Safety vacuum release system

Information

  • Patent Grant
  • 10724263
  • Patent Number
    10,724,263
  • Date Filed
    Monday, July 17, 2017
    7 years ago
  • Date Issued
    Tuesday, July 28, 2020
    4 years ago
Abstract
Some embodiments of the invention provide a pumping system for at least one aquatic application. The pumping system includes a pump, a motor coupled to the pump, a user interface associated with the pump designed to receive input instructions from a user, and a controller in communication with the motor. The controller determines a power parameter associated with the motor and compares the power parameter to a predetermined threshold value. The controller triggers a safety vacuum release system based on the comparison of the power parameter and the threshold value.
Description
BACKGROUND

Pool pumps are used to move water in one or more aquatic applications, such as pools, spas, and water features. The aquatic applications include one or more water inlets and one or more water outlets. The water outlets are connected to an inlet of the pool pump. The pool pump generally propels the water though a filter and back into the aquatic applications though the water inlets. For large pools, the pool pump must provide high flow rates in order to effectively filter the entire volume of pool water. These high flow rates can result in high velocities in the piping system connecting the water outlets and the pool pump. If a portion of the piping system is obstructed or blocked, this can result in a high suction force near the water outlets of the aquatic applications. As a result, foreign objects can be trapped against the water outlets, which are often covered by grates in the bottom or sides of the pool. Systems have been developed to try to quickly shut down the pool pump when a foreign object is obstructing the water outlets of the aquatic applications. However, these systems often result in nuisance tripping (i.e., the pool pump is shut down too often when there are no actual obstructions).


SUMMARY

Some embodiments of the invention provide a pumping system for at least one aquatic application. The pumping system includes a pump, a motor coupled to the pump, a user interface associated with the pump designed to receive input instructions from a user, and a controller in communication with the motor. The controller determines a power parameter associated with the motor and compares the power parameter to a predetermined threshold value. The controller triggers a safety vacuum release system based on the comparison of the power parameter and the threshold value.


Some embodiments of the invention provide a safety vacuum release system for at least one aquatic application. The safety vacuum release system includes a pump including an inlet, a motor coupled to the pump, and a controller in communication with the motor. The controller is designed to detect if an obstruction is present in the inlet based on at least one measurement related to the power consumption of the motor.


Other embodiments of the invention provide a safety vacuum release system for at least one aquatic application. The safety vacuum release system comprises a pump including an inlet, a motor coupled to the pump, a detached controller designed to operate the pump, and an on-board controller in communication with the motor. The on-board controller is designed to detect if an obstruction is present in the inlet based only on at least one measurement related to the power consumption of the motor defining a power consumption value.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a pool pump according to one embodiment of the invention;



FIG. 2 is an exploded perspective view of the pool pump of FIG. 1;



FIG. 3A is a front view of an on-board controller according to one embodiment of the invention;



FIG. 3B is a perspective view of an external controller according to one embodiment, of the invention;



FIG. 4 is a flow chart of settings of the on-board controller of FIG. 3A and/or the external controller of FIG. 3B according to one embodiment of the invention;



FIG. 5A is a graph of an absolute power variation of the pool pump when a clogged suction pipe occurs at a certain time;



FIG. 5B is a graph of a relative power variation of the pool pump when a clogged suction pipe or water outlet occurs at a certain time;



FIG. 5C is a graph of a relative counter for the relative power variation of FIG. 5B;



FIG. 5D is a flow chart of a method for calculating a relative power consumption and a dynamic counter value for a pool pump.



FIG. 6 is a graph of a power consumption versus the speed of the pool pump according to one embodiment of the invention; and



FIG. 7 is a schematic illustration of a pool system with a person blocking a water outlet of the pool.





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.


The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.



FIG. 1 illustrates a pool pump 10 according to one embodiment of the invention. The pool pump 10 can be used for any suitable aquatic application, such as pools, spas, and water features. The pool pump 10 can include a housing 12, a motor 14, and an on-board controller 16. In some embodiments, the motor 14 can be a variable speed motor. In one embodiment, the motor 14 can be driven at four or more different speeds. The housing 12 can include an inlet 18, an outlet 20, a basket 22, a lid 24, and a stand 26. The stand 26 can support the motor 14 and can be used to mount the pool pump 10 on a suitable surface (not shown).


In some embodiments, the on-board controller 16 can be enclosed in a case 28. The case 28 can include a field wiring compartment 30 and a cover 32. The cover 32 can be opened and closed to allow access to the on-board controller 16 and protect it from moisture, dust, and other environmental influences. The case 28 can be mounted on the motor 14. In some embodiments, the field wiring compartment 30 can include a power supply to provide power to the motor 14 and the on-board controller 16.



FIG. 2 illustrates the internal components of the pool pump 10 according to one embodiment of the invention. The pool pump 10 can include seal plate 34, an impeller 36, a gasket 38, a diffuser 40, and a strainer 42. The strainer 42 can be inserted into the basket 22 and can be secured by the lid 24. In some embodiments, the lid 24 can include a cap 44, an O-ring 46, and a nut 48. The cap 44 and the O-ring 46 can be coupled to the basket 22 by screwing the nut 48 onto the basket 22. The O-ring 46 can seal the connection between the basket 22 and the lid 24. An inlet 52 of the diffuser 40 can be fluidly sealed to the basket 22 with a seal 50. In some embodiments, the diffuser 40 can enclose the impeller 36. An outlet 54 of the diffuser 40 can be fluidly sealed to the seal plate 34. The seal plate 34 can be sealed to the housing 12 with the gasket 38. The motor 14 can include a shaft 56, which can be coupled to the impeller 36. The motor 14 can rotate the impeller 36, drawing fluid from the inlet 18 through the strainer 42 and the diffuser 40 to the outlet 20.


In some embodiments, the motor 14 can include a coupling 58 to connect to the on-board controller 16. In some embodiments, the on-board controller 16 can automatically operate the pool pump 10 according to at least one schedule. If two or more schedules are programmed into the on-board controller 16, the schedule running the pool pump 10 at the highest speed can have priority over the remaining schedules. In some embodiments, the on-board controller 16 can allow a manual operation of the pool pump 10. If the pool pump 10 is manually operated and is overlapping a scheduled run, the scheduled run can have priority over the manual operation independent of the speed of the pool pump 10. In some embodiments, the on-board controller 16 can include a manual override. The manual override can interrupt the scheduled and/or manual operation of the pool pump 10 to allow for, e.g., cleaning and maintenance procedures. In some embodiments, the on-board controller 16 can monitor the operation of the pool pump 10 and can indicate abnormal conditions of the pool pump 10.



FIG. 3A illustrates a user interface 60 for the on-board controller 16 according to one embodiment of the invention. The user interface 60 can include a display 62, at least one speed button 64, navigation buttons 66, a start-stop button 68, a reset button 70, a manual override button 72, and a “quick clean” button 74. The manual override button 72 can also be called “time out” button. In some embodiments, the navigation buttons 66 can include a menu button 76, a select button 78, an escape button 80, an up-arrow button 82, a down-arrow button 84, a left-arrow button 86, a right-arrow button 88, and an enter button 90. The navigation buttons 66 and the speed buttons 64 can be used to program a schedule into the on-board controller 16. In some embodiments, the display 62 can include a lower section 92 to display information about a parameter and an upper section 94 to display a value associated with that parameter. In some embodiments, the user interface 60 can include light emitting diodes (LEDs) 96 to indicate normal operation and/or a detected error of the pool pump 10.


The on-board controller 16 operates the motor 14 to provide a safety vacuum release system (SVRS) for the aquatic applications. If the on-board controller 16 detects an obstructed inlet 18, the on-board controller 16 can quickly shutdown the pool pump 10. In some embodiments, the on-board controller 16 can detect the obstructed inlet 18 based only on measurements and calculations related to the power consumption of the motor 14 (e.g., the power needed to rotate the motor shaft 56). In some embodiments, the on-board controller 16 can detect the obstructed inlet 18 without any additional inputs (e.g., without pressure, flow rate of the pumped fluid, speed or torque of the motor 14).



FIG. 3B illustrates an external controller 98 for the pool pump 10 according to one embodiment of the invention. The external controller 98 can communicate with the on-board controller 16. The external controller 98 can control the pool pump 10 in substantially the same way as the on-board controller 16. The external controller 98 can be used to operate the pool pump 10 and/or program the on-board controller 16, if the pool pump 10 is installed in a location where the user interface 60 is not conveniently accessible.



FIG. 4 illustrates a menu 100 for the on-board controller 16 according to one embodiment of the invention. In some embodiments, the menu 100 can be used to program various features of the on-board controller 16. In some embodiments, the menu 100 can include a hierarchy of categories 102, parameters 104, and values 106. From a main screen 108, an operator can, in some embodiments, enter the menu 100 by pressing the menu button 76. The operator can scroll through the categories 102 using the up-arrow button 82 and the down-arrow button 84. In some embodiments, the categories 102 can include settings 110, speed 112, external control 114, features 116, priming 118, and anti freeze 120. In some embodiments, the operator can enter a category 102 by pressing the select button 78. The operator can scroll through the parameters 104 within a specific category 102 using the up-arrow button 82 and the down-arrow button 84. The operator can select a parameter 104 by pressing the select button 78 and can adjust the value 106 of the parameter 104 with the up-arrow button 82 and the down-arrow button 84. In some embodiments, the value 106 can be adjusted by a specific increment or the user can select from a list of options. The user can save the value 106 by pressing the enter button 90. By pressing the escape button 80, the user can exit the menu 100 without saving any changes.


In some embodiments, the settings category 110 can include a time setting 122, a minimum speed setting 124, a maximum speed setting 126, and a SVRS automatic restart setting 128. The time setting 122 can be used to run the pool pump 10 on a particular schedule. The minimum speed setting 124 and the maximum speed setting 126 can be adjusted according to the volume of the aquatic applications. An installer of the pool pump 10 can provide the minimum speed setting 124 and the maximum speed setting 126. The on-board controller 16 can automatically prevent the minimum speed setting 124 from being higher than the maximum speed setting 126. The pool pump 10 will not operate outside of these speeds in order to protect flow-dependent devices with minimum speeds and pressure-sensitive devices (e.g., filters) with maximum speeds. The SVRS automatic restart setting 128 can provide a time period before the on-board controller 16 will resume normal operation of the pool pump 10 after an obstructed inlet 18 has been detected and the pool pump 10 has been stopped. In some embodiments, there can be two minimum speed settings—one for dead head detection (higher speed) and one for dynamic detection (lower speed).


In some embodiments, the speed category 112 can be used to input data for running the pool pump 10 manually and/or automatically. In some embodiments, the on-board controller 16 can store a number of manual speeds 130 and a number of scheduled runs 132. In some embodiments, the manual speeds 130 can be programmed into the on-board controller 16 using the up-arrow button 82, the down-arrow button 84 and the enter button 90. Once programmed, the manual speeds 130 can be accessed by pressing one of the speed buttons 64 on the user interface 60. The scheduled runs 132 can be programmed into the on-board controller 16 using the up-arrow button 82, the down-arrow button 84, and the enter button 90. For the scheduled runs 132, a speed, a start time, and a stop time can be programmed. In some embodiments, the scheduled runs 132 can be programmed using a speed, a start time, and a duration. In some embodiments, the pool pump 10 can be programmed to run continuously.


The external control category 114 can include various programs 134. The programs 134 can be accessed by the external controller 98. The quantity of programs 134 can be equal to the number of scheduled runs 132.


The features category 116 can be used to program a manual override. In some embodiments, the parameters can include a “quick clean” program 136 and a “time out” program 138. The “quick clean” program 136 can include a speed setting 140 and a duration setting 142. The “quick clean” program 136 can be selected by pressing the “quick clean” button 74 located on the user interface 60. When pressed, the “quick clean” program 136 can have priority over the scheduled and/or manual operation of the pool pump 10. After the pool pump 10 has been operated for the time period of the duration setting 142, the pool pump 10 can resume to the scheduled and/or manual operation. If the SVRS has been previously triggered and the time period for the SVRS automatic restart 128 has not yet elapsed, the “quick clean” program 136 may not be initiated by the on-board controller 16. The “time out” program 138 can interrupt the operation of the pool pump 10 for a certain amount of time, which can be programmed into the on-board controller 16. The “time out” program 138 can be selected by pressing the “time out” button 72 on the user interface 60. The “time out” program 138 can be used to clean the aquatic application and/or to perform maintenance procedures.


In the priming category 118, the priming of the pool pump 10 can be enabled or disabled. If the priming is enabled, a duration for the priming sequence can be programmed into the on-board controller 16. In some embodiments, the priming sequence can be run at the maximum speed 126. The priming sequence can remove substantially all air in order to allow water to flow through the pool pump 10 and/or connected piping systems.


In some embodiments, a temperature sensor (not shown) can be connected to the on-board controller 16 in order to provide an anti-freeze operation for the pumping system and the pool pump 10. In the anti-freeze category 120, a speed setting 144 and a temperature setting 146 at which the pool pump 10 can be activated to prevent water from freezing in the pumping system can be programmed into the on-board controller 16. If the temperature sensor detects a temperature lower than the temperature setting 146, the pool pump 10 can be operated according to the speed setting 144. However, the anti-freeze operation can also be disabled.



