This invention relates generally to teat dip applicators and backflushing systems for dairy animal milker units, and more particularly to automatic milker unit backflushing systems, teat dip applicators, related components, and methods for safely and efficiently applying dips and backflushing milker units.
Dairy milking systems as they relate to the present invention include a cluster of teat cups, each of which is matched with a flexible teat cup liner that is attached to a teat of a dairy animal with a vacuum. Vacuum is applied in pulses between the shell and liner to facilitate movement of the flexible liner to milk the dairy animals. Milk flows from the cow through each flexible liner and then through a short milk tube to a milker unit collecting bowl assembly, which collects milk from all of the animal's teats. This combination of elements is known as a milker unit and can be used to milk cows, sheep, goats and other dairy animals. Each milker unit is used to milk multiple animals so it must be sanitized, at least periodically, to prevent transmission of dirt and germs into the milk, and to help prevent transmission of diseases from animal to animal.
Milk from individual animals flows from each collecting bowl assembly through a long milk tube and into a milk line that receives milk from all of the milker units in the dairy. The milk is then chilled and stored in a milk tank. The milk lines and storage systems must not be contaminated with dirt, debris, chemicals, pathogens, or contaminated milk.
Various methods have been used to clean milker units. For example, milker units have been immersed into a bucket filled with a disinfectant solution for cleaning. In a simple automated variation, milker units are pulled through a so-called “disinfection trough” or multiple troughs filled with disinfectant solution. Other systems include automatic rinsing that is usually done from the downstream end of the long milk tube and cleans the entire length of the long milk tube as well as the milker unit. This latter method involves very high consumption of water and cleaning chemicals, and can waste milk that is in the long milk tube that is otherwise salable. In all cases, a practically complete removal of the disinfectant solution from the milker unit must take place before it is applied to the next cow, so thorough rinsing and/or backflushing are necessary.
In addition, dairy animal teats have broadened milk ducts after milking that make them especially susceptible to new infection from mastitis pathogens. To combat these pathogens, the teats can be treated with a disinfectant solution that adheres well to the teats and which usually also contains a skin-care component. The application of this disinfectant solution is called dipping and can be done with a hand-held dipping cup into which the individual teats are introduced. Dip can also be applied using manual spray devices and foam applicators. Dipping with a cup is especially labor-intensive, but generally has a better success rate and a lower consumption of dipping solution than manual spraying methods.
Some spraying methods are automated to spray dip from a dipping arm or dipping bar. Automated sprayers are not precise and tend to consume much more dipping solution than manual dipping methods. Other early automatic teat dipping applicator systems applied dip upward from the short milk tube toward the bottom of a teat at the end of milking, but before detachment from the milker unit. This arrangement provided some protection, but it did not coat the entire teat uniformly. See U.S. Pat. No. 7,290,497. Others have suggested automated systems that apply dip to an upper teat portion, but most of these failed to provide: uniform dip coverage on teats; consistent volumes of dip application over time; and protection of downstream milk system components from being contaminated by dip and other chemicals.
In particular, most prior automatic teat dip applicators and milker unit cleaner systems fail to adequately ensure that teat dip compositions and backflushing fluids do not enter the long milk tube and contaminate the dairy milk lines. This problem can be caused by a number of factors, but one possible cause for contamination results from differential pressures that develop in dipping and backflushing devices that are connected to milk lines. Differential pressures between the milk lines, and dipping and backflushing devices can cause seepage even through closed valves and tight seals, so it is difficult to design, build, install, maintain, and use automated teat dip applicators and milker unit backflushing systems that are safe and prevent contamination of dairy systems.
Thus, there is a need to provide backflushing and teat dip application automatically and in a conveniently arranged system that also ensures that the dip solutions and backflushing fluids do not contaminate the dairy system and milk supply.
The present invention is directed to systems and methods that automatically backflush milker units and can automatically apply teat dip to dairy animal teats. Generally, when dip application is to be performed with the present invention, it occurs automatically near the end of milking, when milk flow through the milker unit diminishes and vacuum is about to be shut off to detach the milker unit from a dairy animal. Before detachment from the animal, the invention isolates the milker unit from the rest of the dairy system and delivers teat dip near the top of an animal's teats. A dip applicator in accordance with the invention can include; a dip supply, a pump, suitable conduits, valves, and a manifold that directs substantially uniform volumes of dip to each animal teat. The invention can be adjusted to properly time dip delivery, teat coverage, and dip rinsing for most types of teat dips.
After dip application, backflushing is performed by the present invention by continuing to seal off the milker unit from the downstream dairy system components. Valves are operated and backflushing chemicals, water, and air are used to sanitize the milker unit. The backflushing operation begins near a downstream portion of the milker unit and is directed upstream toward the teat cups and liners. Cleaning the milker unit with the invention is more thorough than cleaning just the cup liner and yet it does not waste milk in the long milk tube. The milker unit and the invention itself can be rinsed with clean water after backflushing.
Automatically backflushing milker units cleans out milk and teat dipping solution and prepares the milker unit for the next animal with minimal or no operator effort. Reduced operator effort results in more consistent dipping and milker unit cleaning and improved dairy herd health.
In accordance with the invention, the synchronization of the dipping and backflushing operations and the protection of downstream milk system components can be performed by a system that includes; a main control, delivery hoses, an air supply, a water supply, a backflushing fluid supply, a dip supply, a stall control, and a safety valve to seal the downstream end of a milker unit from the rest of the dairy system. The system can also include valve and controls to deliver backflushing fluids, water, and air through the safety valve and into the milker unit. The dairy system downstream from the milker unit includes the long milk tube and the rest of the dairy milk collecting, chilling, and storage devices, and these are protected from contamination by the safety valve and other system components.
One main control per milking parlor can be used and comprises an electronic control, storage units and preparation of the dipping and disinfectant solution. The main control can also monitor overall system safety and can generate appropriate warning signals or shut-down signals. There can also be more than one main control, where each controls a number of stalls within the overall dairy.
A stall control unit controls the system at each related milking station. It can control the time and sequence of the dipping, backflushing, and rinsing operations for individual milking stations. The stall control can also store dipping solution in a dosing valve in preparation for each dipping process. The dip amount to be applied can be adjusted to accommodate variations in teat dips, weather conditions, herd health, and any other relevant conditions using a dosing valve in accordance with the present invention.
A safety valve in accordance with the invention can be formed integrally with a milker unit collection bowl or be mounted on or near a downstream portion of the milker unit. The safety valve automatically isolates the milker unit and dairy system from the dipping and backflushing devices during milking. The safety valve also automatically isolates the milker unit from the rest of the milking system during the dipping and backflushing processes to ensure that no dip or backflush fluids can flow into the milking system downstream from the milker unit. The safety valve and a dip valve can be formed in a single valve unit. The invention can be installed as an automatic backflush system or dip applicator only, or it can include both. Also, an automatic backflush system can be installed initially and later have an automatic teat dip applicator added. The safety valve can also be added to most existing milker unit types and styles.
As stated above, the teat dip applicator applies dipping solution after milking and before the milker unit is released from the animal. Dip travels from the dip valve components in the safety valve to the liners through dip channels that are mounted either inside or outside of the teat cups (or shells). Consumption of teat dip with the present invention is comparable to the low consumption realized during manual dipping with a dipping cup. The dip can be distributed through the head of the teat shell liner, whereby the disinfectant solution can be distributed all around by dome flow controllers formed in the inside of the head of the shell liners such as those disclosed in U.S. application Ser. No. 12/215,706 and Ser. No. 12/157,924, U.S. Pat. No. 7,401,573, and Provisional Application 60/578,997 the disclosures of which are incorporated herein by reference. In this way, a single introduction of teat dip to the shell liner is sufficient to distribute the dip uniformly in the area inside the liner head and onto the teat, and then it is wiped on the length of the teat as the teat cup is removed. Gravity, pressure differential, and the wiping action of the liner during detach all ensure full coverage of the teat from top to bottom. Controlling dip flow this way also reduces dip spray out of the milker liner as the milker unit falls from an animal.
The milker unit safety valve ensures that disinfectant and teat dip cannot flow downstream from the safety valve and into the milk line, despite differential pressures in the milk lines and safety valve. To prevent seepage past valves and seals, a safety valve in accordance with the invention can include a type of valve arrangement known as “block-bleed-block.” Standard valves and seals can fail or allow seepage due to differential pressure on opposite sides of seals used in milk, teat dip, and backflushing lines. The block-bleed-block function of the invention prevents migration of disinfectant and teat dip through valves and seals into the milk lines by supplying a pair of spaced apart valves and a vent or “bleed” to atmosphere, with the vent being disposed between two seals. Multiple block-bleed-block arrangements can be used in the invention to provide redundancy and added safety.
