moveable by a cam surface 5 of a cam arrangement 6. The cam surface 5 is moveable by rotation of the cam arrangement 6. The cam arrangement 6 is provided with a notch 6A for engaging with an actuator 7.
The cam surface 5 is provided with two indentations, a first indentation 5A and a second indentation 5B. The first indentation 5A is dimensioned such that when it is aligned with an end 3A of the axially-moveable rod 3, the axially moveable rod 3 moves into the first indentation 5A under the bias of the spring 4. When the axially moveable rod 3 moves into the first indentation 5A under the bias of the spring 4, the sides 2A, 2B of the contacts are kept apart from one another.
The safety switch is also provided with a locking mechanism. The locking mechanism is arranged to lock the axially moveable rod 3 in position in certain circumstances, to prevent the actuator 7 from being removed from the safety switch.
The locking mechanism comprises a set of rod locking members 8, which are arranged to engage with notches 3B in the axially moveable rod 3. The rod locking members 8 are connected to a slideable locking plate 9. The locking plate 9 is in turn connected to a pivot member 10 which is arranged to pivot about a pivot point 10A. The pivot member 10 is also connected to a solenoid plunger 11 which is slideably mounted in a solenoid 11A. The solenoid 11A is fixed to the housing 1, whereas the solenoid plunger 11 may move relative to the housing 1. The solenoid plunger 11 is biased by a spring (not shown) so that it is pushed out of the solenoid 11A when the solenoid 11A is not energised. The pivot member 10 is arranged to translate ‘left to right’ movement (relative to the illustration of the safety switch in
Due to the arrangement of the pivot member 10 and the elements connected to the pivot member 10, when the solenoid 11A is not activated, the biased solenoid plunger 11 attempts to rotate the pivot member 10. Since the pivot member 10 is trying to rotate, it attempts to push the locking plate 9 in the direction of the axially moveable rod 3. Such movement of the locking plate 9 causes the rod locking members 8 to try to close on the axially moveable rod 3. Since the rod locking members 8 are trying to close on the axially moveable rod 3, the rod locking members 8 are either kept in contact with the surface of the axially moveable rod 3, or kept in the notches 3B of the axially moveable rod 3 when the solenoid 11A is not energised. Use of the locking mechanism will be described in more detail below.
The locking plate 9 is shown in more detail in
It will be appreciated that other locking mechanism arrangements are possible. The present arrangement is given as an example. By employing a pivoting arrangement and a plate 9 through which elements can extend, the present locking mechanism is compact.
Referring to
As the axially moveable rod 3 is moved against the bias of the spring 4, the rod locking members 8 engage with the notches 3B of the axially moveable rod 3. The rod locking members 8 are biased to engagement by the spring (not illustrated) which acts on the solenoid plunger 11. The spring pushes the solenoid plunger 11 out of the solenoid, thereby rotating the pivot member 10 and moving the locking plate 9 towards the axially moveable rod. This causes the rod locking members 8 to rotate and engage with the notches 3B.
It will be appreciated that the connection of the rod locking members 8 to the locking plate 9 is shown schematically, and that in practice a connection which converts linear motion of the locking plate 9 to rotational motion of the locking members 8 is desired. This is shown in
Since the rod locking members 8 are engaged with the axially moveable rod 3, the rod 3 remains locked in position. The cam arrangement 6 cannot be rotated because the end 3A of the axially moveable rod 3 is located in the second indentation 5B of the cam surface 5. As a consequence of the cam arrangement 6 also being fixed in position, the actuator 7 cannot be disengaged from the notch 6A in the cam arrangement, and therefore the actuator 7 cannot be removed from the safety switch. In order to remove the actuator 7 from the switch, the rod locking members 8 of the locking mechanism must be disengaged from the notches 3B of the axially moveable rod 3. Disengagement of the rod locking members 8 is described with reference to
To disengage the rod locking members 8 from the notches 3B of the axially moveable rod 3, the solenoid 11A is energised. Energising the solenoid 11A causes the solenoid plunger 11 to be pulled into the solenoid 11A. When the solenoid plunger 11 is pulled into the solenoid 11A, the pivot member 10 is made to rotate, which in turn causes the locking plate 9 to move away from the axially moveable rod 3. When the locking plate 9 moves away from the axially moveable rod 3, the rod locking members 8 to which locking plate 9 is connected are made to rotate away from and therefore disengage from the notches 3B of the axially moveable rod 3. When the solenoid 11A is energised, the axially moveable rod 3 is not locked in position and is able to move axially when the cam arrangement 6 is rotated. Pulling on the actuator 7 causes the cam arrangement 6 to rotate and allows the actuator 7 to be removed from the housing 1.
When the actuator 7 is removed from the housing 1, it will cause the cam arrangement 6 and cam surface 5 to rotate in the opposite direction to that described in relation to
The solenoid 11A may be connected to a controller which supplies power to electrically powered machinery. The controller may be configured such that it activates the solenoid 11A a predetermined time after the supply of power to the machinery has been interrupted. This allows the actuator 7 to be removed from the housing 1, thereby allowing access to the machinery.