FIG. 5A-5C illustrate power consumption curves associated with the motor shaft 56 of the pool pump 10. The power consumption of the motor that is necessary to pump water and overcome losses will be referred to herein and in the appended claims as any one of “power consumption curves,” “power consumption values,” or simply “power consumption.” FIG. 5A illustrates power consumption curves for the motor shaft 56 when the inlet 18 is obstructed at a particular time 200. FIG. 5A illustrates an actual power consumption curve 202, a current power consumption curve 204, and a lagged power consumption curve 206. The actual power consumption 202 can be evaluated by the on-board controller 16 during a certain time interval (e.g., about 20 milliseconds).


In some embodiments, the on-board controller 16 can filter the actual power consumption 202 using a fast low-pass filter to obtain the current power consumption 204. The current power consumption 204 can represent the actual power consumption 202; however, the current power consumption 204 can be substantially smoother than the actual power consumption 202. This type of signal filtering can result in “fast detection” (also referred to as “dynamic detection”) of any obstructions in the pumping system (e.g., based on dynamic behavior of the shaft power when the inlet 18 is blocked suddenly). In some embodiments, the fast low-pass filter can have a time constant of about 200 milliseconds.


In some embodiments, the on-board controller 16 can filter the signal for the actual power consumption 202 using a slow low-pass filter to obtain the lagged power consumption 206. The lagged power consumption 206 can represent the actual power consumption from an earlier time period. If the inlet 18 is obstructed at the time instance 200, the actual power consumption 202 will rapidly drop. The current power consumption 204 can substantially follow the drop of the actual power consumption 202. However, the lagged power consumption 206 will drop substantially slower than the actual power consumption 202. As a result, the lagged power consumption 206 will generally be higher than the actual power consumption 202. This type of signal filtering can result in “slow detection” (also referred to as “dead head detection” or “static detection”) of any obstructions in the pumping system (e.g., when there is an obstruction in the pumping system and the pool pump 10 runs dry for a few seconds). In some embodiments, the slow low-pass filter can have a time constant of about 1400 milliseconds.


The signal filtering of the actual power consumption 202 can be performed over a time interval of about 2.5 seconds, resulting in a reaction time between about 2.5 seconds and about 5 seconds, depending on when the dead head condition occurs during the signal filtering cycle. In some embodiments, the static detection can have a 50% sensitivity which can be defined as the power consumption curve calculated from a minimum measured power plus a 5% power offset at all speeds from about 1500 RPM to about 3450 RPM. When the sensitivity is set to 0%, the static detection can be disabled.



FIG. 5B illustrates a relative power consumption curve 208 of the pool pump 10 for the same scenario of FIG. 5A. In some embodiments, the relative power consumption can be computed by calculating the difference between the current power consumption 204 and the lagged power consumption 206 (i.e., the “absolute power variation”) divided by the current power consumption 204. The greater the difference between the time constants of the fast and slow filters, the higher the time frame for which absolute power variation can be calculated. In some embodiments, the absolute power variation can be updated about every 20 milliseconds for dynamic detection of obstructions in the pumping system. Due to the lagged power consumption 206 being higher than the current power consumption 204, a negative relative power consumption 208 can be used by the SVRS of the on-board controller 16 to identify an obstructed inlet 18.


The relative power consumption 208 can also be used to determine a “relative power variation” (also referred to as a “power variation percentage”). The relative power variation can be calculated by subtracting the lagged power consumption 206 from the current power consumption 204 and dividing by the lagged power consumption 206. When the inlet 18 is blocked, the relative power variation will be negative as shaft power decreases rapidly in time. A negative threshold can be set for the relative power variation. If the relative power variation exceeds the negative threshold, the SVRS can identify an obstructed inlet 18 and shut down the pool pump 10 substantially immediately. In one embodiment, the negative threshold for the relative power variation can be provided for a speed of about 2200 RPM and can be provided as a percentage multiplied by ten for increased resolution. The negative threshold for other speeds can be calculated by assuming a second order curve variation and by multiplying the percentage at 800 RPM by six and by multiplying the percentage at 3450 RPM by two. In some embodiments, the sensitivity of the SVRS can be altered by changing the percentages or the multiplication factors.


In some embodiments, the on-board controller 16 can include a dynamic counter. In one embodiment, a dynamic counter value 210 can be increased by one value if the absolute power variation is negative. The dynamic counter value 210 can be decreased by one value if the absolute power variation is positive. In some embodiments, if the dynamic counter value 210 is higher than a threshold (e.g., a value of about 15 so that the counter needs to exceed 15 to trigger an obstructed inlet alarm), a dynamic suction blockage is detected and the pool pump 10 is shut down substantially immediately. The dynamic counter value 210 can be any number equal to or greater than zero. For example, the dynamic counter value 210 may remain at zero indefinitely if the shaft power continues to increase for an extended time period. However, in the case of a sudden inlet blockage, the dynamic counter value 210 will rapidly increase, and once it increases beyond the threshold value of 15, the pool pump 10 will be shut down substantially immediately. In some embodiments, the threshold for the dynamic counter value 210 can depend on the speed of the motor 14 (i.e., the thresholds will follow a curve of threshold versus motor speed). In one embodiment, the dynamic detection can monitor shaft power variation over about one second at a 20 millisecond sampling time to provide fast control and monitoring. FIG. 5C illustrates the dynamic counter value 210 of the dynamic counter for the relative power consumption 208 of FIG. 5B.



FIG. 5D depicts the aforementioned steps for providing the relative power consumption 208 and the dynamic counter value 210 by the on-board controller 16. The relative power consumption 208 and the dynamic counter value 210 can be used to determine an obstructed inlet 18. For example, in one embodiment, the SVRS can determine that there is an obstructed inlet 18 when both of the following events occur: (1) the relative power variation exceeds a negative threshold; and (2) the dynamic counter value 210 exceeds a positive threshold (e.g., a value of 15). When both of these events occur, the on-board controller 16 can shut down the pool pump 10 substantially immediately. However, in some embodiments, one of these thresholds can be disabled. The relative power variation threshold can be disabled if the relative power variation threshold needs only to be negative to trigger the obstructed inlet alarm. Conversely, the dynamic counter can be disabled if the dynamic counter value needs only to be positive to trigger the obstructed inlet alarm.


The on-board controller 16 can evaluate the relative power consumption 208 in a certain time interval. The on-board controller 16 can adjust the dynamic counter value 210 of the dynamic counter for each time interval. In some embodiments, the time interval can be about 20 milliseconds. In some embodiments, the on-board controller 16 can trigger the SVRS based on one or both of the relative power consumption 208 and the dynamic counter value 210 of the relative counter. The values for the relative power consumption 208 and the dynamic counter value 210 when the on-board controller 16 triggers the SVRS can be programmed into the on-board controller 16.



FIG. 6 illustrates a maximum power consumption curve 212 and a minimum power consumption curve 214 versus the speed of the pool pump 10 according to one embodiment of the invention. In some embodiments, the maximum power consumption curve 212 and/or the minimum power consumption curve 214 can be empirically determined and programmed into the on-board controller 16. The maximum power consumption curve 212 and the minimum power consumption curve 214 can vary depending on the size of the piping system coupled to the pool pump 10 and/or the size of the aquatic applications. In some embodiments, the minimum power consumption curve 214 can be defined as about half the maximum power consumption curve 212.



FIG. 6 also illustrates several intermediate power curves 216. The maximum power consumption curve 212 can be scaled with different factors to generate the intermediate power curves 216. The intermediate power curve 216 resulting from dividing the maximum power consumption curve 212 in half can be substantially the same as the minimum power consumption curve 214. The scaling factor for the maximum power consumption 212 can be programmed into the on-board controller 16. One or more of the maximum power consumption 212 and the intermediate power curves 216 can be used as a threshold value to detect an obstructed inlet 18. In some embodiments, the on-board controller 16 can trigger the SVRS if one or both of the actual power consumption 202 and the current power consumption 204 are below the threshold value.


In some embodiments, the on-board controller 16 can include an absolute counter. If the actual power consumption 202 and/or the current power consumption 204 is below the threshold value, a value of the absolute counter can be increased. A lower limit for the absolute counter can be set to zero. In some embodiments, the absolute counter can be used to trigger the SVRS. The threshold value for the absolute counter before the SVRS is activated can be programmed into the on-board controller 16. In some embodiments, if the absolute counter value is higher than a threshold (e.g., a value of about 10 so that the counter needs to exceed 10 to trigger an obstructed inlet alarm), a dead head obstruction is detected and the pool pump 10 is shut down substantially immediately. In other words, if the actual power consumption 202 stays below a threshold power curve (as described below) for 10 times in a row, the absolute counter will reach the threshold value of 10 and the obstructed inlet alarm can be triggered for a dead head condition.


For use with the absolute counter, the threshold value for the actual power consumption 202 can be a threshold power curve with a sensitivity having a percentage multiplied by ten. For example, a value of 500 can mean 50% sensitivity and can correspond to the measured minimum power curve calculated using second order approximation. A value of 1000 can mean 100% sensitivity and can correspond to doubling the minimum power curve. In some embodiments, the absolute counter can be disabled by setting the threshold value for the actual power consumption 202 to zero. The sensitivity in most applications can be above 50% in order to detect a dead head obstruction within an acceptable time period. The sensitivity in typical pool and spa applications can be about 65%.


In some embodiments, the SVRS based on the absolute counter can detect an obstructed inlet 18 when the pool pump 10 is being started against an already blocked inlet 18 or in the event of a slow clogging of the inlet 18. The sensitivity of the SVRS can be adjusted by the scaling factor for the maximum power consumption 212 and/or the value of the absolute counter. In some embodiments, the absolute counter can be used as an indicator for replacing and/or cleaning the strainer 42 and/or other filters installed in the piping system of the aquatic applications.


In some embodiments, the dynamic counter and/or the absolute counter can reduce the number of nuisance trips of the SVRS. The dynamic counter and/or the absolute counter can reduce the number of times the SVRS accidently shuts down the pool pump 10 without the inlet 18 actually being obstructed. A change in flow rate through the pool pump 10 can result in variations in the absolute power consumption 202 and/or the relative power consumption 208 that can be high enough to trigger the SVRS. For example, if a swimmer jumps into the pool, waves can change the flow rate through the pool pump 10 which can trigger the SVRS, although no blockage actually occurs. In some embodiments, the relative counter and/or the absolute counter can prevent the on-board controller 16 from triggering the SVRS if the on-board controller 16 changes the speed of the motor 14. In some embodiments, the controller 16 can store whether the type of obstructed inlet was a dynamic blocked inlet or a dead head obstructed inlet.


The actual power consumption 202 varies with the speed of the motor 14. However, the relative power consumption 208 can be substantially independent of the actual power consumption 202. As a result, the power consumption parameter of the motor shaft 56 by itself can be sufficient for the SVRS to detect an obstructed inlet 18 over a wide range of speeds of the motor 14. In some embodiments, the power consumption parameter can be used for all speeds of the motor 14 between the minimum speed setting 124 and the maximum speed setting 126. In some embodiments, the power consumption values can be scaled by a factor to adjust a sensitivity of the SVRS. A technician can program the power consumption parameter and the scaling factor into the on-board controller 16.



FIG. 7 illustrates a pool or spa 300 with a vessel 302, an outlet pipe 304, an inlet pipe 306, and a filter system 308 coupled to the pool pump 10. The vessel 302 can include an outlet 310 and an inlet 312. The outlet pipe 304 can couple the outlet 310 with the inlet 18 of the pool pump 10. The inlet pipe 306 can couple the outlet 20 of the pool pump 10 with the inlet 312 of the vessel 302. The inlet pipe 306 can be coupled to the filter system 308.


An object in the vessel 302, for example a person 314 or a foreign object, may accidently obstruct the outlet 310 or the inlet 18 may become obstructed over time. The on-board controller 16 can detect the blocked inlet 18 of the pool pump 10 based on one or more of the actual power consumption 202, the current power consumption 204, the relative power consumption 208, the dynamic counter, and the absolute counter. In some embodiments, the on-board controller 16 can trigger the SVRS based on the most sensitive (e.g., the earliest detected) parameter. Once an obstructed inlet 18 has been detected, the SVRS can shut down the pool pump 10 substantially immediately. The on-board controller 16 can illuminate an LED 96 on the user interface 60 and/or can activate an audible alarm. In some embodiments, the on-board controller 16 can restart the pool pump 10 automatically after the time period for the SVRS automatic restart 128 has elapsed. In some embodiments, the on-board controller 16 can delay the activation of the SVRS during start up of the pool pump 10. In some embodiments, the delay can be about two seconds.


If the inlet 18 is still obstructed when the pool pump 10 is restarted, the SVRS will be triggered again. Due to the pool pump 10 being started against an obstructed inlet 18, the relative power consumption 208 may be inconclusive to trigger the SVRS. However, the on-board controller 16 can use the actual power consumption 202 and/or the current power consumption 204 to trigger the SVRS. In some embodiments, the SVRS can be triggered based on both the relative power consumption 208 and the actual power consumption 202.