Also in accordance with the invention, there is provided a valve block that joins air, water, and backflushing supply lines and channels them to a common outlet for efficiency. The valve block also provides a pressure bleeding vent between a pair of seals to further protect milk lines from contamination.
Also, in accordance with the invention, a teat dip manifold can be used to ensure more equal and consistent distribution of the dipping solution to individual teat cups. The manifold can be disposed on or near the milker unit or safety valve The teat dip manifold can also include a valve arrangement that isolates each liner head dip tube or pairs of liner head dip tubes from the others in the milker unit to prevent adverse pressure differentials in the various tubes during milking. Adverse pressure differentials in these tubes can affect critical milking vacuum levels in the milker unit liner head, and the present invention eliminates or reduces these pressure differentials.
A method for backflushing a milker unit, in accordance with the present invention, includes the steps of: closing a safety valve to substantially seal off a downstream portion of the milker unit from a dairy pipeline system; pumping backflush fluid through a safety valve and the milker unit; pumping water through the safety valve and milker unit; forcing air through the safety valve and the milker unit; and opening the safety valve so that the milker unit is in fluid communication with the dairy pipeline system.
The step of closing the safety valve can include the step of: moving a backflushing piston from a milking position to a backflushing position, which can include the step of: forcing air into the safety valve to move a backflush piston from a milking position to a backflushing position.
The method for backflushing a milker unit can also include the step of: bleeding the safety valve at a safety valve vent, wherein the vent is disposed between an upstream seal and a downstream seal when the safety valve is in the milking position and/or the backflushing position, and the vent can be disposed between a backflush fluid supply in fluid communication with the safety valve and the downstream portion of the milker unit when the safety valve is in a milking position.
The present invention can perform the above steps for backflushing a milker unit in conjunction with a method for dipping dairy animal teats is performed. The method for dipping dairy animal teats can include the steps of: moving the backflushing piston to a backflushing position; and moving a dip valve piston to a dipping position to allow dip to flow from a supply of pressurized dip to a dip channel that is in fluid communication with an upper portion of a teat shell liner, and this step is performed before and/or during detachment of a milker unit from an animal.
The present invention can accomplish one or more of the following: automate the dipping process to increase operator efficiency and reduce operator fatigue; provide safe, individual disinfection of the teats to reduce pathogenic organisms on the teat; prevent transfer of infection from animal to animal, and thus improvement of udder health of the entire herd; reduce or minimize chemical consumption (as opposed to spray or other automated dipping systems); improve uniformity of teat dip application; prevent chemical contamination of the milk and of the downstream milk system lines; reduce water consumption during backflushing of the milker unit; and be retrofitted to nearly any available milking unit.
The teat dip applicator and milker unit backflushing system 20 is referred to herein as “the system 20” and preferably includes: a main control 26; a compressed air supply 25; a backflush chemical supply 28; a water supply 29; a teat dip supply 30; a conduit 31 for housing appropriate hoses and piping 32; stall controls 36 for each milking stall; a stall supply hose 38; a milker unit 40 for each stall, and a safety valve 60 for each milker unit 40. The main control 26 and other controls are connected to an appropriate electrical power supply (not illustrated).
The milker unit 40 (
The system 20 preferably combines teat dipping and backflushing processes, but the system 20 can be within the scope of the present invention by including only a milker unit backflushing feature without a teat dip applicator or vice versa. Having only a backflushing feature is useful for automatically backflushing each milker unit 40 after each milking or at least periodically to ensure optimum hygiene of the milker units 40. In a preferred embodiment, the teat dip applicator is a part of the same unit as the backflusher, but the teat dip applicator components can be added to the backflusher even after the safety valve 60 has been installed on a milker unit 40. The system 20 of the present invention can be used in dairy harvesting facilities of any configuration including rotary milking parlors.
The control panel 832 remotely controls operation of the teat dip application system 830. It can be automated with suitable manual overrides or it can be operated by manually engaging various control buttons in response to audible and/or visual signals reflecting the stage of a milking and backflush operation.
The control panel 832 controls the flow of air 837, water 839, teat dip 841, and any appropriate three-way valve ventilation that may be necessary. A vent 845 is also provided. The control panel 832 can remotely control valves elsewhere within the system 830 or it can incorporate valves and hose connections for controlling air, water, teat dip, and valve ventilation.
The control panel 832 is in fluid communication with the dip manifold 834 via a manifold hose 850. The dip manifold 834 is illustrated as feeding a single teat dip applicator and milker unit combination, but the manifold 834 preferably serves a number of liners 838 and milker unit combinations. The dip manifold 834 is in fluid communication with each teat dip liner 838 via a dip hose 852.
The dip hose 852 preferably tracks along the short milk tube 842, the first backflush valve 840, and passes into the teat cup shell 836 where it is protected from damage. Alternatively, the dip hose 852 could travel an alternate route to the teat cup shell 836. The dip hose 852 can also be routed on the exterior of the teat cup shell 836, or be part of an integral duct (not illustrated) formed in the teat cup shell 836. The dip hose 852 forms part of a fluid conduit through which teat dips, air, and water pass.
Once a sufficient amount of dip is applied, the dip manifold 834 shuts off the flow of dip. Dip cannot be left inside the liner 838 because it may contaminate milk from the next cow. Backflushing of the liner 838 is therefore desirable. There are at least two options to backflush the liner 838. In one option, the second backflush valve 848 is opened to deliver a backflushing fluid 859 such as water or a suitable chemical into the milk line 846, through the milker unit 844, the short milk tube 842, the first backflush valve 840 (if present), and out of the liner 838. In a second option, the first backflushing valve 840 is used, and only the liner 838 is backflushed while the milk line 846 is isolated by the backflushing valve 840.
Automatic operation of the system 830 relies on an end-of-milking signal from a milk sensor (not illustrated) that activates the control panel 832 to shut off vacuum to the milker unit 844. The first backflush valve 840 is then closed to isolate the liner head nozzle 864 from the milker line 846 to protect the milk line 846 from being exposed to dip and backflushing fluid 859. Preferably, only the second backflush valve 848 is used, and it is activated by the control panel 832 to shut off the milk line 846 from the milker unit collection bowl 844.
The control panel 832 then operates a three-way valve to connect the control panel 832 to the manifold hose 850 and delivers dip into the manifold hose 850, manifold 834, dip hose 852, liner head chamber 862, and liner head opening 864. The amount and pressure of the dip 851 is controlled by the valves and the pressure of the source of dip.
Air is then forced through the manifold hose 850, manifold 852, dip hose 852, and liner head chamber 862 to force dip out of the liner head opening 864. As the milker unit 844 then begins detachment via a standard detacher mechanism (not illustrated), the liner head 860 mouth wipes dip down the teat sides and deposits an excess dip amount on the teat end.
Next, normal backflush cycles are used as described above to sanitize the liner between milkings and rinse out any teat dip residue. The system 830 is now ready to repeat the cycle.
Referring to the system 20 in more detail, as illustrated in
The main control programmable device 21 is preferably programmed to monitor and control all of the functions of the devices associated with the main control 26, as well as, communicate with, respond to and/or control; stall controls 36, computers, other data input devices, including sensors and manual controls. For example, the main control 26 can monitors a number of system parameters such as: 1) dip application pressure; 2) water pressure; and 3) air pressure of one or more air supplies, and adjust these parameters by modifying operational controls or adjust one or more pressure regulators 68. The programmable device 21 is preferably an I/O 88 PCB circuit board used as an electronic monitoring device, but other types of devices can be used to accommodate particular dairy installations and needs. There can also be mounted on the main control an on/off switch, indicator lights, signal lights, sound alarms, key pads, other input devices, signaling devices and/or any other type of interactive device. Grommets for wire/cable connectors can be part of a housing for the programmable device 21, as well.
The dip application pressure should be kept relatively constant to maintain a consistent dipping process with minimum lag time, air bubbles, or other inconsistencies. Dip from dip supply 30 (not to scale in
Backflush fluids can be drawn from multiple sources including the backflush chemical container 28 which is not shown to scale, but is representative of a single chemical supply either premixed or concentrated, a liquid or solid chemical mixer, multiple chemical supplies or any other source of chemicals that may be desired for use in backflushing milker units. A backflushing flow or dosing meter and/or pump 53 is preferably used to mix a concentrate from chemical container 28 with water and to control flow of backflushing chemicals to the stall control or directly to a safety valve 60. When concentrates are used, mixing with water or other fluids can take place at or be controlled by the main control 26. Various types of mixing controls and vessels can be used, but a Dosatron, Model D25RE2 available from Dosatron International Inc. of Clearwater, Fla. 33765, U.S.A, is preferred. Appropriate filters, sensing devices, and sampling devices for all of the supplies can be used as well.