The locking mechanism of the safety switch described in relation to
It has been found that in some circumstances, the actuator 7 can be removed from the safety switch by pulling on the actuator 7 whilst simultaneously subjecting the safety switch to a sudden shock (e.g. a sudden movement or impact).
As described above, the solenoid 11A is fixed to the housing 1. The solenoid plunger 11 is moveable relative to the solenoid 11A and to the housing 1. If the safety switch is subjected to a sudden impact on the right hand side of the switch (as the switch is shown in
It has been found that if an impact occurs on any other part of the housing (i.e. other than on the right hand side of the housing 1 shown in
It has also been found that if the safety switch 1 is properly mounted onto a support structure (e.g. a fence post) it is very difficult to impact the housing 1 with the necessary force and direction to allow the actuator 7 to be removed. However, if the safety switch is not properly mounted on a supporting structure, or if the safety switch is mounted on a supporting structure which is not rigid, it is possible to remove the actuator 7 from the safety switch, as described above. The actuator 7 can therefore be removed despite the safety switch having a locking mechanism and despite the solenoid 11A of the locking mechanism not being energised to disengage the locking elements 8. In some instances it is possible that vibration of the safety switch, for example caused by operation of the electromechanical machinery, might cause the actuator 7 to jump out of the housing 1.
When the housing 1 of the safety switch is not subjected to an impact the safety switch functions in the same way as described in relation to
Referring to
When the housing 1 is subjected to an impact force F (indicated by the arrow on the right hand side of the housing 1 in
When the housing 1 is subjected to an impact force F from the right hand side, the locking pin 12B of the locking member 12 slides toward the locking plate 9, and then through the aperture 9D provided in the locking plate 9 (shown in
Since the rod locking members 8 cannot be disengaged from the axially moveable rod 3, the rod 3 remains locked in position. The cam arrangement 6 cannot be rotated because the end 3A of the axially moveable rod 3 is located in the second indentation 5B of the cam surface 5. As a consequence of the cam arrangement 6 also being fixed in position, the actuator 7 cannot be disengaged from the notch 6A in the cam arrangement, and therefore the actuator 7 cannot be removed from the safety switch.
When the force F is no longer applied to the right hand side of the safety switch (i.e. after the impact), the spring 12C of the plate locking member 12 biases the locking pin 12B back into the housing 12A. The locking pin 12B is thereby withdrawn from the aperture 9D in the locking plate 9. The locking plate 9 is therefore able to move if the solenoid 11A is subsequently energised. This allows the switch to operate in the same manner as described with reference to
In the embodiments described above, the force F is stated as being applied to the right hand side of the safety switch. It will be appreciated that an applied force need only have a component which is applied to the right hand side of the housing, i.e. the force may have other components not acting on or in the direction of the right hand side of the housing. It will be appreciated that the force and direction of the force necessary to move the solenoid plunger will depend on the location and orientation of the solenoid plunger, and that the force and its direction may be different for different safety switches.
The locking pin 12B may extend through an aperture to lock the locking plate into position. Alternatively, the locking pin 12B may extend into the aperture (i.e. not necessarily through the aperture) to lock the locking plate into position.
The weight of the locking pin 12B should be appropriately chosen so that during an impact the locking pin 12B extends through the aperture 9D of the locking plate 9, earlier or at generally the same time that the solenoid plunger 11 is biased to move into the solenoid 11A. If this were not the case it is possible that movement of the solenoid plunger 11 into the solenoid 11A, could cause the locking plate 9 to slide before the locking pin 12B of the plate locking member 12 has passed through the aperture 9D of the locking plate 9 and locked it in position. This would allow the actuator 7 to be removed from the housing 1 during the impact. The weight of the locking pin 12B may for example be substantially equal to the weight of the solenoid plunger 11, or even greater than the weight of the solenoid plunger 11. The biasing force provided by the spring 12C may be appropriately chosen for a locking pin 12B of a certain weight, in order to ensure that the locking pin 12B locks the locking plate in position during an impact to the safety switch.
The solenoid plunger is described as being connected to the rod-locking element. It will be appreciated that the solenoid plunger may be directly connected to the rod-locking element, or that the solenoid plunger may be indirectly connected to the rod-locking element. For example, the solenoid plunger may be indirectly connected to the rod-locking element through several intermediate (or linked) components.
The safety switch could operate in any suitable manner, as is known in the art. For example, the logic of the safety switch contacts 2 could be reversed such that the sides 2A, 2B of the contacts 2 are brought into contact with each other when the end 3A of the axially moveable rod 3 is received in the first indentation 5A of the cam surface 5 (instead of the second indentation 5B). The rod locking members 8 would then lock the rod 3 in this position.
The locking plate described above could be a locking bar, or any suitable connecting member. The notches in the axially moveable rod and the rod rocking members can be of any suitable configuration, so long as the rod locking members can lock the rod in position.
It will be appreciated that the present invention could be applied to any safety switch employing the same or similar locking mechanism described above, and that the invention is only limited by the claims and the equivalents thereof, which follow.
Number | Date | Country | Kind |
---|---|---|---|
0613423.3 | Jul 2006 | GB | national |