This invention relates to the field of electrical switches and more particularly to a multi-position electrical switch that prevents inadvertent operation.
There are many known two position switches, for example, toggle switches and slide switches. Such switches are usually used to turn on/off electrical circuits such as lights, fans, etc. In general, an inadvertent operation of such switches does not result in danger to the operator and the operator, after inadvertent operation of such a switch, simply moves the switch back to the intended state and moves on. Unfortunately, inadvertent operation of certain switches invoke danger, for example, inadvertent operation of an eject switch in a jet fighter will likely result in that jet fighter crashing after the pilot is ejected. So that such a switch does not get activated, in the current art, the switch is often covered and the pilot must first remove the cover before activating the switch. There are several other situations in which inadvertent operation of a switch will result in danger to the operator of that switch, very often in combat situations.
There are also many multi-position switches (those with greater than two positions) that are known and used today. Take for example, a rotary switch used to select an input of a stereo system. In a first position, an amplifier is connected to a turntable, in a second position, the amplifier is connected to an FM tuner, and in a third position, the amplifier is connected to a CD player. Such switches move freely between positions and it is non-consequential if such a switch is moved from a first position to a third position in a single movement as this would only change the input of the amplifier from the turntable to the CD player.
In some situations, there is a need to prevent a multi-position switch from moving from a first position beyond a second position, for example, moving from the first position to a third or fourth position. Take for example the rotary switch of U.S. Pat. No. 7,315,036 to Ford, et al. In this, a signaling device is disclosed having light emitters, some of the light emitters operate in the visible spectrum (e.g., white light) and some work in the non-visible spectrum (e.g., infrared light). A rotary switch sets which of the emitters emit light (white light, infrared light, or no light). When such a signaling device is used in a military operation, it is often important for covert reasons, to switch from an off-mode into a non-visible mode without switching into a visible mode, as the enemy could be able to see the wearer if the signaling device is set to visible mode. As such signaling devices are often worn on a helmet, the wearer might not know if the signaling device is emitting visible light. Unfortunately, using the disclosed rotary switch, it would be easy for the wearer who intends to switch from a first position (e.g., off) to a second position (infrared emission); to accidentally switch to a third position (e.g., white light emission), resulting in the inadvertent and, often, dangerous emission of visible light.
What is needed is a safety switch that will prevent inadvertent switching between or into certain positions.
In one embodiment, a safety switch is disclosed including an actuator that has a first possible actuator position and a second possible actuator position and a blocker that has a first possible blocker position and a second possible blocker position. The first possible blocker position overlaps with the second possible actuator position. The safety switch includes a device for generating an electrical signal representative of a current position of the actuator. When the actuator is in the first possible actuator position and the blocker is in the first possible blocker position, the blocker prevents movement of the actuator from the first possible actuator position to the second possible actuator position without first moving the blocker from the first possible blocker position to the second possible blocker position. In some such embodiments, both the actuator and blocker slide along a guide that has detents in each position.
In another embodiment, a method of safely switching a state of an electrical apparatus is disclosed. The method includes starting with an actuator in a first actuator position and a blocker being adjacent to the actuator in a first blocker position. In a first step, moving the blocker from the first blocker position to a second blocker position that is distal from the actuator and in a second step, moving the actuator from the first actuator position to a second actuator position which is the same as the first blocker position. The actuator is not able to be moved from the first actuator position to the second actuator position without first moving the blocker from the first blocker position to the second blocker position.
In another embodiment, a safety switch is disclosed including an actuator. The actuator is physically interfaced to a permanent magnet and has a first possible actuator position and a second possible actuator position. The safety switch has a blocker that has a first possible blocker position and a second possible blocker position, the first possible blocker position overlaps with the second possible actuator position. There is a magnetic sensor situated such that the magnetic sensor generates a first electrical signal when the actuator is in the first possible actuator position in which the permanent magnet is in proximity of the magnetic sensor and the magnetic sensor generates a second electrical signal when the actuator is in the second possible actuator position in which the permanent magnet is distal from the magnetic sensor. When the actuator is in the first possible actuator position and the blocker is in the first possible blocker position, the blocker prevents movement of the actuator from the first possible actuator position to the second possible actuator position without first moving the blocker from the first possible blocker position to the second possible blocker position.
Note that when the disclosed switching system is integrated into a marker system, it is important to pass as much light as possible from within the enclosure of the marker system to outside of the enclosure. Therefore, in some embodiments, both the actuator(s) and blocker(s) are made of a clear or translucent material (except for the small magnet within the actuators), thereby permitting optimal light from the light emitters to escape the marker system for a given emitter input power, which is more light output than if the actuator(s) and blocker(s) are made of an opaque material.
The invention can be best understood by those having ordinary skill in the art by reference to the following detailed description when considered in conjunction with the accompanying drawings in which:
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Throughout the following detailed description, the same reference numerals refer to the same elements in all figures.
Throughout this description, for clarity reasons only, the safety switch 1 is described as part of a marker system 5 that is affixed to a helmet 7. In this, other parts of the marker system 5 such as light emitters 34 are shown but do not limit the overall concept and inventiveness of the safety switch 1. Further, it is fully anticipated that the safety switch 1 be constructed as an integral device using any known electrical connecting device such as magnetic switches or sensors (e.g., reed relays), optical switches and light blockers, electrical contacts, etc. In the examples shown here, only magnetic switches are shown for clarity reasons.