In some embodiments, the SVRS can be triggered for reasons other than the inlet 18 of the pool pump 10 being obstructed. For example, the on-board controller 16 can activate the SVRS if one or more of the actual power consumption 202, the current power consumption 204, and the relative power consumption 208 of the pool pump 10 varies beyond an acceptable range for any reason. In some embodiments, an obstructed outlet 20 of the pool pump 10 can trigger the SVRS. In some embodiments, the outlet 20 may be obstructed anywhere along the inlet pipe 306 and/or in the inlet 312 of the pool or spa 300. For example, the outlet 20 could be obstructed by an increasingly-clogged strainer 42 and/or filter system 308.


In some embodiments, the number of restarts of the pool pump 10 after time period for the SVRS automatic restart 128 has been elapsed can be limited in order to prevent excessive cycling of the pool pump 10. For example, if the filter system 308 is clogged, the clogged filter system 308 may trigger the SVRS every time the pool pump 10 is restarted by the on-board controller 16. After a certain amount of failed restarts, the on-board controller 16 can be programmed to stop restarting the pool pump 10. The user interface 60 can also indicate the error on the display 62. In some embodiments, the user interface 60 can display a suggestion to replace and/or check the strainer 42 and/or the filter system 308 on the display 62.


It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.

Claims
  • 1. A pumping system for at least one aquatic application, the pumping system comprising: a pump;a motor coupled to the pump;a user interface associated with the pump, the user interface configured to receive input instructions from a user; anda controller in communication with the motor,the controller measuring an actual power consumption of the motor,the controller filtering the actual power consumption to obtain a current power consumption;the controller comparing the current power consumption to a predetermined threshold value, andthe controller triggering a safety vacuum release system based on the comparison of the current power consumption and the predetermined threshold value.
  • 2. The pumping system of claim 1, wherein the controller operates the pump according to at least one schedule.
  • 3. The pumping system of claim 1 further including an external controller configured to allow operation of the system from a remote location.
  • 4. The pumping system of claim 1, wherein the controller will automatically restart the pump after an obstructed inlet has been detected and the pump has been stopped.
  • 5. The pumping system of claim 1 further including a counter configured to incrementally increase a counter value based on the comparison of the current power consumption and the predetermined threshold value, and wherein the controller is configured to trigger the safety vacuum release system based on the counter value in addition to the comparison.
  • 6. The pumping system of claim 1, wherein the predetermined threshold value is determined using a power consumption curve.
  • 7. A pumping system comprising a safety vacuum release system for at least one aquatic application, the pumping system comprising: a pump including an inlet;a motor coupled to the pump;a detached controller configured to control operation of the pump; andan on-board controller in communication with the motor,the on-board controller designed to determine an actual power consumption of the motor,the on-board controller filtering the actual power consumption to obtain a current power consumption, andthe on-board controller designed to trigger the safety vacuum release system based on only the current power consumption.
  • 8. The pumping system of claim 7, wherein the on-board controller is further configured to: implement an automatic restart setting that provides a time period before resuming operation of the pump after an obstructed inlet has been detected and the pump has been stopped.
  • 9. The pumping system of claim 7, wherein the on-board controller stores a plurality of motor speeds associated with a plurality of corresponding schedules.
  • 10. A method of operating a pumping system, the pumping system having a pump including a variable speed motor, a safety vacuum release system, and a controller, the method comprising: measuring an actual power consumption of the motor necessary to pump water;filtering the actual power consumption with a fast low-pass filter to obtain a current power consumption;filtering the actual power consumption with a slow low-pass filter to obtain a lagged power consumption;calculating an absolute power variation by subtracting the lagged power consumption from the current power consumption;calculating a relative power variation by dividing the absolute power variation by the lagged power consumption;triggering the safety vacuum release system when the relative power variation is less than a negative threshold.
  • 11. The method of claim 10, wherein if the relative power variation is not less than a negative threshold, but less than 0, a dynamic counter is increased.
  • 12. The method of claim 11, further comprising triggering the safety vacuum release system when the dynamic counter is greater than a pre-defined threshold.
  • 13. The method of claim 12, wherein the pre-defined threshold is 15.
  • 14. The method of claim 10, wherein the fast low-pass filter has a time constant of about 200 milliseconds and the slow low-pass filter has a time constant of about 1400 milliseconds.
  • 15. A method of operating a pumping system, the pumping system having a pump including a variable speed motor, a safety vacuum release system, and a controller, the method comprising: measuring an actual power consumption of the motor;filtering the actual power consumption with a fast low-pass filter to obtain a current power consumption;incrementing an absolute counter value if at least one of the actual power consumption and the current power consumption is less than a threshold power curve;identifying a dead head condition if the absolute counter value exceeds an absolute counter threshold value; andtriggering the safety vacuum release system when the dead head condition is identified in order to shut down the pump substantially immediately.
  • 16. The method of claim 15 and further comprising: calculating an absolute power variation based on the actual power consumption;incrementing a dynamic counter value if the absolute power variation is negative;calculating a relative power variation based on the actual power consumption;identifying a dynamic suction blockage if at least one of the dynamic counter value exceeds a dynamic counter threshold value and the relative power variation is below a negative threshold.
  • 17. The method of claim 15 wherein the fast low-pass filter has a time constant of about 200 milliseconds.
  • 18. The method of claim 15 wherein the actual power consumption is filtered for about 2.5 seconds.
  • 19. The method of claim 16 wherein the absolute power variation is updated about every 20 milliseconds to provide dynamic suction blockage detection.
  • 20. The method of claim 16 and further comprising calculating a relative power consumption by dividing the absolute power variation by the current power consumption.
  • 21. The method of claim 15 wherein the absolute counter threshold value is 10.
  • 22. The method of claim 15 and further comprising restarting the pump after a time period has elapsed.
  • 23. The method of claim 22 and further comprising preventing the pump from being restarted if the dead head condition is identified again.
  • 24. The method of claim 16 wherein the dynamic counter threshold value is 15.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/095,911 filed on Dec. 3, 2013, which is a continuation of U.S. application Ser. No. 13/350,167 filed on Jan. 13, 2012, which is a divisional of U.S. application Ser. No. 12/572,774 filed on Oct. 2, 2009, which claims priority under 35 U.S.C. § 119 to U.S. Provisional Patent Application No. 61/102,935 filed on Oct. 6, 2008, the entire contents of which are incorporated herein by reference.

