1. Field of the Invention
The present invention relates to a safety switch that ensures the bimetallic plate to be deformed as desired when overload and the switch member is pivoted to “OFF” position.
2. The Prior Arts
A conventional switch device, especially for those switches using bimetallic plate to prevent from being burn when an overload is happened, generally includes a bimetallic plate which is deformed when overload so as to separate the two contact points respectively located on the bimetallic plate and one of the two terminals. Some inherent shortcomings for these conventional safety switches are experienced. There are too many parts involved in the safety switches and a longer period of time is required when assembling the switches, so this increases the cost of the products. The parts might be arranged inaccurately and affects the deformation of the bimetallic plate. Once the bimetallic plate is deformed to cut off the circuit, because of the improper arrangement of the parts as mentioned above, the bimetallic plate could deform to re-connect the two contact points to connect the circuit again. Because of the inaccuracy of the deformation of the bimetallic plate, the switch member does not set the “OFF” position after the bimetallic plate is deformed to cut off the circuit.
Therefore, it is desired to have a safety switch that allows the bimetallic plate to deform toward a desired direction when overload and the bimetallic plate is freely deformed to prevent the bimetallic plate from bouncing back to re-connect the circuit again.
In accordance with an aspect of the present invention, there is provided a safety switch, which comprises a body with a switch member pivotably engaged with the top opening of the body. An extension extends from a first end of an underside of the switch member and a push rod is pivotably connected to an inside of the switch member. A stop rod extends from the inside of the switch member and locates at a distance from a pivot position of the push rod. A biasing member is connected to the push rod and pushes the push rod toward the stop rod. A first terminal and a second terminal extend through a bottom of the body. A contact plate has a first end fixed to the first terminal and a second end of the contact plate is a free end. A contact portion splits from the contact plate and a first contact point is connected to an underside of the contact portion. A free end of the contact portion is located above a top surface of the contact plate and connected with a free first end of a spring member. A second end of the spring member is connected to the contact plate. A second contact point is connected to the second terminal and locates beneath the first contact point on the contact portion. The second end of the contact plate and the free end of the contact portion are deformed in opposite directions when being heated. The push rod is located at right side of the spring member when in “ON” position so that when overload, the contact portion is deformed clockwise to separate the two contact points and the spring member pushes the push rod away to allow the clockwise movement of the spring member to be completed.
The main object of the present invention is to provide a safety switch which provides a push rod pivotably connected to the switch member so as to push the spring member when setting the switch in “ON” position, and the push rod does not stop the clockwise movement of the spring when overload.
Another object of the present invention is to provide a safety switch, wherein the switch member is automatically set at “OFF” position after overload.
Yet another object of the present invention is to provide a safety switch that includes less number of parts so as to have lower manufacturing cost.
The present invention will become more obvious from the following description when taken in connection with the accompanying drawings, which show, for purposes of illustration only, a preferred embodiment in accordance with the present invention.
Referring to the drawings and in particular to
A first terminal 11 and a second terminal 12 extend through a bottom of the body 1. A contact plate 3 which is a curve and flexible bimetallic plate and a first end of the contact plate 3 is fixed to the first terminal 11 and a second end of the contact plate 3 is a free end. A contact portion 31 splits from the contact plate 3 and a first contact point 311 is connected to an underside of the contact portion 31. A second contact point 121 is connected to the second terminal 12 and located beneath the first contact point 311 on the contact portion 31. A free end of the contact portion 31 is located above a top surface of the contact plate 3 and connected with a free first end of a U-shaped spring member 32. The free end of the contact portion 31 has a tongue 312 and the free first end of the spring member 32 has a first slot 321 with which the tongue 312 is engaged. A second end of the spring member 32 has a second slot 322. A ridge 313 extends from an inner periphery of an opening from which the contact portion 31 splits, and the ridge 313 is engaged with the second slot 322. The second end of the contact plate 3 and the free end of the contact portion 31 are deformed in opposite directions when being heated.
The extension 21 of the switch member 2 is located above the second end of the contact plate 3 and presses the second end of the contact plate 3 downward when the switch member 2 is in “OFF” position as shown in
As shown in
While we have shown and described the embodiment in accordance with the present invention, it should be clear to those skilled in the art that further embodiments may be made without departing from the scope of the present invention.