Air and water pressures should not be allowed to drift outside of predetermined ranges because insufficient air and water pressures can result in ineffective valve operations and inconsistent cleaning and/or teat dip application. If an unacceptable condition occurs, normal operation of the invention can be shut down and/or alarms can be initiated.
Air pressure is generated by one or more compressors (not illustrated) and regulated by a regulator 37, controlled by an air monitoring switch 45, and filtered by an air coalescing filter 47. The air supply 25 is set at an appropriate outlet pressure, preferably between about 50 to 70 psi, to operate related components. Optimum air pressure will depend on a number of factors, including the number of milker units 40 being served and hose length from the air compressor 28 to the milker units 40. More than one air supply line can be used and controlled by the main control 26.
Water inlet pressure can be generated by local sources or a pump used as part of the system 20. Water inlet pressure is monitored by switch 49 and be filtered. The water supply 29 can be any suitable source of water with temperatures, pH, and chemical properties that are compatible with the system 20 and related chemical solutions such as teat dip concentrates, backflushing chemical concentrates, or simply as a final rinse of milker units 40 after a backflushing operation. A conditioning system (not illustrated) can be included if the pH or other properties of the local water source is incompatible with the necessary chemical solutions and/or to minimize corrosion of system components.
In a preferred embodiment, one dip line, one water line and one backflush solution line extend between the main control 26 and the stall control 36 and can be combined as depicted with the hose combination such as the hose combination 38 illustrated in
A liquid level assembly 57 is preferably used for the dip and backflush solution supply drums to provide information to the main control 26 regarding status of liquid levels. The assembly 57 preferably includes a draw tube 59 with inlet screen/filter, a standard drum interface connector, and a reed switch 61. The reed switch 61 provides a signal to the main control 26 and to parlor management software, if desired, indicating when the supply drum is nearly empty. An example of such an assembly is illustrated in the drum 30 in
The pipelines and hoses 32 are sized and configured to meet the requirements of individual dairy harvesting facility. They may be routed together through the conduit 31 for protection and efficiency and to accommodate the pass through supplies described above. The conduit 31 can be plastic, such as PVC, metal or other suitable material.
A stall control 36 is dedicated to each milking stall (See
The stall control 36 is responsible for initiating a teat dip application and/or backflushing at the end of milking. Other milking operations can also be controlled at each stall control 36. Electrical power is supplied through a separate conduit (not illustrated).
Preferably, the electronic control 80 includes a protective housing or cabinet and a stall control card 86 such as a programmable circuit board (“PCB”) for storing control parameters, monitoring, and signaling is provided. A suitable control card 86 is an I/O 88 PCB circuit board. Other types of programmable controls can also be used. The stall control 36 preferably includes an interface for a computer 55 or other programming device, sensors or monitoring devices. The computer 55 can also be used to program and monitor data from the main control 26. The electronic control 80 can also include grommets for connecting wires and cables, and it can include signaling lights, key pads, or other interactive components.
Referring to
The stall control 36 illustrated in
Further, some variables can be adjusted to customize the sequence based on particular equipment or operation needs, however all stalls are preferably set similarly within any particular operation to ensure uniform treatment of all milker units 40 and all dairy animals. Variables such as hose size, hose length, distance of stalls from the main control 26, dip types, individual animal needs, condition of the equipment, ambient conditions, and many other variables can be considered and programmed into the electronic control 80 to provide consistent operation and optimum dairy animal health. Further, monitoring devices can be used at various points in the system 20 to signal the stall control cards 86 to adjust appropriate parameters. “Fuzzy logic” controllers can be used to continually adjust parameters as conditions change in a dairy and/or with the dairy animals.
The valve block 610, programmable device 86, and the adjustable dosing valve 84 ensure that equal and consistent amounts of backflush fluids and dip are used in each operational cycle. The manifold 540 is attached to a milker unit 40 and is desirable to ensure that each dose of dip is divided equally for each animal teat.
The stall control 36 controls delivery of air, water, and chemicals to the milker unit 40 through a hose or hoses 38. These hoses 38 are of any suitable size and length and are preferably made of a material that is suitable for use in a harsh dairy environment, yet flexible enough to not influence the milker unit 40 while on a dairy animal. Using combined hoses 38 minimizes the number of hose assemblies necessary to operate the system and facilitates a flexible bundling of hoses. A notch can be made in a hose bundle web for joining of all hoses using a standard plastic tie or other suitable means in an organized yet flexible way. Further, the hoses 38 are preferably arranged next to a long milk tube 41 through which milk flows from the milker unit 40 to the dairy harvesting facilities main milk lines. This arrangement reduces the chances of the hose 38 from being damaged by a dairy animal and it makes attachment of the milker unit 40 easier because the hoses 38 will not interfere a with an operator's movements.
The stall control 36 can be equipped with a manual ON/OFF-Reset switch 99 which can shut down the dipping and/or backflush processes for a given stall in case of problem. Power for the stall control 36 can be wired directly from a source or be relayed from the main control 26.
The housing 613 is preferably oriented vertically, as depicted, to provide drainage of fluids through a drain 634 (
The valve block housing 613 includes several pass-through inlets 614 though which air, water or backflushing fluids flow. Pass though inlets 614 are used so that a number of valve blocks can be arranged in series and supplied with air, water, or backflushing fluids from a common source. Other arrangements can be used, but arranging valve blocks in series requires fewer hoses for air, water, and backflushing fluids and less demand on pumps and other supply components. Flow through the pass through inlets 614 can be in either direction to accommodate a variety of dairy layouts.
Most of the pass-through inlets 614 communicate with a corresponding and dedicated block inlet 614a that is controlled by its respective valve to permit entry of a predetermined fluid into a chamber 619 through conduits 614b. One exception is the pass through inlet 614 for the second air valve 612, which communicates with the lower bell portion 625 of the axial chamber 619 at a position under the spool 621 via passages 635a and 635b so that pressurized air can force the spool 621 into the backflushing position (
Preferably, the valve block 610 includes five valves, as depicted in
All valves are preferably solenoid valves, including the third air valve 620, which is preferably a pilot operated valve that ensures air flow for backflush slugging. Also preferably, the backflush valve 624 is made of stainless steel or other material that resists corrosion from the backflushing fluids. For ease of reference, each valve is joined to the valve block 610 at a seat and each seat is designated in
The first air valve 611 is reserved for only operating the safety valve 60 only to help ensure complete, independent, and safe operation of the safety valve 60. The first air valve 611 operates independently from the other backflush valves on the valve block 610 because the safety valve 60 must operate during dipping operations, and before and during backflushing operations. The independent operation also avoids pressure fluctuations that could result in from sharing air supply pressure with other system components. The air from air valve 611 exits the valve block 610 through a separate outlet 615 for this reason. The first air valve 611 could be separate from the valve block 610 and mounted elsewhere in the system because it does not use the common outlet 637. Nonetheless, the valve block 610 provides a convenient mounting location and helps keep all of the hoses for the pass-through inlets 614 organized.
The second air valve 612 supplies air to the dosing valve 84 (described below) through an outlet 617. The air inlet 614a preferably receives air from the same air source that supplies valve 611 and the safety valve 60. Air from this air supply can be supplied through suitable hoses, conduits, or the like. A single air supply for the safety valve 60, the valve block 610, and the dosing valve 84 is adequate because of the low air pressure demands of these devices.
The spool 621 (
A valve block spring 630 biases the spool 621 toward the milking position (
In the milking position (
The valve block 610 is preferably controlled by the stall control 36 to move to the backflushing position after the dipping operation. In the backflushing position (
The inlets for the air valve 620, the water valve 622, and the backflushing fluid valve 624 all communicate with the axial chamber 619 through inlets 614a, so that all of these fluids can flow through the axial chamber 619 and out of common outlet 637 when their respective valves are opened and the spool 621 is in the backflushing position. The fluids do not typically flow together, instead the various valves fire in a predetermined sequence to supply air, water or backflushing fluid at the specific time needed by the safety valve 60, as described below. All hose connections to the valve block 610 and other components of the system 20 can be made with any suitable connection, including a John Guest fitting, as depicted in outlet 617.