US Referenced Citations (978)
Number Name Date Kind
981213 Mollitor Jan 1911 A
1993267 Ferguson Mar 1935 A
2238597 Page Apr 1941 A
2458006 Kilgore Jan 1949 A
2488365 Abbott et al. Nov 1949 A
2494200 Ramqvist Jan 1950 A
2615937 Ludwig Oct 1952 A
2716195 Anderson Aug 1955 A
2767277 Wirth Oct 1956 A
2778958 Hamm et al. Jan 1957 A
2881337 Wall Apr 1959 A
3116445 Wright Dec 1963 A
3191935 Uecker Jun 1965 A
3204423 Resh, Jr. Oct 1965 A
3213304 Landerg et al. Oct 1965 A
3226620 Elliott et al. Dec 1965 A
3227808 Morris Jan 1966 A
3291058 McFarlin Dec 1966 A
3316843 Vaughan May 1967 A
3481973 Wygant Dec 1969 A
3530348 Connor Sep 1970 A
3558910 Dale et al. Jan 1971 A
3559731 Stafford Feb 1971 A
3562614 Gramkow Feb 1971 A
3566225 Paulson Feb 1971 A
3573579 Lewus Apr 1971 A
3581895 Howard et al. Jun 1971 A
3593081 Forst Jul 1971 A
3594623 LaMaster Jul 1971 A
3596158 Watrous Jul 1971 A
3613805 Lindstad Oct 1971 A
3624470 Johnson Nov 1971 A
3634842 Niedermeyer Jan 1972 A
3652912 Bordonaro Mar 1972 A
3671830 Kruger Jun 1972 A
3726606 Peters Apr 1973 A
1061919 Miller May 1973 A
3735233 Ringle May 1973 A
3737749 Schmit Jun 1973 A
3753072 Jurgens Aug 1973 A
3761750 Green Sep 1973 A
3761792 Whitney Sep 1973 A
3777232 Woods et al. Dec 1973 A
3777804 McCoy Dec 1973 A
3778804 Adair Dec 1973 A
3780759 Yahle et al. Dec 1973 A
3781925 Curtis Jan 1974 A
3787882 Fillmore Jan 1974 A
3792324 Suarez Feb 1974 A
3800205 Zalar Mar 1974 A
3814544 Roberts et al. Jun 1974 A
3838597 Montgomery et al. Oct 1974 A
3867071 Hartley Feb 1975 A
3882364 Wright May 1975 A
3902369 Metz Sep 1975 A
3910725 Rule Oct 1975 A
3913342 Barry Oct 1975 A
3916274 Lewus Oct 1975 A
3941507 Niedermeyer Mar 1976 A
3949782 Athey et al. Apr 1976 A
3953777 McKee Apr 1976 A
3956760 Edwards May 1976 A
3963375 Curtis Jun 1976 A
3972647 Niedermeyer Aug 1976 A
3976919 Vandevier Aug 1976 A
3987240 Schultz Oct 1976 A
4000446 Vandevier Dec 1976 A
4021700 Ellis-Anwyl May 1977 A
4030450 Hoult Jun 1977 A
4041470 Slane et al. Aug 1977 A
4061442 Clark et al. Dec 1977 A
4087204 Niedermeyer May 1978 A
4108574 Bartley et al. Aug 1978 A
4123792 Gephart et al. Oct 1978 A
4133058 Baker Jan 1979 A
4142415 Jung et al. Mar 1979 A
4151080 Zuckerman et al. Apr 1979 A
4157728 Mitamura et al. Jun 1979 A
4168413 Halpine Sep 1979 A
4169377 Scheib Oct 1979 A
4182363 Fuller et al. Jan 1980 A
4185187 Rogers Jan 1980 A
4187503 Walton Feb 1980 A
4206634 Taylor Jun 1980 A
4215975 Niedermeyer Aug 1980 A
4222711 Mayer Sep 1980 A
4225290 Allington Sep 1980 A
4228427 Niedermeyer Oct 1980 A
4233553 Prince Nov 1980 A
4241299 Bertone Dec 1980 A
4255747 Bunia Mar 1981 A
4263535 Jones Apr 1981 A
4276454 Zathan Jun 1981 A
4286303 Genheimer et al. Aug 1981 A
4303203 Avery Dec 1981 A
4307327 Streater et al. Dec 1981 A
4309157 Niedermeyer Jan 1982 A
4314478 Beaman Feb 1982 A
4319712 Bar Mar 1982 A
4322297 Bajka Mar 1982 A
4330412 Frederick May 1982 A
4332527 Moldovan et al. Jun 1982 A
4353220 Curwein Oct 1982 A
4366426 Turlej Dec 1982 A
4369438 Wilhelmi Jan 1983 A
4370098 McClain et al. Jan 1983 A
4370690 Baker Jan 1983 A
4371315 Shikasho Feb 1983 A
4375613 Fuller et al. Mar 1983 A
4384825 Thomas et al. May 1983 A
4394262 Bukowski et al. Jul 1983 A
4399394 Ballman Aug 1983 A
4402094 Sanders Sep 1983 A
4409532 Hollenbeck Oct 1983 A
4419625 Bejot et al. Dec 1983 A
4420787 Tibbits et al. Dec 1983 A
4421643 Frederick Dec 1983 A
4425836 Pickrell Jan 1984 A
4427545 Arguilez Jan 1984 A
4428434 Gelaude Jan 1984 A
4429343 Freud Jan 1984 A
4437133 Rueckert Mar 1984 A
4448072 Tward May 1984 A
4449260 Whitaker May 1984 A
4453118 Phillips Jun 1984 A
4456432 Mannino Jun 1984 A
4462758 Speed Jul 1984 A
4463304 Miller Jul 1984 A
4468604 Zaderej Aug 1984 A
4470092 Lombardi Sep 1984 A
4473338 Garmong Sep 1984 A
4494180 Streater Jan 1985 A
4496895 Kawate et al. Jan 1985 A
4504773 Suzuki et al. Mar 1985 A
4505643 Millis et al. Mar 1985 A
D278529 Hoogner Apr 1985 S
4514989 Mount May 1985 A
4520303 Ward May 1985 A
4529359 Sloan Jul 1985 A
4541029 Ohyama Sep 1985 A
4545906 Frederick Oct 1985 A
4552512 Gallup et al. Nov 1985 A
4564041 Kramer Jan 1986 A
4564882 Baxter Jan 1986 A
4581900 Lowe Apr 1986 A
4604563 Min Aug 1986 A
4605888 Kim Aug 1986 A
4610605 Hartley Sep 1986 A
4620835 Bell Nov 1986 A
4622506 Shemanske Nov 1986 A
4635441 Ebbing et al. Jan 1987 A
4647825 Profio et al. Mar 1987 A
4651077 Woyski Mar 1987 A
4652802 Johnston Mar 1987 A
4658195 Min Apr 1987 A
4658203 Freymuth Apr 1987 A
4668902 Zeller, Jr. May 1987 A
4670697 Wrege Jun 1987 A
4676914 Mills et al. Jun 1987 A
4678404 Lorett et al. Jul 1987 A
4678409 Kurokawa Jul 1987 A
4686439 Cunningham Aug 1987 A
4695779 Yates Sep 1987 A
4697464 Martin Oct 1987 A
4703387 Mller Oct 1987 A
4705629 Weir Nov 1987 A
4716605 Shepherd Jan 1988 A
4719399 Wrege Jan 1988 A
4728882 Stanbro Mar 1988 A
4751449 Chmiel Jun 1988 A
4751450 Lorenz Jun 1988 A
4758697 Jeuneu Jul 1988 A
4761601 Zaderej Aug 1988 A
4764417 Gulya Aug 1988 A
4764714 Alley Aug 1988 A
4766329 Santiago Aug 1988 A
4767280 Markuson Aug 1988 A
4780050 Caine et al. Oct 1988 A
4781525 Hubbard Nov 1988 A
4782278 Bossi Nov 1988 A
4786850 Chmiel Nov 1988 A
4789307 Sloan Dec 1988 A
4795314 Prybella et al. Jan 1989 A
4801858 Min Jan 1989 A
4804901 Pertessis Feb 1989 A
4806457 Yanagisawa Feb 1989 A
4820964 Kadah Apr 1989 A
4827197 Giebler May 1989 A
4834624 Jensen May 1989 A
4837656 Barnes Jun 1989 A
4839571 Farnham Jun 1989 A
4841404 Marshall et al. Jun 1989 A
4843295 Thompson Jun 1989 A
4862053 Jordan Aug 1989 A
4864287 Kierstead Sep 1989 A
4885655 Springer et al. Dec 1989 A
4891569 Light Jan 1990 A
4896101 Cobb Jan 1990 A
4907610 Meincke Mar 1990 A
4912936 Denpou Apr 1990 A
4913625 Gerlowski Apr 1990 A
4949748 Chatrathi Aug 1990 A
4958118 Pottebaum Sep 1990 A
4963778 Jensen Oct 1990 A
4967131 Kim Oct 1990 A
4971522 Butlin Nov 1990 A
4975798 Edwards et al. Dec 1990 A
4977394 Manson et al. Dec 1990 A
4985181 Strada et al. Jan 1991 A
4986919 Allington Jan 1991 A
4996646 Farrington Feb 1991 A
D315315 Stairs, Jr. Mar 1991 S
4998097 Noth et al. Mar 1991 A
5015151 Snyder, Jr. et al. May 1991 A
5015152 Greene May 1991 A
5017853 Chmiel May 1991 A
5026256 Kuwabara Jun 1991 A
5028854 Moline Jul 1991 A
5041771 Min Aug 1991 A
5051068 Wong Sep 1991 A
5051681 Schwarz Sep 1991 A
5076761 Krohn Dec 1991 A
5076763 Anastos et al. Dec 1991 A
5079784 Rist et al. Jan 1992 A
5091817 Alley Feb 1992 A
5098023 Burke Mar 1992 A
5099181 Canon Mar 1992 A
5100298 Shibata Mar 1992 A
RE33874 Miller Apr 1992 E
5103154 Dropps Apr 1992 A
5117233 Hamos et al. May 1992 A
5123080 Gillett Jun 1992 A
5129264 Lorenc Jul 1992 A
5135359 Dufresne Aug 1992 A
5145323 Farr Sep 1992 A
5151017 Sears et al. Sep 1992 A
5154821 Reid Oct 1992 A
5156535 Budris Oct 1992 A
5158436 Jensen Oct 1992 A
5159713 Gaskell Oct 1992 A
5164651 Hu Nov 1992 A
5166595 Leverich Nov 1992 A
5167041 Burkitt Dec 1992 A
5172089 Wright et al. Dec 1992 A
D334542 Lowe Apr 1993 S
5206573 McCleer et al. Apr 1993 A
5213477 Watanabe et al. May 1993 A
5222867 Walker, Sr. et al. Jun 1993 A
5234286 Wagner Aug 1993 A
5234319 Wilder Aug 1993 A
5235235 Martin Aug 1993 A
5238369 Far Aug 1993 A
5240380 Mabe Aug 1993 A
5245272 Herbert Sep 1993 A
5247236 Schroeder Sep 1993 A
5255148 Yeh Oct 1993 A
5272933 Collier Dec 1993 A
5295790 Bossart et al. Mar 1994 A
5295857 Toly Mar 1994 A
5296795 Dropps Mar 1994 A
5302885 Schwarz Apr 1994 A
5319298 Wanzong et al. Jun 1994 A
5324170 Anastos et al. Jun 1994 A
5327036 Carey Jul 1994 A
5342176 Redlich Aug 1994 A
5347664 Hamza et al. Sep 1994 A
5349281 Bugaj Sep 1994 A
5351709 Vos Oct 1994 A
5351714 Barnowski Oct 1994 A
5352969 Gilmore et al. Oct 1994 A
5360320 Jameson et al. Nov 1994 A
5361215 Tompkins Nov 1994 A
5363912 Wolcott Nov 1994 A
5394748 McCarthy Mar 1995 A
5418984 Livingston, Jr. May 1995 A
D359458 Pierret Jun 1995 S
5422014 Allen et al. Jun 1995 A
5423214 Lee Jun 1995 A
5425624 Williams Jun 1995 A
5443368 Weeks et al. Aug 1995 A
5444354 Takahashi Aug 1995 A
5449274 Kochan, Jr. Sep 1995 A
5449997 Gilmore et al. Sep 1995 A
5450316 Gaudet et al. Sep 1995 A
D363060 Hunger Oct 1995 S
5457373 Heppe et al. Oct 1995 A
5457826 Haraga et al. Oct 1995 A
5466995 Genga Nov 1995 A
5469215 Nashiki Nov 1995 A
5471125 Wu Nov 1995 A
5473497 Beatty Dec 1995 A
5483229 Tamura et al. Jan 1996 A
5495161 Hunter Feb 1996 A
5499902 Rockwood Mar 1996 A
5511397 Makino et al. Apr 1996 A
5512809 Banks et al. Apr 1996 A
5512883 Lane Apr 1996 A
5518371 Wellstein May 1996 A
5519848 Wloka May 1996 A
5520517 Sipin May 1996 A
5522707 Potter Jun 1996 A
5528120 Brodetsky Jun 1996 A
5529462 Hawes Jun 1996 A
5532635 Watrous Jul 1996 A
5540555 Corso et al. Jul 1996 A
D372719 Jensen Aug 1996 S
5545012 Anastos et al. Aug 1996 A
5548854 Bloemer et al. Aug 1996 A
5549456 Burrill Aug 1996 A
5550497 Carobolante Aug 1996 A
5550753 Tompkins et al. Aug 1996 A
5559418 Burkhart Sep 1996 A
5559720 Tompkins Sep 1996 A
5559762 Sakamoto Sep 1996 A
5561357 Schroeder Oct 1996 A
5562422 Ganzon et al. Oct 1996 A
5563759 Nadd Oct 1996 A
D375908 Schumaker Nov 1996 S
5570481 Mathis et al. Nov 1996 A
5571000 Zimmerman Nov 1996 A
5577890 Nielson et al. Nov 1996 A
5580221 Triezenberg Dec 1996 A
5582017 Noji et al. Dec 1996 A
5587899 Ho et al. Dec 1996 A
5589076 Womack Dec 1996 A
5589753 Kadah Dec 1996 A
5592062 Bach Jan 1997 A
5598080 Jensen Jan 1997 A
5601413 Langley Feb 1997 A
5604491 Coonley et al. Feb 1997 A
5614812 Wagoner Mar 1997 A
5616239 Wendell et al. Apr 1997 A
5618460 Fowler Apr 1997 A
5622223 Vasquez Apr 1997 A
5624237 Prescott et al. Apr 1997 A
5626464 Schoenmeyr May 1997 A
5628896 Klingenberger May 1997 A
5629601 Feldstein May 1997 A
5632468 Schoenmeyr May 1997 A
5633540 Moan May 1997 A
5640078 Kou et al. Jun 1997 A
5654504 Smith et al. Aug 1997 A
5654620 Langhorst Aug 1997 A
5669323 Pritchard Sep 1997 A
5672050 Webber et al. Sep 1997 A
5682624 Ciochetti Nov 1997 A
5690476 Miller Nov 1997 A
5708337 Breit et al. Jan 1998 A
5708348 Frey et al. Jan 1998 A
5711483 Hays Jan 1998 A
5712795 Layman et al. Jan 1998 A
5713320 Pfaff et al. Feb 1998 A
5727933 Laskaris et al. Mar 1998 A
5730861 Sterghos Mar 1998 A
5731673 Gilmore Mar 1998 A
5736884 Ettes et al. Apr 1998 A
5739648 Ellis et al. Apr 1998 A
5744921 Makaran Apr 1998 A
5752785 Tanaka et al. May 1998 A
5754036 Walker May 1998 A
5754421 Nystrom May 1998 A
5763969 Metheny et al. Jun 1998 A
5767606 Bresolin Jun 1998 A
5777833 Romillon Jul 1998 A
5780992 Beard Jul 1998 A
5791882 Stucker Aug 1998 A
5796234 Vrionis Aug 1998 A