It is important for a marker system 5 to emit as much light as possible given the limited power obtained from an internal power source (e.g., battery). In such an application of a marker system 5, as most of the safety switch 1 is fabricated from clear or translucent materials so as to transmit as much light from the light emitters 34 outside of the enclosure 5, some of which light passes through the actuator 10 and blocker 14. In such, the size of the permanent magnet 12 is kept to a minimum as required to be sensed by the magnetic switch 30, thereby the permanent magnet 12 blocks as little light as possible when the light emitters 30 emit light.
Referring to
Likewise, when the actuator 10 is in the second actuator position (center position) and the blocker 14 is in the second blocker position (right-most position), the safety switch 1 cannot be inadvertently changed back to the original position (e.g., cannot progress for the mode shown in
Note that although the permanent magnet 12 is shown in the actuator 10, it is equally anticipated that the permanent magnet be in the blocker 14 and the location of the magnetic switch 30 be either centrally located or located beneath the right-most position to provide the safe operation of the safety switch 1.
Referring to
The following table indicates one possible set of operations based upon positions of the actuator 10 and blocker 14:
The following table indicates another possible set of operations based upon positions of the actuator 10 and blocker 14:
As above, the blocker 14 prevents the actuator 10 from moving as in order to move the blocker 14, the actuator 10 must push the blocker along the guide 20 and forces of friction prevent movement of both the actuator 10 and the blocker 14 at the same time. Therefore, in order for the user to move the actuator 10 from the first actuator position (left-most position as in
Likewise, when the actuator 10 is in the second actuator position (center) and the blocker 14 is in the second blocker position (right-most position as in
Note that it is fully anticipated that the safety switch 1 have more than three positions such as four positions with any number of modes as defined by the number of permanent magnets 12/16 and magnetic switches 30/32 and the locations of such in one or more actuators 10 and blockers 14. For example, a safety switch 1 having two actuators 10 each with a permanent magnet 12 alternating with two blockers 14 without permanent magnets 12 and several magnetic switches 30/32. In this, five unique modes are possible if there is a single blank position as in the above description, though more unique modes are anticipated by providing additional blank positions.
Again, although shown using permanent magnets 12/14 and magnetic switches 30/32, the same safety switch 1 is anticipated to use any known device that converts physical position into an electrical signal including electrical contacts, magnetic sensors, and light interrupter/sensors.
Equivalent elements can be substituted for the ones set forth above such that they perform in substantially the same manner in substantially the same way for achieving substantially the same result.
It is believed that the system and method as described and many of its attendant advantages will be understood by the foregoing description. It is also believed that it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely exemplary and explanatory embodiment thereof. It is the intention of the following claims to encompass and include such changes.
Number | Name | Date | Kind |
---|---|---|---|
4195328 | Harris, Jr. | Mar 1980 | A |
4901210 | Hanabusa | Feb 1990 | A |
5414405 | Hogg et al. | May 1995 | A |
5633623 | Campman | May 1997 | A |
5748891 | Fleming | May 1998 | A |
5966226 | Gerber | Oct 1999 | A |
6201495 | Lemelson et al. | Mar 2001 | B1 |
6213623 | Campman | Apr 2001 | B1 |
6283620 | Taylor | Sep 2001 | B1 |
6545632 | Lyons | Apr 2003 | B1 |
7021790 | Parsons | Apr 2006 | B2 |
7023004 | Ford et al. | Apr 2006 | B2 |
7221263 | Moore | May 2007 | B2 |
7315036 | Ford et al. | Jan 2008 | B2 |
7505279 | Ohtaki et al. | Mar 2009 | B2 |
7722205 | Kim | May 2010 | B2 |
7831150 | Roes et al. | Nov 2010 | B2 |
8444291 | Swan et al. | May 2013 | B2 |
8477492 | Rothkopf et al. | Jul 2013 | B2 |
8485686 | Swan et al. | Jul 2013 | B2 |
8534861 | Leegate et al. | Sep 2013 | B2 |
8573797 | Spartano et al. | Nov 2013 | B2 |
8672504 | Kramer | Mar 2014 | B2 |
9144261 | Leegate et al. | Sep 2015 | B2 |
9175837 | Leegate et al. | Nov 2015 | B1 |
9175838 | Leegate et al. | Nov 2015 | B1 |
9341714 | Leegate et al. | May 2016 | B2 |
9476982 | Leegate et al. | Oct 2016 | B2 |
9746561 | Leegate et al. | Aug 2017 | B2 |
20080011592 | Liebert | Jan 2008 | A1 |
20080134562 | Teetzel | Jun 2008 | A1 |
20080216699 | McAleer et al. | Sep 2008 | A1 |
20090144872 | Lebel | Jun 2009 | A1 |
20100128468 | Ong et al. | May 2010 | A1 |
20110170280 | Soto | Jul 2011 | A1 |
20130114275 | Cristofaro | May 2013 | A1 |
20160088891 | Walsh | Mar 2016 | A1 |
20160309826 | Anderson | Oct 2016 | A1 |