When the system 20 includes a teat dipping option, it is preferred that one or more dosing valves 84 be used at each stall.
Further, more than one dosing valve 84 can be used to apply different dips, dip concentrations, medicaments, and the like to individual teats. When this latter option is desired, the various controls, especially the stall control 36, can receive cow identification information from automated cow identification systems, and provide specialized teat dip applications to individual animals.
The dosing valve 84 includes a housing 432, a dip inlet 434, a dip feed 436, a dip outlet 438, a chamber adjustment mechanism 440, a solenoid valve 444, and an air chase outlet 446. The dosing valve 84 operates electronically and pneumatically. The housing 432 is preferably made of a translucent plastic material such as Radel R5000 or any FDA approved material, so that visual confirmation of the adjustment mechanism 440 position, the presence or absence of teat dip, and maintenance are all simplified.
The housing 432 defines a chamber 450 (
The dip inlet 434 is connected via a hose (not illustrated) to a pressurized source of dip at the main control panel 26. The dip outlet 438 is connected to the safety valve 60 via a hose or other suitable device. The housing 432 also defines a vent hole 439, to vent air as dip enters the chamber 450 and to prevent air from getting into dip in case an internal seal leaks, which would reduce the volume of dip delivered to teats.
The dip feed 436 is connected via a hose to an adjacent stall's dosing valve 84, so that the dosing valves 84 are arranged in series to receive pressurized dip from the main control 26. Such an arrangement reduces the number and lengths of dip hoses from the main control 26, and between stall controls 36.
The chamber adjustment mechanism 440 preferably includes a screw housing 458, a threaded shaft 460, a shaft head portion 462
The screw housing 458 has a u-shaped portion 467 (
The housing 432 rim 468 is inserted laterally into a back side of the screw housing 458 so that the dosing valve 84 is unable to become disconnected when the screw housing 458 is mounted to a support surface with screws. Additionally, the threaded shaft 460 itself acts to prevent disconnection because the two housings are unable to move laterally relative to one another when the threaded shaft 460 extends into the chamber 450.
A lower end of the threaded shaft 460 is formed with or joined to the head portion 462. The head portion 462 is preferably sized to mate with the chamber 450. A seal 464 is used to substantially seal an annular surface of the head portion 462 with the housing chamber 450. The seal is preferably a u-cup seal.
The threaded shaft 460 includes exterior threads that mate with interior threads in the screw housing 458. The exterior threads 480 are preferably discontinuous 480 to reduce tooling cost. The threaded shaft 460 also includes an upper knurled portion 482 to facilitate manual adjustment even when the operator is wearing gloves or the surfaces are wet. The knurl 482 also connects to an air line used to operate the dosage valve 84 to push a spool-shaped piston 500 down and the dip out of the dosing valve 84.
As illustrated in
To apply dip, pressurized air is fed from the second air valve 612 in the valve block 610 (
When the spool 500 reaches the bottom of the chamber 450, the dosing valve is in a “the dip empty” position. With the spool piston 500 in this position, the air chase outlet 446 is no longer blocked, and pressurized air that moved the spool 500 now exits the chamber 450 through the chase outlet 446 and moves through a hose, and enters the safety valve 60 to provide an air chase for the dip moving from the safety valve 60 to the milker unit. Thus, the same source of pressurized air used to feed a pressurized volume of dip also, in precise sequence, provides a desired air chase for that dip without using controllers, extra valves or other devices.
After an appropriate air chase interval, the solenoid valve 444 operates to allow dip to flow through the dip feed inlet 436 to fill the chamber 450 and push the spool-shaped piston 500 to a “dip ready” position (
In the overall system of the present invention, other forms of dosing valve mechanisms can be used, and dosing valves are not absolutely necessary. Nonetheless, the above-described dosing valve 84 is particularly effective, simple, and reliable for providing a consistent amount of dip and chase air in a timely fashion.
As stated above, automatic teat dip applicator installations preferably include one set (or bundle) of four hoses 38 (
A teat dip hose 140 provides dip to the milker unit 40 and a second small tube 143 for providing a fluid “dip chase” that is preferably air. As stated above, the dip chase 143 reduces the amount of dip required and more completely utilizes the dip required for each milking because once the dosing valve 84 has pushed the dip to the safety valve 60 and on to the liner 50, any dip that remains in the hose between the safety valve 60 and the liner 50 would otherwise be flushed and wasted in the backflush process. The teat dip hose 140 is preferably emptied before milking to prevent any residual dip from getting into the milk.
As depicted in
In
The safety valve 60 of the present invention is situated on or near a milker unit to seal and protect downstream dairy milk lines from teat dip and cleaning fluids that are fed through the safety valve to upstream milker unit components. All of the fluids, including dip, cleansers, water, and air pass through the safety valve 60.
The safety valve 60 has a housing with various inlets, outlets, and vents through which the fluids flow. These fluid flows are controlled by several moving parts including two pistons and a connector between the two pistons, all of which are moved by springs and an air-actuated operation plate. A set of three umbrella valves is also used inside the housing to control the flow of some of the fluids. A number of special seal and vent arrangements are used in the housing to prevent unwanted seepage of fluids through the safety valve.
The milker unit safety valve 60 is placed at or near the downstream end of the milker unit 40, milk remaining in the long milk tube will not be flushed.
In new milker units 40, the safety valve 60 can be joined to or molded integrally with the milker unit collection bowl so that the backflushing operation flushes out the milker unit 40 including the collection bowl 44, the short milk tubes 46, and the liners 50. (
Short milk tubes 46 are also flushed and they can be of any design because none of the system 20 components connects to or passes through the short milk tubes 46. Nonetheless, the backflushing operation begins downstream from the short milk tubes 46, so any milk or other material in the short milk tubes 46 will be cleaned out in the backflushing operation.
The safety valve 60 is depicted separate from any milker unit in
The safety valve 60 must move between a milking position (
Due to pressure differentials between milk lines, backflush lines, dip lines, and atmospheric pressure, it is desirable to do more than simply seal such lines from the milk supply because fluids can seep or migrate past valves and seals when seals are used alone. With the present invention, the pressure differentials are avoided with vents exposed to atmospheric pressure to “bleed off” any pressure differential that may cause unwanted seepage past a seal. In this manner, pressures on each side of the safety valve 60 are isolated from one another and migration of chemicals, air, and other fluids into the milk supply is prevented.
Generally in the present invention, the vents that “bleed” the pressure differentials are disposed between pairs of seals. This arrangement results in a block at one seal, a bleed at the vent, and another block at the other seal for a “block-bleed-block” feature that prevents seepage and ensures safety of the milk supply from backflushing and dipping fluids.
As depicted in
Preferably, the lower housing 70, upper housing 74, and cap 76 are made of a translucent material such as Radel R5000 formulation poly-phenylsulfone material, or FDA and 3A approved material to provide for visual inspection without disassembly of the safety valve 60. Further, translucent materials provide visual indication of a leak and/or if the leaked material exits a vent. It is preferred that any leakage will exit a vent that an operator can see.
The lower housing 70 includes a milk inlet 62, a milk outlet 64, a pair of pulsation conduits 82, a pulsation outlet 83, and a hanger 66. The milk inlet 62 is sized and shaped as necessary to mate with and be secured by a screw 81 to a milker unit 40′s downstream outlet. Alternatively, the milk inlet 62 of the safety valve 60 can be connected to a short section of tube 61 (
It is noted that the terms “upstream” and “downstream” refer to the direction milk flows (right to left and identified as “M” in
The pulsation conduits 82 and outlets 83 mate with a pulsation port on the milker unit 40 to provide vacuum pulsation for the milking operation. This pass through of vacuum is not necessary in the
The lower housing 70 generally defines a chamber 90 that is preferably shaped as a cylindrical cavity, but other shapes could be used to ensure proper arrangement of parts. Milk flows through a lowermost portion of the chamber 90 during a milking operation, from the milk inlet 62 to the milk outlet 64.
The lower housing 70 also defines one or more (preferably three laterally spaced apart) holes 92 to vent from the chamber 90 to atmosphere. The holes 92 should be large enough to ensure adequate drainage and venting. The holes 92 are depicted as being on a downstream side of the lower housing 70, but can be other places as well. Positioning the holes 92, as depicted, on the downstream side of the lower housing 70 prevents alignment with piston holes that are used to dispense backflushing fluids.