5802910 Krahn et al. Sep 1998 A
5804080 Klingenberger Sep 1998 A
5808441 Nehring Sep 1998 A
5814966 Williamson Sep 1998 A
5818708 Wong Oct 1998 A
5818714 Zou Oct 1998 A
5819848 Ramusson Oct 1998 A
5820350 Mantey et al. Oct 1998 A
5828200 Ligman et al. Oct 1998 A
5833437 Kurth et al. Nov 1998 A
5836271 Saski Nov 1998 A
5845225 Mosher Dec 1998 A
5856783 Gibb Jan 1999 A
5863185 Cochimin et al. Jan 1999 A
5883489 Konrad Mar 1999 A
5884205 Elmore et al. Mar 1999 A
5892349 Bogwicz Apr 1999 A
5894609 Barnett Apr 1999 A
5898958 Hall May 1999 A
5906479 Hawes May 1999 A
5907281 Miller, Jr. et al. May 1999 A
5909352 Klabunde et al. Jun 1999 A
5909372 Thybo Jun 1999 A
5914881 Trachier Jun 1999 A
5920264 Kim et al. Jul 1999 A
5930092 Nystrom Jul 1999 A
5941690 Lin Aug 1999 A
5944444 Motz et al. Aug 1999 A
5945802 Konrad Aug 1999 A
5946469 Chidester Aug 1999 A
5947689 Schick Sep 1999 A
5947700 McKain et al. Sep 1999 A
5959431 Xiang Sep 1999 A
5959534 Campbell Sep 1999 A
5961291 Sakagami et al. Oct 1999 A
5963706 Baik Oct 1999 A
5969958 Nielsen Oct 1999 A
5973465 Rayner Oct 1999 A
5973473 Anderson Oct 1999 A
5977732 Matsumoto Nov 1999 A
5983146 Sarbach Nov 1999 A
5986433 Peele et al. Nov 1999 A
5987105 Jenkins et al. Nov 1999 A
5991939 Mulvey Nov 1999 A
6030180 Clarey et al. Feb 2000 A
6037742 Rasmussen Mar 2000 A
6043461 Holling et al. Mar 2000 A
6045331 Gehm et al. Apr 2000 A
6045333 Breit Apr 2000 A
6046492 Machida Apr 2000 A
6048183 Meza Apr 2000 A
6056008 Adams et al. May 2000 A
6059536 Stingl May 2000 A
6065946 Lathrop May 2000 A
6072291 Pedersen Jun 2000 A
6080973 Thweatt, Jr. Jun 2000 A
6081751 Luo Jun 2000 A
6091604 Plougsgaard Jul 2000 A
6092992 Imblum Jul 2000 A
6094026 Cameron Jul 2000 A
D429699 Davis Aug 2000 S
D429700 Liebig Aug 2000 S
6094764 Veloskey et al. Aug 2000 A
6098654 Cohen et al. Aug 2000 A
6102665 Centers et al. Aug 2000 A
6110322 Teoh et al. Aug 2000 A
6116040 Stark Sep 2000 A
6119707 Jordan Sep 2000 A
6121746 Fisher Sep 2000 A
6121749 Wills et al. Sep 2000 A
6125481 Sicilano Oct 2000 A
6125883 Creps et al. Oct 2000 A
6142741 Nishihata Nov 2000 A
6146108 Mullendore Nov 2000 A
6150776 Potter et al. Nov 2000 A
6157304 Bennett et al. Dec 2000 A
6164132 Matulek Dec 2000 A
6171073 McKain et al. Jan 2001 B1
6178393 Irvin Jan 2001 B1
6184650 Gelbman Feb 2001 B1
6188200 Maiorano Feb 2001 B1
6198257 Belehradek et al. Mar 2001 B1
6199224 Versland Mar 2001 B1
6203282 Morin Mar 2001 B1
6208112 Jensen et al. Mar 2001 B1
6212956 Donald Apr 2001 B1
6213724 Haugen Apr 2001 B1
6216814 Fujita et al. Apr 2001 B1
6222355 Ohshima Apr 2001 B1
6227808 McDonough May 2001 B1
6232742 Wacknov May 2001 B1
6236177 Zick May 2001 B1
6238188 McDonough May 2001 B1
6247429 Hara Jun 2001 B1
6249435 Lifson Jun 2001 B1
6251285 Clochetti Jun 2001 B1
6253227 Vicente et al. Jun 2001 B1
D445405 Schneider Jul 2001 S
6254353 Polo Jul 2001 B1
6257304 Jacobs et al. Jul 2001 B1
6257833 Bates Jul 2001 B1
6259617 Wu Jul 2001 B1
6264431 Trizenberg Jul 2001 B1
6264432 Kilayko et al. Jul 2001 B1
6280611 Henkin et al. Aug 2001 B1
6282370 Cline et al. Aug 2001 B1
6298721 Schuppe et al. Oct 2001 B1
6299414 Schoenmeyr Oct 2001 B1
6299699 Porat et al. Oct 2001 B1
6318093 Gaudet et al. Nov 2001 B2
6320348 Kadah Nov 2001 B1
6326752 Jensen et al. Dec 2001 B1
6329784 Puppin Dec 2001 B1
6330525 Hays Dec 2001 B1
6342841 Stingl Jan 2002 B1
6349268 Ketonen et al. Feb 2002 B1
6350105 Kobayashi et al. Feb 2002 B1
6351359 Jager Feb 2002 B1
6354805 Moeller Mar 2002 B1
6355177 Senner et al. Mar 2002 B2
6356464 Balakrishnan Mar 2002 B1
6356853 Sullivan Mar 2002 B1
6362591 Moberg Mar 2002 B1
6364620 Fletcher et al. Apr 2002 B1
6364621 Yamauchi Apr 2002 B1
6366053 Belehradek Apr 2002 B1
6366481 Balakrishnan Apr 2002 B1
6369463 Maiorano Apr 2002 B1
6373204 Peterson Apr 2002 B1
6373728 Aarestrup Apr 2002 B1
6374854 Acosta Apr 2002 B1
6375430 Eckert et al. Apr 2002 B1
6380707 Rosholm Apr 2002 B1
6388642 Cotis May 2002 B1
6390781 McDonough May 2002 B1
6406265 Hahn Jun 2002 B1
6407469 Cline et al. Jun 2002 B1
6411481 Seubert Jun 2002 B1
6415808 Joshi Jul 2002 B2
6416295 Nagai Jul 2002 B1
6426633 Thybo Jul 2002 B1
6443715 Mayleben et al. Sep 2002 B1
6445565 Toyoda et al. Sep 2002 B1
6447446 Smith et al. Sep 2002 B1
6448713 Farkas et al. Sep 2002 B1
6450771 Centers Sep 2002 B1
6462971 Balakrishnan et al. Oct 2002 B1
6464464 Sabini Oct 2002 B2
6468042 Moller Oct 2002 B2
6468052 McKain Oct 2002 B2
6474949 Arai Nov 2002 B1
6475180 Peterson et al. Nov 2002 B2
6481973 Struthers Nov 2002 B1
6483278 Harvest Nov 2002 B2
6483378 Blodgett Nov 2002 B2
6490920 Netzer Dec 2002 B1
6493227 Nielson et al. Dec 2002 B2
6496392 Odel Dec 2002 B2
6499961 Wyatt Dec 2002 B1
6501629 Mariott Dec 2002 B1
6503063 Brunsell Jan 2003 B1
6504338 Eichorn Jan 2003 B1
6520010 Bergveld Feb 2003 B1
6522034 Nakayama Feb 2003 B1
6523091 Tirumala Feb 2003 B2
6527518 Ostrowski Mar 2003 B2
6534940 Bell et al. Mar 2003 B2
6534947 Johnson Mar 2003 B2
6537032 Horiuchi Mar 2003 B1
6538908 Balakrishnan et al. Mar 2003 B2
6539797 Livingston Apr 2003 B2
6543940 Chu Apr 2003 B2
6548976 Jensen Apr 2003 B2
6564627 Sabini May 2003 B1
6570778 Lipo et al. May 2003 B2
6571807 Jones Jun 2003 B2
6590188 Cline Jul 2003 B2
6591697 Henyan Jul 2003 B2
6591863 Ruschell Jul 2003 B2
6595051 Chandler, Jr. Jul 2003 B1
6595762 Khanwilkar et al. Jul 2003 B2
6604909 Schoenmeyr Aug 2003 B2
6607360 Fong Aug 2003 B2
6616413 Humpheries Sep 2003 B2
6623245 Meza et al. Sep 2003 B2
6625824 Lutz et al. Sep 2003 B1
6626840 Drzewiecki Sep 2003 B2
6628501 Toyoda Sep 2003 B2
6632072 Lipscomb et al. Oct 2003 B2
6636135 Vetter Oct 2003 B1
6638023 Scott Oct 2003 B2
D482664 Hunt Nov 2003 S
6643153 Balakrishnan Nov 2003 B2
6651900 Yoshida Nov 2003 B1
6655922 Flek Dec 2003 B1
6663349 Discenzo et al. Dec 2003 B1
6665200 Goto Dec 2003 B2
6672147 Mazet Jan 2004 B1
6675912 Carrier Jan 2004 B2
6676382 Leighton et al. Jan 2004 B2
6676831 Wolfe Jan 2004 B2
6687141 Odell Feb 2004 B2
6687923 Dick Feb 2004 B2
6690250 Moller Feb 2004 B2
6696676 Graves et al. Feb 2004 B1
6700333 Hirshi et al. Mar 2004 B1
6709240 Schmalz Mar 2004 B1
6709241 Sabini Mar 2004 B2
6709575 Verdegan Mar 2004 B1
6715996 Moeller Apr 2004 B2
6717318 Mathiasssen Apr 2004 B1
6732387 Waldron May 2004 B1
6737905 Noda May 2004 B1
D490726 Eungprabhanth Jun 2004 S
6742387 Hamamoto Jun 2004 B2
6747367 Cline et al. Jun 2004 B2
6758655 Sacher Jul 2004 B2
6761067 Capano Jul 2004 B1
6768279 Skinner Jul 2004 B1
6770043 Kahn Aug 2004 B1
6774664 Godbersen Aug 2004 B2
6776038 Horton et al. Aug 2004 B1
6776584 Sabini et al. Aug 2004 B2
6778868 Imamura et al. Aug 2004 B2
6779205 Mulvey Aug 2004 B2
6782309 Laflamme Aug 2004 B2
6783328 Lucke Aug 2004 B2
6799950 Meier et al. Aug 2004 B2
6789024 Kochan, Jr. et al. Sep 2004 B1
6794921 Abe Sep 2004 B2
6797164 Leaverton Sep 2004 B2
6798271 Swize Sep 2004 B2
6806677 Kelly et al. Oct 2004 B2
6837688 Kimberlin et al. Jan 2005 B2
6842117 Keown Jan 2005 B2
6847130 Belehradek et al. Jan 2005 B1
6847854 Discenzo Jan 2005 B2
6854479 Harwood Feb 2005 B2
6863502 Bishop et al. Mar 2005 B2
6867383 Currier Mar 2005 B1
6875961 Collins Apr 2005 B1
6882165 Ogura Apr 2005 B2
6884022 Albright Apr 2005 B2
D504900 Wang May 2005 S
D505429 Wang May 2005 S
6888537 Albright May 2005 B2
6895608 Goettl May 2005 B2
6900736 Crumb May 2005 B2
6906482 Shimizu Jun 2005 B2
D507243 Miller Jul 2005 S
6914793 Balakrishnan Jul 2005 B2
6922348 Nakajima Jul 2005 B2
6925823 Lifson Aug 2005 B2
6933693 Schuermann Aug 2005 B2
6941785 Haynes et al. Sep 2005 B2
6943325 Pittman Sep 2005 B2
6973794 Street Sep 2005 B2
D511530 Wang Nov 2005 S
D512026 Nurmi Nov 2005 S
6965815 Tompkins et al. Nov 2005 B1
6966967 Curry Nov 2005 B2
D512440 Wang Dec 2005 S
6973974 McLoughlin et al. Dec 2005 B2
6976052 Tompkins et al. Dec 2005 B2
D513737 Riley Jan 2006 S
6981399 Nybo et al. Jan 2006 B1
6981402 Bristol Jan 2006 B2
6984158 Satoh Jan 2006 B2
6989649 Melhorn Jan 2006 B2
6993414 Shah Jan 2006 B2
6998807 Phillips Feb 2006 B2
6998977 Gregori et al. Feb 2006 B2
7005818 Jensen Feb 2006 B2
7012394 Moore et al. Mar 2006 B2
7015599 Gull et al. Mar 2006 B2
7040107 Lee et al. May 2006 B2
7042192 Mehlhorn May 2006 B2
7050278 Poulsen May 2006 B2
7055189 Goettl Jun 2006 B2
7070134 Hoyer Jul 2006 B1
7077781 Ishikawa Jul 2006 B2
7080508 Stavale Jul 2006 B2
7081728 Kemp Jul 2006 B2
7083392 Meza Aug 2006 B2
7083438 Massaro et al. Aug 2006 B2
7089607 Barnes et al. Aug 2006 B2
7100632 Harwood Sep 2006 B2
7102505 Kates Sep 2006 B2
7107184 Gentile et al. Sep 2006 B2
7112037 Sabini et al. Sep 2006 B2
7114926 Oshita Oct 2006 B2
7117120 Beck et al. Oct 2006 B2
7141210 Bell Nov 2006 B2
7142932 Spria et al. Nov 2006 B2
D533512 Nakashima Dec 2006 S
7163380 Jones Jan 2007 B2
7172366 Bishop, Jr. Feb 2007 B1
7174273 Goldberg Feb 2007 B2
7178179 Barnes Feb 2007 B2
7183741 Mehlhorn Feb 2007 B2
7195462 Nybo et al. Mar 2007 B2
7201563 Studebaker Apr 2007 B2
7221121 Skaug May 2007 B2
7244106 Kallaman Jul 2007 B2
7245105 Joo Jul 2007 B2
7259533 Yang et al. Aug 2007 B2
7264449 Harned et al. Sep 2007 B1
7281958 Schuttler et al. Oct 2007 B2
7292898 Clark et al. Nov 2007 B2
7307538 Kochan, Jr. Dec 2007 B2
7309216 Spadola et al. Dec 2007 B1
7318344 Heger Jan 2008 B2
D562349 Bulter Feb 2008 S
7327275 Brochu Feb 2008 B2
7339126 Niedermeyer Mar 2008 B1
D567189 Stiles, Jr. Apr 2008 S
7352550 Mladenik Apr 2008 B2
7375940 Bertrand May 2008 B1
7388348 Mattichak Jun 2008 B2
7407371 Leone Aug 2008 B2
7427844 Mehlhorn Sep 2008 B2
7429842 Schulman et al. Sep 2008 B2
7437215 Anderson et al. Oct 2008 B2
D582797 Fraser Dec 2008 S
D583828 Li Dec 2008 S
7458782 Spadola et al. Dec 2008 B1
7459886 Potanin et al. Dec 2008 B1
7484938 Allen Feb 2009 B2
7516106 Ehlers Apr 2009 B2
7517351 Culp et al. Apr 2009 B2
7525280 Fagan et al. Apr 2009 B2
7528579 Pacholok et al. May 2009 B2
7542251 Ivankovic Jun 2009 B2
7542252 Chan et al. Jun 2009 B2
7572108 Koehl Aug 2009 B2
7612510 Koehl Nov 2009 B2
7612529 Kochan, Jr. Nov 2009 B2
7623986 Miller Nov 2009 B2
7641449 Iimura et al. Jan 2010 B2
7652441 Ho Jan 2010 B2
7686587 Koehl Mar 2010 B2
7686589 Stiles et al. Mar 2010 B2
7690897 Branecky Apr 2010 B2
7700887 Niedermeyer Apr 2010 B2
7704051 Koehl Apr 2010 B2
7707125 Haji-Valizadeh Apr 2010 B2
7727181 Rush Jun 2010 B2
7739733 Szydlo Jun 2010 B2
7746063 Sabini et al. Jun 2010 B2
7751159 Koehl Jul 2010 B2
7753880 Malackowski Jul 2010 B2
7755318 Panosh Jul 2010 B1
7775327 Abraham Aug 2010 B2
7777435 Aguilar Aug 2010 B2
7788877 Andras Sep 2010 B2
