The invention relates to a self-powered centrifugal separator equipped with a safety valve operable to assure shutoff of fluid flow during servicing.
Self-powered centrifugal separators are well known for separating fluids of different densities or for separating particulate matter from liquids and have long been used in lubrication systems for engines, particularly diesel-powered vehicle engines, as well as in other industrial separation processes.
The principle of operation of such a centrifugal separator is that a housing contains a rotor which is supported therein to spin at high speed about a substantially vertical axis. Fluid from which contaminants are to be removed is supplied to the rotor at elevated pressure along the axis of rotation and is ejected from tangentially directed nozzles into the housing from which it drains to a sump. Thus, the fluid from which contaminants are to be removed also provides the drive for the rotor. As this fluid passes through the rotor, denser contaminant materials or particles are separated therefrom centrifugally and retained in the rotor, typically as a cake adhering to the interior surface of the rotor, which is cleaned or replaced at intervals.
GB 2160796 and GB 2296942 disclose self-powered centrifugal separators of the type which comprises a base, a substantially vertical spindle upstanding from the base, a rotor mounted on the spindle for rotation thereabout by reaction to fluid emission from rotor nozzles, the base having an inlet passage for said fluid and the spindle having an axial bore and outlets therefrom to supply fluid to the rotor from said inlet passage, and a cover mounted on the base and enclosing the rotor. In this type of separator the fluid is supplied at pressure from the base of the housing and flows upwards through the axial bore to outlets near the top of the bore, which is typically a blind bore. A releasable cap is typically mounted at the top of the spindle to secure the cover. Other designs of self-powered centrifugal separators, for example as disclosed in U.S. Pat. No. 4,498,898 and U.S. Pat. No. 4,557,831, have fluid supplied downwards into the top of the axial bore of the spindle.
In respect of such separators used in lubrication systems for engines it is already known to provide a spring biased valve in the inlet flow path of the fluid to shut off flow at low pressure. This is shown in the applicant's earlier EP 1 009 535 where such a valve is provided in an inlet flow passage in the base of the housing at a location prior to flow of fluid upwards into the axis of the rotor. This protects the engine by ensuring maximum supply of lubricating fluid to said engine when the pressure is low by not diverting fluid to the centrifugal cleaning means at such time.
An object of the present invention is to provide a safety feature for a self-powered centrifugal separator of the type just referred to ensure that supply of fluid to the rotor is shut off whenever the separator is being accessed for maintenance or repair.
With this object in view, the present invention provides a centrifugal separator of the type referred to characterized by provision of a cap which serves releaseably to close the top of the axial bore in the spindle and by provision of a shuttle valve is provided in the axial bore, said valve, upon release of the cap from the top of the axial bore, being displaceable, under pressure of fluid supplied from the base of the housing, to close off the top of the axial bore and to close off outlets from the bore to the rotor.
Thus, the shuttle valve automatically closes off the openings whereby fluid, typically oil, flows into the rotor or leaks from the top of the spindle whenever the cover is removed without the circulation pump for supply of oil (or other fluid) to the separator having first been switched off or isolated. Generally, personnel employed to maintain and clean such separators are trained in procedure to switch off the fluid pump before removing the cover of the centrifugal separator. However, there is always a risk of a procedural error, possibly more likely in an industrial, manufacturing environment, where personnel may not be as well trained specifically in relation to centrifugal separators, than in a vehicle maintenance environment. Accordingly, such a safety valve serves as a useful failsafe, preventing leaks which are messy, wasteful and potentially hazardous.
In preferred embodiments of the invention the shuttle valve includes a valve body and a spacer portion, the spacer portion being acted upon by the cover to locate the valve body within the axial bore. Thus, the spacer portion advantageously provides for correct location of the valve body, relative to the cover, in the axial bore of the spindle during normal operation of the separator and particularly for correct repositioning of same after release and subsequent replacement of the cover. In this respect the valve body will include openings or recesses to be aligned with or allow fluid access to the spindle outlets to the rotor during normal operation of the separator as well as means to close off said outlets upon release of the cover.
The spacer portion or the valve body will include means to close off the top of the axial bore upon removal of the cover.
It is also advantageous for the spacer portion to be configured to project from the top of the axial bore upon release of the cover and displacement of the valve under fluid pressure. The appearance of such a projecting spacer portion then serves to indicate to the person removing the cover that the fluid pump has not been switched off.