Disposed in the lowermost portion of the chamber 90 is a seal insert 94. (See
The upper ring-shaped portion 96 is disposed against an interior chamber 90 surface, and is preferably supported by a seat 102 f (
The lower u-shaped portion 98 of the seal insert 94 is disposed transversely to the flow of milk from the milk inlet 62 to the milk outlet 64. As best seen in
In addition, the use of seal flanges 104 and 106 as the only contact with the backflush piston 120 reduces sticking to one another in a way that would impede operation. Also, debris such as bedding material, dirt, and sand that moves through the milker unit 40 is less likely to prevent the backflush piston 120 forming a seal with the seal insert 94. It also provides clearance for the backflush piston 120 which helps reduce damage to the backflush piston 120.
The seal insert 94 is preferably secured to the lower housing 70 with a screw 109 and a reinforcing plate 110, which is preferably molded integrally with the seal insert 94.
Referring to
Essentially, the backflush piston 120 is used to divide the chamber 90 and seal the portion above from the portion below and to at least partially define a flow path for backflushing fluids into the milker unit 40. Also, the backflush piston 120 is in the backflushing position when applying teat dip and when backflushing, but not when the safety valve 60 is self-cleaning.
As best seen in
The exterior surface of the backflush piston 120 further includes two piston by-pass vents 134 on opposite sides of the backflush piston 120. The piston by-pass vents 134 are essentially indented portions arranged transversely to the milk flow path from the milk inlet 62 to the milk outlet 64, and are positioned high enough on the backflush piston 120 so that a lower portion of the backflush piston 120 can mate and seal with the upper ring-shaped portion 96 of the seal insert 94 when in the milking position, and mate and seal with upstream and downstream flanges 104 and 106 of the lower u-shaped portion of the seal insert 94. The by-pass vents 134 do not seal with the upper ring-shaped portion 96 when in the backflush piston 120 is in the backflush position. This arrangement provides a vent for the chamber 90 to bleed off differential pressure.
Next, the backflush piston 120 includes one or more (preferably two laterally spaced) holes 138 oriented radially to the backflush piston 120. The holes 138 are formed or machined into the backflush piston 120 so that they are directed toward the milk inlet 62 when the backflush piston 120 is in the backflushing (lowered) position (
As best seen in
Also formed on the interior surface of the backflush piston 120 are two pairs of longitudinally and inwardly extending key ribs 144 (
Disposed in the lower housing 70 chamber 90 between the seal insert's 94 interior surface and an underside of the flange 126 of the backflush piston 120, is a piston return spring 150. The piston return spring 150 acts between the flange 126 of the backflush piston 120 and the upper ring-shaped portion 96 of the seal insert 94. Preferably, a metal ring 152 is positioned between the piston return spring 150 and the top of the upper ring-shaped portion 96 of the seal insert 94 to transfer spring loads without undue pressure or abrasion on the seal insert 94.
The piston return spring 150 is arranged to bias the backflush piston 120 upward toward the milking position (
To compress the piston return spring 150 and move the backflush piston 120 toward the backflush position (
Also as stated, the backflush operation plate 230 transmits air pressure to the backflush piston 120, when the pressurized gas is vented or removed by the piston spring 150. One embodiment of a backflush operation plate 230 in accordance with the present invention is illustrated in
An outer u-cup seal 234 (
When in the milking position, pressurized air can flow from the air inlet 184 of the upper housing 74 to force the backflush operation plate 230 downward against the force of the piston return spring 150, and move the backflush piston 120 into the backflushing position (
A second embodiment of a backflush operation plate 230 is illustrated in
This embodiment of the backflush operation plate 230 includes integrally molded seals 235 and 237 around the outer annular surface and an integrally molded seal 239 and 241 around the inner annular surface. This design is less costly, requires fewer parts, and is easier to assemble and replace.
The upper seals 235 and 239 seal air pressure to move the backflush piston 120 into a backflush position. The lower seals 237 and 241 wipe dirt and debris from mating surfaces when moving to the backflushing position, and seal out water during a self-cleaning cycle.
Extending though the central opening 231 of the backflush operation plate 230, is a central shaft 198 of the upper housing 74 (described in detail below). Extending through the central shaft 162, is a connector 162 that engages the backflush piston 120 with the dip valve piston 268. As illustrated in
When pressurized air is applied to move the backflush piston 120 downward, the connector 160 is not pulled down because of their sliding relationship, as described above. Instead, the backflush operation plate 230 continues to move down even after the backflush piston 120 engages and slightly compresses the seal insert flanges 104 and 106 to close off the milk passage. This additional downward movement results in the backflush operation plate 230 engaging the tops 169 of the connector tabs 166 to force the connector 160 downward. When the connector 160 moves downward, the dip valve piston 268 is pulled down to open the dip valve piston 268 due to the fixed connection between the two to release dip.
The sequence of the differential movement between the backflush piston 120 and the dip valve piston 268 ensures that the backflush piston 120 has sealed off the milk line before any possibility of the dip valve piston 268 opening. In addition, the backflush piston 120 requires a relatively large movement to close off the milk passage, but the dip valve piston 268 needs to move only a relatively small amount to open. For example, the backflush piston 120 moves about 0.75 inches, and the dip valve piston 268 moves about 0.15 inches. This differential movement is not absolutely necessary, but it reduces the overall height of the safety valve 60, and provides to above-described safety factors.
The connector tabs 166 upper portions are spaced radially apart from the central shaft 198 so that when the connector 160 is in a milking position, the tabs 166 will not engage the central shaft 198 of the upper housing 74.
When dipping and backflushing operations are finished, air pressure applied to the backflush operation plate 230 is released, and the dip valve spring 326 (explained in more detail below) urges the dip valve piston 268 (upward as seen in the figures). Due to their sliding relationship, the connector 160 does not pull the backflush piston 120 back up. Instead, the sliding relationship between the connector 160 and the backflush piston 120 leaves only the piston return spring 150 to urge the backflushing piston 120 back to a milking position, and when the backflush piston 120 approaches the top of its movement, it can engage the connector 160 to provide a redundant force against the dip valve piston 268.
The central shaft 162 of the connector 160 defines a longitudinal channel 168 through which backflushing fluid flows down, into the backflush piston 120, and out the backflush piston 120 holes 138. A lower end of the longitudinal channel 168 also mates with the flow vanes 142 in the backflush piston 120 to define a backflush fluid conduit for flow efficiency.
The central shaft 162 also defines a slot 172 in an upper portion of the central shaft 162 through which cleaning fluid flows during backflushing and self-cleaning.
The connector 160 extends upward, out of the lower housing 70, and into the upper housing 74 for connection to components described below.
As depicted in
The air inlet 184 enters the upper housing 74 and turns downward (
Generally, the interior of the upper housing 74 defines a longitudinally extending air conduit in the hollow central shaft 198, a backflush chamber 200, a dip inlet chamber 204, and a dip outlet chamber 206. A transverse wall 210 divides the upper housing 74 and at least partially forms some of the chambers 200, 204, 206.
Like the lower housing 70, the upper housing 74 is preferably made of the same translucent plastic described above for the upper housing 74, and for the same reasons. The upper housing 74 is sized and shaped to mate with and be connected to the lower housing 70, preferably using screws 78, bolts, and/or bushings, but they can also be formed integrally with one another. A ring seal 214 is provided in an annular recess formed in the lower end of the upper housing 74 to seal the interface between the lower housing 70 and the upper housing 74.
As best seen in
As depicted in
The backflush inlet 186 extends radially inwardly to the upper housing 74 and communicates with the central shaft 198 and the longitudinal channel 168 in the connector 160 (see
As seen in
As described above, there is a backflush operation plate 230 that acts to move the backflush piston 120 down. The backflush operation plate 230 is disposed in the lower housing 70, but slides on the central shaft 198 of the upper housing 74 because the central shaft 198 extends downward into the lower housing 70.
Should the safety valve 60 only be used for backflushing or washing animal teats, there is only a need for the above-described items, and the cap 76 mates with the upper housing 74 and the safety valve 60 functions to seal and backflush the milker unit 40. If teat dip application functions are desired, the items described below are included.
When teat dipping is used as an option,
The backflush inlet 186, the dip inlet 188, and the second air inlet 185 are each closed with flexible valves 253a, 253b and 253c that are preferably an “umbrella valve” made of silicone, and connected together at 254 for ease of manufacture and installation. (See:
As depicted in
The top plate 262 and the top plate seal 264 are preferably formed together to reduce expense, avoid an assembly step, and to ensure alignment of the various holes. Alternatively, aligning these parts can be done with two seal alignment pins extending downward from the top plate 262 that are preferably of a different shape and/or orientation and/or spacing from one another and other functional components. Regardless of which method is used, the seals 324 and 325 must match with holes 288 and 289 in the bottom wall 273.