7795824 Shen et al. Sep 2010 B2
7808211 Pacholok et al. Oct 2010 B2
7815420 Koehl Oct 2010 B2
7821215 Koehl Oct 2010 B2
7845913 Stiles et al. Dec 2010 B2
7854597 Stiles et al. Dec 2010 B2
7857600 Koehl Dec 2010 B2
7874808 Stiles Jan 2011 B2
7878766 Meza Feb 2011 B2
7900308 Erlich Mar 2011 B2
7925385 Stavale et al. Apr 2011 B2
7931447 Levin et al. Apr 2011 B2
7945411 Keman et al. May 2011 B2
7976284 Koehl Jul 2011 B2
7983877 Koehl Jul 2011 B2
7990091 Koehl Aug 2011 B2
8007255 Hattori et al. Aug 2011 B2
8011895 Ruffo Sep 2011 B2
8019479 Stiles Sep 2011 B2
8032256 Wolf et al. Oct 2011 B1
8043070 Stiles Oct 2011 B2
8049464 Muntermann Nov 2011 B2
8098048 Hoff Jan 2012 B2
8104110 Caudill et al. Jan 2012 B2
8126574 Discenzo et al. Feb 2012 B2
8133034 Mehlhorn et al. Mar 2012 B2
8134336 Michalske et al. Mar 2012 B2
8164470 Brochu et al. Apr 2012 B2
8177520 Mehlhorn May 2012 B2
8281425 Cohen Oct 2012 B2
8299662 Schmidt et al. Oct 2012 B2
8303260 Stavale et al. Nov 2012 B2
8313306 Stiles, Jr. Nov 2012 B2
8316152 Geltner et al. Nov 2012 B2
8317485 Meza et al. Nov 2012 B2
8337166 Meza et al. Dec 2012 B2
8380355 Mayleben et al. Feb 2013 B2
8405346 Trigiani Mar 2013 B2
8405361 Richards et al. Mar 2013 B2
8444394 Koehl May 2013 B2
8465262 Stiles et al. Jun 2013 B2
8469675 Stiles et al. Jun 2013 B2
8480373 Stiles et al. Jul 2013 B2
8500413 Stiles et al. Aug 2013 B2
8540493 Koehl Sep 2013 B2
8547065 Trigiani Oct 2013 B2
8573952 Stiles et al. Nov 2013 B2
8579600 Vijayakumar et al. Nov 2013 B2
8602743 Stiles, Jr. Dec 2013 B2
8602745 Stiles Dec 2013 B2
8641383 Meza Feb 2014 B2
8641385 Koehl Feb 2014 B2
8669494 Tran Mar 2014 B2
8756991 Edwards Jun 2014 B2
8763315 Hartman Jul 2014 B2
8774972 Rusnak Jul 2014 B2
8801389 Stiles, Jr. et al. Aug 2014 B2
8981684 Drye et al. Mar 2015 B2
9030066 Drye May 2015 B2
9051930 Stiles, Jr. et al. Jun 2015 B2
9238918 McKinzie Jan 2016 B2
9726184 Stiles, Jr. Aug 2017 B2
9822782 McKinzie Nov 2017 B2
20010002238 McKain May 2001 A1
20010029407 Tompkins Oct 2001 A1
20010041139 Sabini et al. Nov 2001 A1
20020000789 Haba Jan 2002 A1
20020002989 Jones Jan 2002 A1
20020010839 Tirumala et al. Jan 2002 A1
20020018721 Kobayashi Feb 2002 A1
20020032491 Imamura et al. Mar 2002 A1
20020035403 Clark et al. Mar 2002 A1
20020050490 Pittman et al. May 2002 A1
20020070611 Cline et al. Jun 2002 A1
20020070875 Crumb Jun 2002 A1
20020076330 Lipscomb et al. Jun 2002 A1
20020082727 Laflamme et al. Jun 2002 A1
20020089236 Cline et al. Jul 2002 A1
20020093306 Johnson Jul 2002 A1
20020101193 Farkas Aug 2002 A1
20020111554 Drzewiecki Aug 2002 A1
20020131866 Phillips Sep 2002 A1
20020136642 Moller Sep 2002 A1
20020143478 Vanderah et al. Oct 2002 A1
20020150476 Lucke Oct 2002 A1
20020163821 Odell Nov 2002 A1
20020172055 Balakrishnan Nov 2002 A1
20020176783 Moeller Nov 2002 A1
20020190687 Bell et al. Dec 2002 A1
20030000303 Livingston Jan 2003 A1
20030017055 Fong Jan 2003 A1
20030030954 Bax et al. Feb 2003 A1
20030034284 Wolfe Feb 2003 A1
20030034761 Goto Feb 2003 A1
20030048646 Odell Mar 2003 A1
20030049134 Leighton et al. Mar 2003 A1
20030063900 Wang et al. Apr 2003 A1
20030099548 Meza May 2003 A1
20030106147 Cohen et al. Jun 2003 A1
20030061004 Discenzo Jul 2003 A1
20030138327 Jones et al. Jul 2003 A1
20030174450 Nakajima et al. Sep 2003 A1
20030186453 Bell Oct 2003 A1
20030196942 Jones Oct 2003 A1
20040000525 Hornsby Jan 2004 A1
20040006486 Schmidt et al. Jan 2004 A1
20040009075 Meza Jan 2004 A1
20040013531 Curry et al. Jan 2004 A1
20040016241 Street et al. Jan 2004 A1
20040025244 Lloyd et al. Feb 2004 A1
20040055363 Bristol Mar 2004 A1
20040062658 Beck et al. Apr 2004 A1
20040064292 Beck Apr 2004 A1
20040071001 Balakrishnan Apr 2004 A1
20040080325 Ogura Apr 2004 A1
20040080352 Noda Apr 2004 A1
20040090197 Schuchmann May 2004 A1
20040095183 Swize May 2004 A1
20040116241 Ishikawa Jun 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040118203 Heger Jun 2004 A1
20040149666 Ehlers et al. Aug 2004 A1
20040205886 Goettel Oct 2004 A1
20040213676 Phillips Oct 2004 A1
20040261167 Panopoulos Dec 2004 A1
20040265134 Iimura et al. Dec 2004 A1
20050050908 Lee et al. Mar 2005 A1
20050058548 Thomas et al. Mar 2005 A1
20050086957 Lifson Apr 2005 A1
20050092946 Fellington et al. May 2005 A1
20050095150 Leone et al. May 2005 A1
20050097665 Goettel May 2005 A1
20050123408 Koehl Jun 2005 A1
20050133088 Bologeorges Jun 2005 A1
20050137720 Spira et al. Jun 2005 A1
20050156568 Yueh Jul 2005 A1
20050158177 Mehlhorn Jul 2005 A1
20050162787 Weigel Jul 2005 A1
20050167345 De Wet et al. Aug 2005 A1
20050168900 Brochu et al. Aug 2005 A1
20050170936 Quinn Aug 2005 A1
20050180868 Miller Aug 2005 A1
20050190094 Andersen Sep 2005 A1
20050193485 Wolfe Sep 2005 A1
20050195545 Mladenik Sep 2005 A1
20050226731 Mehlhorn Oct 2005 A1
20050235732 Rush Oct 2005 A1
20050248310 Fagan et al. Nov 2005 A1
20050260079 Allen Nov 2005 A1
20050281679 Niedermeyer Dec 2005 A1
20050281681 Anderson Dec 2005 A1
20060045750 Stiles Mar 2006 A1
20060045751 Beckman et al. Mar 2006 A1
20060078435 Burza Apr 2006 A1
20060078444 Sacher Apr 2006 A1
20060090255 Cohen May 2006 A1
20060093492 Janesky May 2006 A1
20060106503 Lamb et al. May 2006 A1
20060127227 Mehlhorn Jun 2006 A1
20060138033 Hoal et al. Jun 2006 A1
20060146462 McMillian et al. Jul 2006 A1
20060162787 Yeh Jul 2006 A1
20060169322 Torkelson Aug 2006 A1
20060201555 Hamza Sep 2006 A1
20060204367 Meza Sep 2006 A1
20060226997 Kochan, Jr. Oct 2006 A1
20060235573 Guion Oct 2006 A1
20060269426 Llewellyn Nov 2006 A1
20070001635 Ho Jan 2007 A1
20070041845 Freudenberger Feb 2007 A1
20070061051 Maddox Mar 2007 A1
20070080660 Fagan et al. Apr 2007 A1
20070113647 Mehlhorn May 2007 A1
20070114162 Stiles et al. May 2007 A1
20070124321 Szydlo May 2007 A1
20070154319 Stiles, Jr. Jul 2007 A1
20070154320 Stiles Jul 2007 A1
20070154321 Stiles Jul 2007 A1
20070154322 Stiles Jul 2007 A1
20070154323 Stiles Jul 2007 A1
20070160480 Ruffo Jul 2007 A1
20070163929 Stiles Jul 2007 A1
20070177985 Walls et al. Aug 2007 A1
20070183902 Stiles, Jr. Aug 2007 A1
20070187185 Abraham et al. Aug 2007 A1
20070188129 Kochan, Jr. Aug 2007 A1
20070212210 Kernan et al. Sep 2007 A1
20070212229 Stavale et al. Sep 2007 A1
20070212230 Stavale et al. Sep 2007 A1
20070219652 McMillan Sep 2007 A1
20070258827 Gierke Nov 2007 A1
20080003114 Levin et al. Jan 2008 A1
20080031751 Littwin et al. Feb 2008 A1
20080031752 Littwin et al. Feb 2008 A1
20080039977 Clark et al. Feb 2008 A1
20080041839 Tran Feb 2008 A1
20080044293 Hanke et al. Feb 2008 A1
20080063535 Koehl Mar 2008 A1
20080095638 Branecky Apr 2008 A1
20080095639 Bartos Apr 2008 A1
20080131286 Koehl Jun 2008 A1
20080131289 Koehl Jun 2008 A1
20080131291 Koehl Jun 2008 A1
20080131294 Koehl Jun 2008 A1
20080131295 Koehl Jun 2008 A1
20080131296 Koehl Jun 2008 A1
20080140353 Koehl Jun 2008 A1
20080152508 Meza Jun 2008 A1
20080168599 Caudill Jul 2008 A1
20080181785 Koehl Jul 2008 A1
20080181786 Meza Jul 2008 A1
20080181787 Koehl Jul 2008 A1
20080181788 Meza Jul 2008 A1
20080181789 Koehl Jul 2008 A1
20080181790 Meza Jul 2008 A1
20080189885 Erlich Aug 2008 A1
20080229819 Mayleben et al. Sep 2008 A1
20080260540 Koehl Oct 2008 A1
20080288115 Rusnak et al. Nov 2008 A1
20080298978 Schulman et al. Dec 2008 A1
20090014044 Hartman Jan 2009 A1
20090038696 Levin et al. Feb 2009 A1
20090052281 Nybo Feb 2009 A1
20090104044 Koehl Apr 2009 A1
20090143917 Uy et al. Jun 2009 A1
20090204237 Sustaeta et al. Aug 2009 A1
20090204267 Sustaeta et al. Aug 2009 A1
20090208345 Moore et al. Aug 2009 A1
20090210081 Sustaeta et al. Aug 2009 A1
20090269217 Vijayakumar Oct 2009 A1
20090290991 Mehlhorn et al. Nov 2009 A1
20100079096 Braun et al. Apr 2010 A1
20100154534 Hampton Jun 2010 A1
20100166570 Hampton Jul 2010 A1
20100197364 Lee Aug 2010 A1
20100303654 Petersen et al. Dec 2010 A1
20100306001 Discenzo Dec 2010 A1
20100312398 Kidd et al. Dec 2010 A1
20110036164 Burdi Feb 2011 A1
20110044823 Stiles Feb 2011 A1
20110052416 Stiles Mar 2011 A1
20110061415 Ward Mar 2011 A1
20110066256 Sesay et al. Mar 2011 A1
20110077875 Tran Mar 2011 A1
20110084650 Kaiser et al. Apr 2011 A1
20110110794 Mayleben et al. May 2011 A1
20110280744 Ortiz et al. Nov 2011 A1
20110311370 Sloss et al. Dec 2011 A1
20120013285 Kasunich et al. Jan 2012 A1
20120020810 Stiles, Jr. et al. Jan 2012 A1
20120100010 Stiles et al. Apr 2012 A1
20130106217 Drye May 2013 A1
20130106321 Drye et al. May 2013 A1
20130106322 Drye May 2013 A1
20140018961 Guzelgunler Jan 2014 A1
20140372164 Egan et al. Dec 2014 A1
Foreign Referenced Citations (79)
Number Date Country
3940997 Feb 1998 AU
2005204246 Mar 2006 AU
2007332716 Jun 2008 AU
2007332769 Jun 2008 AU
2548437 Jun 2005 CA
2731482 Jun 2005 CA
2517040 Feb 2006 CA
2528580 May 2007 CA
2672410 Jun 2008 CA
2672459 Jun 2008 CA
1821574 Aug 2006 CN
101165352 Apr 2008 CN
3023463 Feb 1981 DE
2946049 May 1981 DE
29612980 Oct 1996 DE
19736079 Aug 1997 DE
19645129 May 1998 DE
29724347 Nov 2000 DE
10231773 Feb 2004 DE
19938490 Apr 2005 DE
0150068 Jul 1985 EP
0226858 Jul 1987 EP
0246769 Nov 1987 EP
0306814 Mar 1989 EP
0314249 Mar 1989 EP
0709575 Jun 1996 EP
0735273 Oct 1996 EP
0833436 Apr 1998 EP
0831188 Feb 1999 EP
0978657 Feb 2000 EP
1112680 Apr 2001 EP
1134421 Sep 2001 EP
0916026 May 2002 EP
1315929 Jun 2003 EP
1429034 Jun 2004 EP
1585205 Oct 2005 EP
1630422 Mar 2006 EP
1698815 Sep 2006 EP
1790858 May 2007 EP
1995462 Nov 2008 EP
2102503 Sep 2009 EP
2122171 Nov 2009 EP
2122172 Nov 2009 EP
2273125 Jan 2011 EP
2529965 Jan 1984 FR
2703409 Oct 1994 FR
2124304 Feb 1984 GB
55072678 May 1980 JP
5010270 Jan 1993 JP
2009006258 Dec 2009 MX
9804835 Feb 1998 WO
0042339 Jul 2000 WO
0127508 Apr 2001 WO
0147099 Jun 2001 WO
02018826 Mar 2002 WO
03025442 Mar 2003 WO
03099705 Dec 2003 WO
2004006416 Jan 2004 WO
2004073772 Sep 2004 WO
2004088694 Oct 2004 WO
05011473 Feb 2005 WO
2005011473 Feb 2005 WO
2005055694 Jun 2005 WO
2005111473 Nov 2005 WO
2006069568 Jul 2006 WO
2008073329 Jun 2008 WO
2008073330 Jun 2008 WO
2008073386 Jun 2008 WO
2008073413 Jun 2008 WO
2008073418 Jun 2008 WO
2008073433 Jun 2008 WO
2008073436 Jun 2008 WO
2011100067 Aug 2011 WO
2014152926 Sep 2014 WO
200506869 May 2006 ZA
200509691 Nov 2006 ZA
200904747 Jul 2010 ZA
200904849 Jul 2010 ZA
200904850 Jul 2010 ZA
Non-Patent Literature Citations (175)
Entry
U.S. Patent Trial and Appeal Board's Rule 36 Judgment, without opinion, in Case No. 2016-2598, dated Aug. 15, 2017, pp. 1-2.
51—Response by Defendants in Opposition to Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011.