In preferred embodiments the cap which serves to close the top of the spindle bore is the same cap which conventionally attaches the cover to the spindle to secure it against the base. However, in other embodiments of separator the closure cap could be provided separately from means to attach the cover.
The accompanying Figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.
Features of the present invention, which are believed to be novel, are set forth in the drawings and more particularly in the appended claims. The invention, together with the further objects and advantages thereof, may be best understood with reference to the following description, taken in conjunction with the accompanying drawings. The drawings show a form of the invention that is presently preferred; however, the invention is not limited to the precise arrangement shown in the drawings.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
Before describing in detail embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of apparatus components related to a centrifugal separator equipped with a safety shutoff valve. Accordingly, the apparatus components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
In this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
As shown, this exemplary embodiment has the typical features of a self-powered centrifugal separator, namely a base 10, a stationery spindle 11 upstanding from the base 10 to provide a substantially vertical axis upon which a rotor 12 is mounted and a cover assembly 20 secured against the base and enclosing the rotor 12. The rotor 12 includes a bearing sleeve 14 which is rotatably mounted upon the spindle 11 by way of bearings 15, a bottom plate 16 provided with tangentially directed nozzles 17, a top plate 18 and cylindrical walling. The spindle 11 has a central bore 19 extending through from its lower end to its upper end, which upper end extends beyond the rotor 12. Both the external diameter of the spindle 11 and the internal diameter of the spindle 11 (ie, the diameter of the bore 19) decrease stepwise at spaced locations between the lower and upper ends thereof, as is evident in the drawings.
As shown in
A fluid passageway 21 extends through the base 10 from an inlet port 22 to supply fluid upwardly to the bore 19 of the spindle 11 in use of the separator, as shown by the arrows in
At intervals it is necessary to remove the rotor 12 for cleaning out or replacement. This is done by removal of the cover assembly 20 to access the rotor 12, as shown in
A shuttle valve 30 is provided in the spindle bore 19 to close off the openings 23, 24 automatically, under pressure of fluid travelling up the bore 19, as soon as the cover assembly 20 is removed. The valve 30 also closes off the upper end of the bore 19 so that leakage of fluid from the spindle 11 is prevented.
Usually a fluid pump supplying fluid under pressure to the inlet 22 of the separator will be switched off or isolated before removal of the cover assembly 20 in accordance with usual maintenance procedure. However, if there is any oversight and the fluid supply is not switched off the shuttle valve 30 provides a failsafe.
As shown, the shuttle valve 30 comprises a valve body 31 and a spacer portion in the form of a bolt 32 which extends upwards from the body 31 in the spindle bore 19. In normal use, as in
If the cover assembly 20 is removed when fluid is still being supplied at pressure to the separator, the pressure of fluid pushes the valve body 31 upwards so that its trailing region blocks off the openings 23 in the spindle, as shown in
Whether or not the fluid supply is switched off in the meanwhile, after any maintenance or replacement of the rotor 12, the cover assembly 20 can be replaced and re-secured by means of the threaded cap 27. As the cap 27 is re-secured to the top of the spindle 11 it acts to push down the bolt 32 which causes the valve body 31 attached therebelow to resume its operational position as in
The invention is not restricted to the details of the foregoing embodiment and variations in design are possible within the scope of the appended claims For example, the spacer portion, exemplified by the bolt, need not project from the top of the spindle when the cover assembly is removed. Instead the cap may have a portion which will project down into the spindle base to contact and reposition the shuttle valve. In other embodiments instead of an integrated cover assembly, the cover enclosing the rotor may be provided separately from the closure cap which closes off the spindle bore. There may also be other variations in design detail.
In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Number | Date | Country | Kind |
---|---|---|---|
0901462.2 | Jan 2009 | GB | national |
This application is a bypass continuation application of international application No. PCT/EP2010/051007 having an international filing date of Jan. 28, 2010 and designating the United States, the International Application claiming a priority date of Jan. 29, 2009, based on prior filed United Kingdom patent application No. GB 0901462.2, the entire contents of the aforesaid international application and the aforesaid United Kingdom patent application being incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2010/051007 | Jan 2010 | US |
Child | 13193821 | US |