In the bottom wall 273 of the top plate 262 there is an upstream dip opening 288, a downstream dip opening 289, and a central opening 290 through which the connector 160 extends for connection to the dip valve piston 268.
Inside the cylindrical cup portion 272 of the top plate 262 and the top surface 294 of the bottom wall 273 defines a dip flow channel 296 with the bottom on the dip valve piston 268. An additional recess can be formed in any of these surfaces to help control dip flow, but the space between the dip valve piston 268 and the top surface 294 of the bottom wall 273 is adequate between 312 and top 262. The dip flow channel 296 can be any shape that provides efficient flow characteristics for dip, with the dip flow channel 296 extending between the dip openings 288 and 289. Dip flows up through the upstream dip opening 288, across and down through the downstream dip opening 289.
The dip valve piston 268 is depicted in
The central connector post 302 of the dip valve piston 268 is hollow and includes at its lower end a receptacle 316 that mates with the connector 160 preferably in a snap relationship. The receptacle 316 is open at one side and to receive the top end of the connector 160 by engaging a connector slot 318.
A dip valve spring 326 (
The backflush piston return spring 150 biases the backflush piston 120 upward and the dip valve spring 326 biases the dip valve piston 268 upward despite the use of the connector 160 joining these two pistons 150, 268. The force of two springs 150, 326 is not necessary to move the pistons 150, 268 upward, but they provide a redundancy that ensures safe operation of the safety valve 60.
The dip valve pins 304, 305 each include a stem 320 and a valve head 322. The valve heads 322 are sized and shaped to substantially close and seal the dip openings 288 and 289 (with seals 324 and 325) in the bottom wall 273 of the top plate 262 when the dip valve piston 268 is in the milking (or closed) position (
The dip openings 288 and 289 are sealed when the dip valve piston 268 is closed. On opposite sides of these seals, there may be differential pressures that could cause dip to seep past the seals 324 and 325. Accordingly, a vent between the dip openings 288 and 289 and seals 324 and 325 is provided for the desired block-bleed-block feature that ensures safe operation of the invention.
To provide a suitable vent, there is a skirt 277 extending downward from the bottom wall 273 of the top plate 262. The plate seal 264 is disposed within the skirt 277. Formed in both the plate seal 264 and/or the skirt 277 are two slotted vents 282 that extend radially outwardly and vent/bleed to atmosphere at vent holes 279. The slotted vents 282 and vent holes 279 are positioned between the upstream dip opening 288 and the downstream dip opening 289 to provide a block-bleed-block arrangement.
As seen in
When the dip valve piston 268 is in the dipping position (
The cap 76 of the safety valve 60 is best depicted in
The cap 76 also includes a pair of cap vents 334 that are formed by gaps 336 in the cap 76 and vent hoods 338. The vent hoods 338 extend downwardly from the cap 76 and ensure that the cap 76 is vented to atmospheric pressure.
A bottom edge 332 of the cap 76 rests on the top plate 262 of the dip safety valve 260 when present or onto the upper housing 74 when the dip safety valve 260 is not included. No seal is needed between the bottom edge 332 of the cap 76. The cap 76 preferably includes an interior key 339 (
As stated above, the safety valve 60 must move between a milking position (
As seen in
The bleed function in the milking position (
The first bleed path is illustrated in
As seen in
Between the upstream flange 104 and the downstream flange 106 is the web 108 of the seal insert 94. The web 108 is spaced apart from the lower surface of the backflush piston 120 to define part of a “bleed” path B3 (
The teat dip block-bleed-block function is performed by the upstream dip valve pin 304 in connection with a dip opening 288 in the top plate 262, and the corresponding dip hole seal 324 of the top plate seal 264. A second block is formed by the downstream dip valve pin 305 in connection with a dip opening 288 in the top plate 262 and the corresponding dip hole seal 324 of the top plate seal 264.
In this arrangement, there are at least two bleed paths. Bleed path B5 in
Another bleed path B6 (
Yet another bleed path is formed in the valve block housing 613 by the spool 621, so that differential pressure cannot pass the valves and into any of the feed lines to the safety valve 120.
When it is desired to apply teat dip, the dip safety valve 260 is operated by compressed gas such as air or other suitable fluid, mechanical device or electrical device to move the dip valve piston 268 downward against the force of the dip valve return spring 326 so that the dip valve pins 304 and 305 no longer seal the dip valve holes 288, 289.
As seen in
When backflushing fluid (such as wash chemicals, rinse chemicals, water, and/or air) are to be pumped from the safety valve 60 upstream into the milker unit 40, the following operation takes place. It should be understood that during a backflush operation, the milker unit 40 will not be upright as illustrated in most of the drawings. Instead, the milker unit 40 will be upside down or at some generally downward angle, and hanging from a detacher mechanism as in
Backflushing fluid enters the upper housing 74 backflush inlet 186, down through the central stem 168, down through the backflush piston 120, out of the holes 138 in the backflush piston 120 and “upstream” through the milk inlet 62 and into the milker unit 40. The safety valve components as described define a backflush fluid conduit extending through the safety valve 60 between the backflush fluid inlet 186 and the milk inlet 62.
When desired to clean and rinse the safety valve 60, there can be alternating pulses of air and water for any desired number of sequences after the backflushing piston 120 returns to the milking position. Preferably, there are more than one pulse of both air and water to provide agitation, and efficient and thorough cleaning. Water used in rinsing the safety valve 60 also lubricates the seals for less friction and resistance in moving the various pistons and valves. For this reason, it is also desirable to wash or rinse the safety valve 60 prior to start-up.
Also, it is preferred to clean the safety valve 60 with the backflush piston 120 in its milking position because some milk may enter the bleed area next to the backflush piston 120 when the backflush piston 120 is in the upper position. This will clean backflush chemicals, teat dips, and residual milk from the safety valve 60.
This process is done automatically by blowing water and air through the safety valve 60 before attaching the milker unit 40 to another animal.
A teat dip manifold 170 is preferably included to separate the dip dose into four substantially equal quantities. The dip manifold 170 also isolates vacuum in each liner head 172 from vacuum in other liner heads 172 (See
Two manifold designs are shown in
The manifold 540 depicted in
The base 542 and cover 544 are preferably molded from plastic, but could be any suitable material. They are assembled by aligning the alignment pins 546 of the base 542 with recesses in the cover 544. The base 542 and the cover 544 are joined by welding, adhesive, or mechanical fastener.
As seen in
The alternate manifold channel 560 illustrated in
The base 542 further includes mounting tabs 564 (
The manifold 540 also includes the flexible bladder 554 made of silicone or other elastomer, and disposed between the base 542 and the cover 544 to seal the interface between the two, but to also serve as a check valve for individual outlets 550. The bladder 554 includes alignment holes 570 to ensure proper alignment with the base 542 and cover 544 during assembly, and is joined to the base 542 with screws 545 or other suitable fasteners.
The bladder 554 includes flexible vacuum isolation diaphragm seals 576 each of which is disposed in the channel 550 adjacent to a corresponding outlet 550 so that flow through the outlet 550 is possible in only one direction. This arrangement of bladder vacuum isolation diaphragm seals 576 adjacent to the outlets 550 blocks pressure differentials in individual dip outlets 550 from adversely affecting dip flow through other dip channels 550.
The manifold 540 depicted in
Each of the two vacuum isolation diaphragm seals 576 includes a pair of dip outlets to prevent pressure differentials between pairs of dip outlets 550 from affecting dip flow through neighboring pairs of dip outlets 550.
Dip flows into the manifold 540, through the inlet 552, the manifold channel 560, and urges the diaphragm seals 576 upward against their natural bias toward a closed position. Once the diaphragm seals 576 are open, dip flows out individual outlets 550.
The base dip inlet 552, preferably has joined to or molded integrally with it, a widened portion 580 to provide a gripping surface when attaching and detaching a hose, for example.
Illustrated in
Illustrated in
Depicted in
The shell 702 is a simple tube. The only welding will be to tack weld the dip delivery channel 708 onto the inside, as illustrated or outside in an alternate embodiment described below. The dip delivery channel is well protected from top to bottom, making the teat cup assembly 700 very robust. The dip channel 708 connects a liner fitting 720 to transmit dip to an internal dome in the liner. In
Positive keying of the liner 704 to the shell 702 is provided by two slots 712 and 714, one for the dip tube connection and one to force proper alignment, enabling the dip channel 708 connection. Additional holes 716 will be used as snaps to help hold the liner head 722 onto the shell 702 as cows may step on it.