Amended Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459, adding U.S. Pat. No. 8,043,070.
53—Declaration of Douglas C. Hopkins & Exhibits re Response Opposing Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011.
89—Reply to Response to Motion for Preliminary Injunction Filed by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-004590; Jan. 3, 2012.
105—Declaration re Memorandum in Opposition, Declaration of Lars Hoffmann Berthelsen for Civil Action 5:11-cv-00459D; Jan. 11, 2012.
112—Amended Complaint Against All Defendants, with Exhibits for Civil Action 5:11-cv-00459D; Jan. 17, 2012.
119—Order Denying Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Jan. 23, 2012.
123—Answer to Amended Complaint, Counterclaim Against Danfoss Drives A/S, Pentair Water Pool & Spa, Inc. For Civil Action 5:11-cv-00459D; Jan. 27, 2012.
152—0rder Denying Motion for Reconsideration for Civil Action 5:11-cv-00459D; Apr. 4, 2012.
168—Amended Motion to Stay Action Pending Reexamination of Asserted Patents by Defendants for Civil Action 5:11-cv-004590; Jun. 13, 2012.
174—Notice and Attachments re Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Jun. 5, 2012.
186—Order Setting Hearings—Notice of Markman Hearing Set for Oct. 17, 2012 for Civil Action 5:11-cv-00459D; Jul. 12, 2012.
204—Response by Plaintiffs Opposing Amended Motion to Stay Action Pending Reexamination of Asserted Patents for Civil Action 5:11-cv-004590; Jul. 2012.
210—Order Granting Joint Motion for Leave to Enlarge Page Limit for Civil Action 5:11-cv-004590; Jul. 2012.
218—Notice re Plaintiffs re Order on Motion for Leave to File Excess Pages re Amended Joint Claim Construction Statement for Civil Action 5:11-cv-004590; Aug. 2012.
54DX16—Hayward EcoStar Technical Guide (Version2); 2011; pp. 1-51; cited in Civil Action 5:11-cv-004590.
54DX17—Hayward ProLogic Automation & Chlorination Operation Manual (Rev. F); pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011.
54DX18—Stmicroelectronics; “AN1946—Sensorless BLOC Motor Control & BEMF Sampling Methods with ST7MC;” 2007; pp. 1-35; Civil Action 5:11-cv-004590.
54DX19—Stmicroelectronics; “AN1276 BLOC Motor Start Routine for ST72141 Microcontroller;” 2000; pp. 1-18; cited in Civil Action 5:11-cv-004590.
54DX21—DANFOSS; “VLT 8000 Aqua Instruction Manual;” Apr. 2004; 1-210; Cited in Civil Action 5:11-cv-004590.
54DX22—DANFOSS; “VLT 8000 Aqua Instruction Manual;” pp. 1-35; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011.
54DX23—Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-190; cited in Civil Action 5:11-cv-004590.
540X30—Sabbagh et al.; “A Model for OptimaL.Control of Pumping Stations in Irrigation Systems;” Jul. 1988; NL pp. 119-133; Civil Action 5:11-cv-004590.
540X31—0anfoss; “VLT 5000 FLUX Aqua OeviceNet Instruction Manual;” Apr. 28, 2003; pp. 1-39; cited in Civil Action 5:11-cv-004590.
540X32—0anfoss; “VLT 5000 FLUX Aqua Profibus Operating Instructions;” May 22, 2003; 1-64; cited in Civil Action 5:11-cv-004590.
540X33—Pentair; “IntelliTouch Owner's Manual Set-Up & Programming;” May 22, 2003; Sanford, NC; pp. 1-61; cited in Civil Action 5:11-cv-004590.
540X34—Pentair; “Compool3800 Pool-Spa Control System Installation & Operating Instructions;” Nov. 7, 1997; pp. 1-45; cited in Civil Action 5:11-cv-004590.
540X35—Pentair Advertisement in “Pool & Spa News;” Mar. 22, 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590.
5540X36—Hayward; “Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; Elizabeth, NJ; pp. 1-5; cited in Civil Action 5:11-cv-00459D.
540X37—Danfoss; “VLT 8000 Aqua Fact Sheet;” Jan. 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590.
540X38—0anfoss; “VLT 6000 Series Installation, Operation & Maintenance Manual;” Mar. 2000; pp. 1-118; cited in civil Action 5:11-cv-004590.
540X45—Hopkins; “Synthesis of New Class of Converters that Utilize Energy Recirculation;” pp. 1-7; cited in Civil Action 5:11-cv-004590; 1994.
540X46—Hopkins; “High-Temperature, High-Oensity . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-004590; Mar. 2006.
540X47—Hopkins; “Optimally Selecting Packaging Technologies . . . Cost & Performance;” pp. 1-9; cited in Civil Action 5:11-cv-004590; Jun. 1999.
9PX5—Pentair; Selected Website Pages; pp. 1-29; cited in Civil Action 5:11-cv-004590; Sep. 2011.
9PX6—Pentair; “IntelliFio Variable Speed Pump” Brochure; 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590.
9PX7—Pentair; “IntelliFio VF Intelligent Variable Flow Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590.
9PX8—Pentair; “IntelliFio VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590.
9PX9—Sta-Rite; “IntelliPro Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590.
9PX14—Pentair; “IntelliFio Installation and User's Guide;” pp. 1-53; Jul. 26, 2011; Sanford, NC; cited in Civil Action 5:11-cv-004590.
9PX16—Hayward Pool Products; “EcoStar Owner's Manual (Rev. B);” pp. 1-32; Elizabeth, NJ; cited in civil Action 5:11-cv-00459D; 2010.
9PX17—Hayward Pool Products; “EcoStar & EcoStar SVRS Brochure;” pp. 1-7; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 30, 2011.
9PX19—Hayward Pool Products;“Hayward Energy Solutions Brochure;” pp. 1-3; www.haywardnet.com; cited in civil Action 5:11-cv-00459D; Sep. 2011.
9PX20—Hayward Pool Products; “ProLogic Installation Manual (Rev. G);” pp. 1-25; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX21—Hayward Pool Products; “ProLogic Operation Manual (Rev. F);” pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX22—Hayward Pool Products; “Wireless & Wired Remote Controls Brochure;” pp. 1-5; 2010; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D.
9PX23—Hayward Pool Products; Selected Pages from Hayward's Website:/www.hayward-pool.com; pp. 1-27; cited in Civil Action 5:11-cv-004590; Sep. 2011.
9PX28—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar Pumps;” p. 1; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX29—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar SVRS Pumps;” cited in Civil Action 5:11-cv-00459; Sep. 2011.
9PX30—Hayward Pool Systems; “Selected Pages from Hayward's Website Relating to ProLogic Controllers;” pp. 1-5; Civil Action 5:11-cv-00459D; Sep. 2011.
9PX-42—Hayward Pool Systems; “Hayward EcoStar & EcoStar SVRS Variable Speed Pumps Brochure;” Civil Action 5:11-cv-00459D; 2010.
205-24-Exh23—Piaintiff's Preliminary Disclosure of Asserted Civil Claims and Preliminary Infringement Contentions; cited in Action 5:11-cv-00459; Feb. 21, 2012.
PX-34—Pentair; “IntelliTouch Pool & Spa Control System User's Guide”; pp. 1-129; 2011; cited in Civil Action 5:11-cv-00459; 2011.
PX-138—Deposition of Dr. Douglas C. Hopkins; pp. 1-391; 2011; taken in Civil Action 10-cv-1662.
PX-141—Danfoss; “Whitepaper Automatic Energy Optimization;” pp. 1-4; 2011; cited in Civil Action 5:11-cv-00459.
9PX10—Pentair; “IntelliPro VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-6; cited in Civil Action 5:11-cv-00459D.
9PX11—Pentair; “IntelliTouch Pool & Spa Control Control Systems;” 2011; pp. 1-5; cited in Civil Action 5:11-cv-004590.
Robert S. Carrow; “Electrician's Technical Reference-Variable Frequency Drives;” 2001; pp. 1-194.
Baldor; “Balder Motors and Drives Series 14 Vector Drive Control Operating & Technical Manual;” Mar. 22, 1992; pp. 1-92.
Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-118.
Baldor; “Baldor Series 10 Inverter Control: Installation and Operating Manual”; Feb. 2000; pp. 1-74.
Dinverter; “Dinverter 28 User Guide;” Nov. 1998; pp. 1-94.
Pentair Pool Products, “IntelliFlo 4x160 a Breakthrough Energy-Efficiency and Service Life;” pp. 1-4; Nov. 2005; www.pentairpool.com.
Pentair Water and Spa, Inc. “The Pool Pro's guide to Breakthrough Efficiency, Convenience & Profitability,” pp. 1-8, Mar. 2006; www.pentairpool.com.
Danfoss; “VLT8000 Aqua Instruction Manual;” Apr. 16, 2004; pp. 1-71.
“Product Focus—New AC Drive Series Target Water, Wastewater Applications;” WaterWorld Articles; Jul. 2002; pp. 1-2.
Pentair, “Pentair RS-485 Pool Controller Adapter” Published Advertisement; Mar. 22, 2002; pp. 1-2.
Compool; “Compool CP3800 Pool-Spa Control System Installation and Operating Instructions;” Nov. 7, 1997; pp. 1-45.
Hayward; “Hayward Pro-Series High-Rate Sand Filter Owner's Guide,” 2002; pp. 1-4.
Danfoss; “Danfoss VLT 6000 Series Adjustable Frequency Drive Installation, Operation and Maintenance Manual;” Mar. 2000; pp. 1-118.
Brochure entitled “Constant Pressure Water for Private Well Systems,” for Myers Pentair Pump Group, Jun. 28, 2000.
Brochure for AMTROL, Inc. entitled “AMTROL unearths the facts about variable speed pumps and constant pressure valves,” Mar. 2002.
Undated Goulds Pumps “Balanced Flow Systems” Installation Record.
Texas Instruments, Digital Signal Processing Solution for AC Induction Motor, Application Note, BPRA043 (1996).
Texas Instruments, Zhenyu Yu and David Figoli, DSP Digital Control System Applications—AC Induction Motor Control Using Constant V/Hz Principle and Space Vector PWM Technique with TMS320C240, Application Report No. SPRA284A (Apr. 1998).
Texas Instruments, TMS320F/C240 DSP Controllers Reference Guide Peripheral Library and Specific Devices, Literature No. SPRU 161D (Nov. 2002).
Texas Instruments, MSP430x33x—Mixed Signal Microcontrollers, SLAS 163 (Feb. 1998).
Microchip Technology, Inc., PICMicro Mid-Range MCU Family Reference Manual (Dec. 1997).
7—Motion for Preliminary Injunction by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459D, filed Sep. 30, 2011.
540X48—Hopkins; “Partitioning Oigitally . . . Applications to Ballasts;” pp. 1-6; cited in Civil Action 5:11-cv-00459D, Mar. 2002.
Load Controls Incorporated, product web pages including Affidavit of Christopher Butler of Internet Archive attesting to the authenticity of the web pages, dated Apr. 27, 2013, 19 pages.
Cliff Wyatt, “Monitoring Pumps,” World Pumps, vol. 2004, Issue 459, Dec. 2004, pp. 17-21.
Wen Technology, Inc., Unipower® HPL110 Digital Power Monitor Installation and Operation, copyright 1999, pp. 1-20, Raleigh, North Carolina.
Wen Technology, Inc., Unipower® HPL110, HPL420 Programming Suggestions for Centrifugal Pumps, copyright 1999, 4 pages, Raleigh, North Carolina.
Danfoss, VLT® Aqua Drive, “The ultimate solution for Water, Wastewater, & Irrigation”, May 2007, pp. 1-16.
Danfoss, SALT Drive Systems, “Increase oil & gas production, Minimize energy consumption”, copyright 2011, pp. 1-16.
Schlumberger Limited, Oilfield Glossary, website Search Results for “pump-off”, copyright 2014, 1 page.
45—Plaintiffs' Reply to Defendants' Answer to Complaint & Counterclaim for Civil Action 5:11-cv-00459D, filed Nov. 2, 2011.
50—Amended Answer to Complaint & Counterclaim by Defendants for Civil Action 5:11-cv-00459D, filed Nov. 23, 2011.
54DX32—Hopkins; “High-Temperature, High-Density . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-00459D, Mar. 2006.
Pentair; “Pentair IntelliTouch Operating Manual;” May 22, 2003; pp. 1-60.
Bibliographic Data Sheet—U.S. Appl. No. 10/730,747 Applicant: Robert M. Koehl Reasons for Inclusion: Printed publication US 2005/0123408 A1 for U.S. Appl. No. 10/730,747 has incorrect filed.
Shabnam Moghanrabi; “Better, Stronger, Faster;” Pool & Spa News, Sep. 3, 2004; pp. 1-5; www/poolspanews.com.
Grundfos Pumps Corporation; “The New Standard in Submersible Pumps;” Brochure; pp. 1-8; Jun. 1999; Fresno, CA USA.
Grundfos Pumps Corporation; “Grundfos SQ/SQE Data Book;” pp. 1-39; Jun. 1999; Fresno, CA USA.
Goulds Pumps; “Balanced Flow System Brochure;” pp. 1-4; 2001.
Goulds Pumps; “Balanced Flow Submersible System Installation, Operation & Trouble-Shooting Manual;” pp. 1-9; 2000; USA.
Goulds Pumps; “Balanced Flow Submersible System Informational Seminar;” pp. 1-22; Undated.
Goulds Pumps; “Balanced Flow System Variable Speed Submersible Pump” Specification Sheet; pp. 1-2; Jan. 2000; USA
Goulds Pumps; Advertisement from “Pumps & Systems Magazine;” entitled “Cost Effective Pump Protection+ Energy Savings,” Jan. 2002; Seneca Falls, NY.
Goulds Pumps; “Hydro-Pro Water System Tank Installation, Operation & Maintenance Instructions;” pp. 1-30; Mar. 31, 2001; Seneca Falls, NY USA.
Goulds Pumps; “Pumpsmart Control Solutions” Advertisement from Industrial Equipment News; Aug. 2002; New York, NY USA
Goulds Pumps; “Model BFSS List Price Sheet;” Feb. 5, 2001.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump System” Brochure; pp. 1-4; Jan 2001; USA.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump” Brochure; pp. 1-3; Jan. 2000; USA.
Goulds Pumps; “Balanced Flow System . . . The Future of Constant Pressure Has Arrived;” Undated Advertisement.
Amtrol Inc.; “AMTROL Unearths the Facts About Variable Speed Pumps and Constant Pressure Valves;” pp. 1-5; Mar. 2002; West Warwick, RI USA.
Franklin Electric; “CP Water-Subdrive 75 Constant Pressure Controller” Product Data Sheet; May 2001; Bluffton, IN USA.
Franklin-Electric “Franklin Aid, Subdrive 75: You Made It Better;” vol. 20, No. 1; pp. 1-2; Jan./Feb. 2002; www.franklin-electric.com.
Grundfos; “SQ/SQE—A New Standard in Submersible Pumps;” Undated Brochure; pp. 1-14; Denmark.
Grundfos; “JetPaq—The Complete Pumping System;” Undated Brochure; pp. 1-4; Clovis, CA USA.
Email Regarding Grundfos' Price Increases/SQ/SQE Curves; pp. 1-7; Dec. 19, 2001.
F.E. Myers; “Featured Product: F.E. Myers Introducts Revolutionary Constant Pressure Water System;” pp. 1-8; Jun. 28, 2000; Ashland, OH USA.
“Water Pressure Problems” Published Article; The American Well Owner; No. 2, Jul. 2000.
Bjarke Soerensen; “Have You Chatted With Your Pump Today?” Undated Article Reprinted with Permission of Grundfos Pump University; pp. 1-2; USA.
“Understanding Constant Pressure Control;” pp. 1-3; Nov. 1, 1999.
“Constant Pressure is the Name of the Game;” Published Article from National Driller; Mar. 2001.
Sje-Rhombus; “Variable Frequency Drives for Constant Pressure Control;” Aug. 2008; pp. 1-4; Detroit Lakes, MN USA.
Sje-Rhombus; “Constant Pressure Controller for Submersible Well Pumps;” Jan. 2009; pp. 1-4; Detroit Lakes, MN USA.
Sje-Rhombus; “SubCon Variable Frequency Drive;” Dec. 2008; pp. 1-2; Detroit Lakes, MN USA.
Grundfos; “SmartFio SQE Constant Pressure System;” Mar. 2002; pp. 1-4; Olathe, KS USA.
Grundfos; “Grundfos SmartFio SQE Constant Pressure System;” Mar. 2003; pp. 1-2; USA.
Grundfos; “Uncomplicated Electronics . . . Advanced Design;” pp. 1-10; Undated.
Grundfos; “CU301 Installation & Operation Manual;” Apr. 2009; pp. 1-2; Undated; www.grundfos.com.
Grundfos; “CU301 Installation & Operating Instructions;” Sep. 2005; pp. 1-30; Olathe, KS USA.
ITT Corporation; “Goulds Pumps Balanced Flow Submersible Pump Controller;” Jul. 2007; pp. 1-12.
ITT Corporation; “Goulds Pumps Balanced Flow;” Jul. 2006; pp. 1-8.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 2 HP Submersible Pumps;” Jun. 2005; pp. 1-4 USA.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 3 HP Submersible Pumps;” Jun. 2005; pp. 1-4; USA.
Franklin Electric; Constant Pressure in Just the Right Size; Aug. 2006; pp. 1-4; Bluffton, IN USA.
Franklin Electric; “Franklin Application Installation Data;” vol. 21, No. 5, Sep./Oct. 2003; pp. 1-2; www.franklin-electric.com.
Franklin Electric; “Monodrive MonodriveXT Single-Phase Constant Pressure;” Sep. 2008; pp. 1-2; Bluffton, IN USA.
Docket Report for Case No. 5:11-cv-00459-D; Nov. 2012.
1—Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459-D; Aug. 31, 2011.
7—Motion for Preliminary Injunction by Danfoss Drives AIS & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459-D; Sep. 30, 2011.
22—Memorandum in Support of Motion for Preliminary Injunction by Plaintiffs with respect to Civil Action 5:11-cv-00459-D; Sep. 2, 2011.
23—Declaration of E. Randolph Collins, Jr. In Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011.
24—Declaration of Zack Picard in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011.
32—Answer to Complaint with Jury Demand & Counterclaim Against Plaintiffs by Hayward Pool Products & Hayward Industries for Civil Action 5:11-cv-004590; Oct. 12, 2011.
USPTO Patent Trial and Appeal Board, Paper 47—Final Written Decision, Case IPR2013-00285, Patent 8,019,479 B2, dated Nov. 19, 2014, 39 pages.
Pentair Pool Products, WhisperFlo Pump Owner's Manual, Jun. 5, 2001, 10 pages.
USPTO Patent Board Decision—Examiner Reversed; Appeal No. 2015-007909 re: U.S. Pat. No. 7,686,58762; dated Apr. 1, 2016.
USPTO Patent Board Decision—Examiner Affirmed in Part; Appeal No. 2016-002780 re: U.S. Pat. No. 7,854,597B2; dated Aug. 30, 2016.
USPTO Patent Board Decision—Decision on Reconsideration, Denied; Appeal No. 2015-007909 re: U.S. Pat. No. 7,686,587B2; dated Aug. 30, 2016.
Board Decision for Appeal 2016-002726, Reexamination Control 95/002,005, U.S. Pat. No. 7,857,60062 dated Jul. 1, 2016.
Flotec Owner's Manual, dated 2004. 44 pages.
Glentronics Home Page, dated 2007. 2 pages.
Goulds Pumps SPBB Battery Back-Up Pump Brochure, dated 2008. 2 pages.
Goulds Pumps SPBB/SPBB2 Battery Backup Sump Pumps, dated 2007.
ITT Red Jacket Water Products Installation, Operation and Parts Manual, dated 2009. 8 pages.
Liberty Pumps PC-Series Brochure, dated 2010. 2 pages.
“Lift Station Level Control” by Joe Evans PhD, www.pumped101.com, dated Sep. 2007. 5 pages.
The Basement Watchdog A/C-D/C Battery Backup Sump Pump System Instruction Manual and Safety Warnings, dated 2010. 20 pages.
The Basement Watchdog Computer Controlled A/C-D/C Sump Pump System Instruction Manual, dated 2010. 17 pages.
Pentair Water Ace Pump Catalog, dated 2007, 44 pages.
ITT Red Jacket Water Products RJBB/RJBB2 Battery Backup Sump Pumps; May 2007, 2 pages.
Allen-Bradley; “1336 Plus II Adjustable Frequency AC Drive with Sensorless Vector User Manual;” Sep. 2005; pp. 1-212.
Board Decision for Appeal 2015-007909, Reexamination Control 95/002,008, U.S. Pat. No. 7,686,587B2 dated Apr. 1, 2016.
USPTO Patent Trial and Appeal Board, Paper 43—Final Written Decision, Case IPR2013-00287, U.S. Pat. No. 7,704,051 B2, dated Nov. 19, 2014, 28 pages.
Danfoss, VLT 8000 AQUA Operating Instructions, coded MG.80.A2.02 in the footer, 181 pages.
Per Brath—Danfoss Drives A/S, Towards Autonomous Control of HVAC Systems, thesis with translation of Introduction, Sep. 1999, 216 pages.
Karl Johan Åström and Björn Wittenmark—Lund Institute of Technology, Adaptive Control—Second Edition, book, Copyright 1995, 589 pages, Addison-Wesley Publishing Company, United States and Canada.
Bimal K. Bose—The University of Tennessee, Knoxville, Modern Power Electronics and AC Drives, book, Copyright 2002, 728 pages, Prentice-Hall, Inc., Upper Saddle River, New Jersey.
Waterworld, New AC Drive Series Targets Water, Wastewater Applications, magazine, Jul. 2002, 5 pages, vol. 18, Issue 7.
Texas Instruments, TMS320F/C240 DSP Controllers Peripheral Library and Specific Devices, Reference Guide, Nov. 2002, 485 pages, printed in U.S.A.
Microchip Technology Inc., PICmicro® Advanced Analog Microcontrollers for 12-Bit ADC on 8-Bit MCUs, Convert to Microchip, brochure, Dec. 2000, 6 pages, Chandler, Arizona.
W.K. Ho, S.K. Panda, K.W. Lim, F.S. Huang—Department of Electrical Engineering, National University of Singapore, Gain-scheduling control of the Switched Reluctance Motor, Control Engineering Practice 6, copyright 1998, pp. 181-189, Elsevier Science Ltd.
Jan Eric Thorsen—Danfoss, Technical Paper—Dynamic simulation of DH House Stations, presented by 7. Dresdner Femwärme-Kolloquium Sep. 2002, 10 pages, published in Euro Heat & Power Jun. 2003.
Texas Instruments, Electronic Copy of TMS320F/C240 DSP Controllers Reference Guide, Peripheral Library and Specific Devices, Jun. 1999, 474 pages.
Rajwardhan Patil, et al., A Multi-Disciplinary Mechatronics Course with Assessment—Integrating Theory and Application through Laboratory Activities, International Journal of Engineering Education, copyright 2012, pp. 1141-1149, vol. 28, No. 5, TEMPUS Publications, Great Britain.
James Shirley, et al., A mechatronics and material handling systems laboratory: experiments and case studies, International Journal of Electrical Engineering Education 48/1, pp. 92-103.
U.S. Court of Appeals for the Federal Circuit, Notice of Entry of Judgment, accompanied by Opinion, in Case No. 2017-1021, Document 57-1, filed and entered Feb. 7, 2018, pp. 1-16.
U.S. Court of Appeals for the Federal Circuit, Notice of Entry of Judgment, accompanied by Opinion, in Case No. 2017-1124, Document 54-1, filed and entered Feb. 26, 2018, pp. 1-10.
U.S. Appl. No. 12/869,570 Appeal Decision dated May 24, 2016.
Related Publications (1)
Number Date Country
20180003181 A1 Jan 2018 US
Provisional Applications (1)
Number Date Country
61102935 Oct 2008 US
Divisions (1)
Number Date Country
Parent 12572774 Oct 2009 US
Child 13350167 US
Continuations (2)
Number Date Country
Parent 14095911 Dec 2013 US
Child 15652097 US
Parent 13350167 Jan 2012 US
Child 14095911 US