A nipple 730 on the bottom of the shell 702 connects to a dip delivery tube or a connection using individual fittings pressed into bosses within the TPR can be used to provide flexibility from cow abuse with reduced breakage. The shell 702 is snapped into the cap 734 to provide a solid one-piece feel, making liner 704 change as easy as with a single piece shell 702.
With the dip channel 708 on the inside, a triangular, square or manipulated round liner is preferred, so the liner 704 will not collapse and contact the internal dip channel 708.
As stated earlier, preferred shell liners for use in the present invention are disclosed in U.S. application Ser. No. 12/215,706, which is incorporated herein by reference.
In
The liner 920 is sized and shaped to fit into a conventional outer shell or “teat cup” (not illustrated) so that the top of the teat cup fits in the recess 927 between the skirt 924 and the barrel 926, but other shell types and alignment aids can be used. This relationship secures the liner 920 to the teat cup and forms a seal for the vacuum. The liner barrel 926 may have any cross-sectional shape including round, triangular, and square, or any other shape. Alternatively, a liner can comprise a separate dome and barrel that are connected to each other directly or indirectly using a teat cup or the other suitable device. The present invention is directed to a dome 922 having an inner surface to which flow diverters are joined regardless of the type, size, or shape of barrel. The liner 920 can be made of rubber, silicone, or other suitable materials.
The delivery channel 928 can be formed integrally with the other liner components or attached after the liner 920 is formed. The delivery channel 928 may be any of the design types described above, or it can be a separate component so long as it is attached to the liner 920 to act as a conduit for teat dip or cleaning fluids being introduced into the dome 930 from the safety valve 60.
The liner dome 930 further includes a teat dip distribution structure having an inlet 966 (not depicted in
The inlet 966 can also be a simple opening in the dome 930, and a delivery tube may be used in combination with the inlet 966 so that the delivery tube defines the flow characteristics or a valve and the inlet 966 simply provides an opening through which teat dip passes into the dome 930. Regardless of its shape or size, the inlet 966 is preferably joined to the dome 922 by being formed integrally in the liner dome 922, but the inlet 966 can be joined to the dome 922 in any other suitable manner.
The inlet 966 is connected via the delivery channel 928 to a teat dip source and/or a backflushing source (not illustrated). In this manner, teat dip 967 (
If left to flow directly toward a teat, most of the dip would be applied to the side of the teat closest to the inlet 966, with some flow possibly reaching other sides of the teat if the dosage quantity is high enough. It is unlikely in practice that dip would reach all teat sides and even less likely that teat dip application would be uniform as preferred.
To redirect the inward and radial flow, the flow bifurcating vane 942 is disposed adjacent to the inlet 966 and in a flow path defined by the inlet 966. The flow bifurcating vane 942 is shaped to split and redirect the upward flow from the inlet 966 into a substantially annular flow path or pattern around the periphery of the dome inner surface 902. As depicted, the flow bifurcating vane 942 splits the flow substantially evenly in each direction to define a pair of flow paths, but if other inlets are used or other conditions warrant, the flow could be split in other proportions or simply redirected in a desired flow path.
The inlet 966 preferably defines two ramped and arcuate surfaces 920 on which the teat dip flows as it is being redirected. In this embodiment, a raised central portion 922 is used to confine the flow so that teat dip is not flowing directly toward the teat. In alternate embodiments, it is possible to permit some of the flow to be applied directly to the teat without being substantially redirected. In such embodiments, the central portion 922 may include openings, slots or ramps through or over which teat dip can flow. It is even permissible for some of the dip to flow over the bifurcating vane 912 and directly toward the teat. Further, the arcuate surfaces 950 can be shaped so that teat dip flow is not directed around the periphery, but instead through a flow pattern or radius that is smaller than the dome chamber's 902 periphery.
The flow ridges 954 preferably have arcuate shapes and contact surfaces that are joined to the inner surface 902 of the dome 930 and arranged in the flow path. The flow ridges 954 are shaped and sized to redirect the peripheral teat dip flow inward toward a cow's teat. In a preferred embodiment, the flow ridges 954 have a height dimension that redirects all the teat dip flowing from the flow bifurcating vane 942. In alternate embodiments, the height of the flow ridges 954 could be reduced to permit some of the flow to by-pass the flow ridges 954 and flow to the part of the inner surface 902 opposite the flow bifurcating vane 912 or to other flow diverters (as described below). Further, the flow ridges 914 are depicted as being symmetrical, but they could be different sizes, shapes, positions, or orientations to provide asymmetric flow, if desired.
Most types of teat dip that would be flowing through the dome 930 have an inherent surface tension that helps establish a desired flow characteristic by remaining adjacent to the dome 930 surface and to the cow's teat so that the dip will cover areas of the teat that are not in the direct flow path defined by the flow diverters.
The flow diverters of the present invention are joined to the inner surface of the dome by being molded integrally with the dome, or they may be joined to the inner surface of the dome with glue or any other suitable means.
Illustrated in
The liner barrel 780 in
Preferably, the difference in wall thickness for the two portions 786, 788 is only from about 0.005 inches to about 0.010 inches, and is created by increasing thickness at portion 788. An elliptically machined mold can be used to create this difference.
The present invention can have many benefits, including but not limited to, one or more of the following: automate the dipping process to increase operator efficiency and reduce operator fatigue; provide safe, individual disinfection of the teats to reduce pathogenic organisms on the teat; prevent transfer of infection from animal to animal, and thus improvement of udder health of the entire herd; reduce or minimize chemical consumption (as opposed to spray or other automated dipping systems); improve uniformity of teat dip application; prevent chemical contamination of the milk and of the downstream milk system lines; reduce water consumption during backflushing of the milker unit; and be retrofitted to nearly any available milking unit.
The above detailed description is provided for understanding the embodiments described and, unless otherwise stated, is not intended to limit the following claims.
This application is a divisional of U.S. application Ser. No. 15/887,573 filed Feb. 2, 2018, which is a divisional of U.S. application Ser. No. 15/366,858 filed Dec. 1, 2016, issued Feb. 6, 2018 under U.S. Pat. No. 9,883,652, which is a divisional of U.S. application Ser. No. 14/588,094 filed Dec. 31, 2014, issued Dec. 6, 2016 under U.S. Pat. No. 9,510,556, which is a divisional of U.S. application Ser. No. 13/269,835 filed Oct. 10, 2011 issued Jul. 7, 2015 under U.S. Pat. No. 9,072,273, which is a continuation of U.S. application Ser. No. 12/584,475 filed Sep. 4, 2009 issued Oct. 11, 2011 under U.S. Pat. No. 8,033,247, is incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1365665 | Davies | Jan 1921 | A |
2012031 | Woodruff | Aug 1935 | A |
2532088 | Cordis | Nov 1950 | A |
2747544 | Thomas | May 1956 | A |
3014455 | Olander | Dec 1961 | A |
3099246 | Beskow | Jul 1963 | A |
3119401 | Merritt et al. | Jan 1964 | A |
3285297 | Duft et al. | Nov 1966 | A |
3417763 | Fjermestad et al. | Dec 1968 | A |
3461845 | Peterson | Aug 1969 | A |
3474760 | Siddall et al. | Oct 1969 | A |
3482547 | Maier | Dec 1969 | A |
3500839 | Bender | Mar 1970 | A |
3630081 | Nelson | Dec 1971 | A |
3648696 | Keith | Mar 1972 | A |
3688783 | Owens | Sep 1972 | A |
3696790 | Albright | Oct 1972 | A |
3713423 | Sparr, Sr. | Jan 1973 | A |
3726253 | Duncan | Apr 1973 | A |
3762371 | Quayle et al. | Oct 1973 | A |
3789798 | Reisgies et al. | Feb 1974 | A |
3797525 | Lieser | Mar 1974 | A |
3861335 | Przewalski | Jan 1975 | A |
3861355 | Johnson et al. | Jan 1975 | A |
3957018 | Barrett | May 1976 | A |
3971512 | Duncan | Jul 1976 | A |
3973520 | Flocchini | Aug 1976 | A |
3989009 | Robar et al. | Nov 1976 | A |
4034714 | Umbaugh et al. | Jul 1977 | A |
4061504 | Zall et al. | Dec 1977 | A |
4149489 | Umbaugh et al. | Apr 1979 | A |
4168677 | Brown | Sep 1979 | A |
4175514 | Souza et al. | Nov 1979 | A |
4177760 | Slater | Dec 1979 | A |
4222346 | Reisgies | Sep 1980 | A |
4253421 | Slater et al. | Mar 1981 | A |
4254754 | Takada et al. | Mar 1981 | A |
4295490 | Boudreau | Oct 1981 | A |
4305346 | Sparr, Sr. | Dec 1981 | A |
4332215 | Larson | Jun 1982 | A |
4333387 | Seitz | Jun 1982 | A |
4333421 | Schluckbier | Jun 1982 | A |
4344385 | Swanson et al. | Aug 1982 | A |
4372345 | Menus | Feb 1983 | A |
4378757 | Hamann | Apr 1983 | A |
4393811 | Bodmin | Jul 1983 | A |
4395971 | Happel et al. | Aug 1983 | A |
4403568 | Fukuhara et al. | Sep 1983 | A |
4403569 | Benneii | Sep 1983 | A |
4459938 | Noorlander | Jul 1984 | A |
4462425 | Mehus | Jul 1984 | A |
4485762 | Sutton et al. | Dec 1984 | A |
4498419 | Flocchini | Feb 1985 | A |
4516530 | Reisgies | May 1985 | A |
4572105 | Chowdhury et al. | Feb 1986 | A |
4586462 | Icking | May 1986 | A |
4593649 | Britten | Jun 1986 | A |
4903639 | Kessel | Feb 1990 | A |
4907535 | Matsuzawa et al. | Mar 1990 | A |
4924809 | Verbrugge | May 1990 | A |
4936254 | Marshall | Jun 1990 | A |
5052341 | Woolford et al. | Oct 1991 | A |
5101770 | Stevenson | Apr 1992 | A |
5134967 | Marshall | Aug 1992 | A |
5161482 | Griffin | Nov 1992 | A |
5166313 | Archibald et al. | Nov 1992 | A |
5167201 | Peles | Dec 1992 | A |
5178095 | Mein | Jan 1993 | A |
5218924 | Thompson et al. | Jun 1993 | A |
5255628 | Kristoffer | Oct 1993 | A |
5379722 | Larson | Jan 1995 | A |
5386799 | Dietrich | Feb 1995 | A |
5390627 | van der Berg et al. | Feb 1995 | A |
5403005 | Avila-Valdez | Apr 1995 | A |
5493995 | Chowdhury | Feb 1996 | A |
5568788 | van den Berg et al. | Oct 1996 | A |
5572947 | Larson et al. | Nov 1996 | A |
5673650 | Mottram et al. | Oct 1997 | A |
5697325 | Gehm et al. | Dec 1997 | A |
5722343 | Aurik et al. | Mar 1998 | A |
5769025 | van der Lely et al. | Jun 1998 | A |
5778820 | van der Lely et al. | Jul 1998 | A |
5850845 | Pereira | Dec 1998 | A |
5881669 | van den Berg et al. | Mar 1999 | A |
5896828 | Kronschnabel et al. | Apr 1999 | A |
5909716 | van der Lely | Jun 1999 | A |
5934220 | Hall et al. | Aug 1999 | A |
5957081 | van der Lely et al. | Sep 1999 | A |
5960736 | Ludington et al. | Oct 1999 | A |
5992347 | Innings et al. | Nov 1999 | A |
6009833 | van der Lely | Jan 2000 | A |
6079359 | van den Berg | Jun 2000 | A |
6089242 | Buck | Jul 2000 | A |
6098570 | Aurik et al. | Aug 2000 | A |
6202593 | Maier et al. | Mar 2001 | B1 |
6234110 | Xavier | May 2001 | B1 |
6244215 | Oosterling | Jun 2001 | B1 |
6267077 | van den Berg et al. | Jul 2001 | B1 |
6276297 | van den Berg et al. | Aug 2001 | B1 |
6308655 | Oosterling | Oct 2001 | B1 |
6318299 | Birk | Nov 2001 | B1 |
6321682 | Eriksson et al. | Nov 2001 | B1 |
6367416 | van der Lely | Apr 2002 | B1 |
6371046 | Petterson et al. | Apr 2002 | B1 |
6435132 | Milbrath et al. | Aug 2002 | B1 |
6546893 | Happel et al. | Apr 2003 | B1 |
6550420 | Bjork | Apr 2003 | B1 |
6561126 | Forsen et al. | May 2003 | B2 |
6584930 | Buecker | Jul 2003 | B2 |
6591784 | Eriksson | Jul 2003 | B1 |
6598560 | van den Berg | Jul 2003 | B1 |
6619227 | Berger et al. | Sep 2003 | B1 |
6626130 | Eriksson | Sep 2003 | B1 |
6644240 | Dietrich | Nov 2003 | B1 |
6752102 | Dahl et al. | Jun 2004 | B2 |
6755153 | Chowdhury | Jun 2004 | B1 |
6935270 | Wipperfurth et al. | Aug 2005 | B2 |
6997135 | Dewaard | Feb 2006 | B1 |
6997136 | Coates | Feb 2006 | B1 |
7036981 | Veenstra et al. | May 2006 | B2 |
7128020 | Björk et al. | Oct 2006 | B2 |
7143718 | Bosma et al. | Dec 2006 | B2 |
7162970 | Maier, Jr. | Jan 2007 | B2 |
7174848 | Brown et al. | Feb 2007 | B2 |
7178480 | Dahl et al. | Feb 2007 | B2 |
7237694 | Freudinger | Jul 2007 | B2 |
7263948 | Ericsson et al. | Sep 2007 | B2 |
7281493 | Dietrich | Oct 2007 | B2 |
7290497 | Rottier et al. | Nov 2007 | B2 |
7299766 | van den Berg et al. | Nov 2007 | B2 |
7350478 | Fernandez | Apr 2008 | B2 |
7377232 | Holmgren et al. | May 2008 | B2 |
7401573 | Torgerson | Jul 2008 | B2 |
7412943 | Ericsson et al. | Aug 2008 | B2 |
7484474 | van den Berg et al. | Feb 2009 | B2 |
7536975 | Denes | May 2009 | B2 |
7575022 | Higgins | Aug 2009 | B2 |
7578260 | Shin | Aug 2009 | B2 |
7707966 | Torgerson et al. | May 2010 | B2 |
7765951 | Dietrich | Aug 2010 | B2 |
7793614 | Ericsson et al. | Sep 2010 | B2 |
7926449 | Stellnert et al. | Apr 2011 | B2 |
7963249 | Duke | Jun 2011 | B2 |
8025029 | Torgerson et al. | Sep 2011 | B2 |
8033247 | Torgerson et al. | Oct 2011 | B2 |
8117989 | Forgerson et al. | Feb 2012 | B2 |
8210123 | Duke | Jul 2012 | B2 |
8240272 | Duke | Aug 2012 | B2 |
8342125 | Forgerson et al. | Jan 2013 | B2 |
8590486 | Forgerson et al. | Nov 2013 | B2 |
8677937 | Shin | Mar 2014 | B2 |
8770146 | Buck et al. | Jul 2014 | B2 |
8925483 | Torgerson et al. | Jan 2015 | B2 |
8991335 | Torgerson et al. | Mar 2015 | B2 |
9016238 | Duke | Apr 2015 | B2 |
9049835 | Duke | Jun 2015 | B2 |
9072272 | Bosma et al. | Jul 2015 | B2 |
9072273 | Torgerson et al. | Jul 2015 | B2 |
9332726 | Bosma et al. | May 2016 | B2 |
9468189 | Torgerson et al. | Oct 2016 | B2 |
9468190 | Duke | Oct 2016 | B2 |
9510556 | Torgerson et al. | Dec 2016 | B2 |
9526224 | Balkenhol et al. | Dec 2016 | B2 |
9545079 | Torgerson et al. | Jan 2017 | B2 |
9686958 | Sellner et al. | Jun 2017 | B2 |
9763421 | Torgerson et al. | Sep 2017 | B2 |
9770006 | Torgerson et al. | Sep 2017 | B2 |
9883652 | Torgerson et al. | Feb 2018 | B2 |
9930862 | Torgerson et al. | Apr 2018 | B2 |
10123506 | Bosma | Nov 2018 | B2 |
10426128 | Balkenhol et al. | Oct 2019 | B2 |
10499610 | Torgerson et al. | Dec 2019 | B2 |
10502330 | Balkenhol | Dec 2019 | B2 |
10514316 | Enicki | Dec 2019 | B2 |
10681895 | Sellner et al. | Jun 2020 | B2 |
20020185071 | Guo | Dec 2002 | A1 |
20030226520 | Dietrich | Dec 2003 | A1 |
20040089242 | Verstege et al. | May 2004 | A1 |
20040231603 | Bjork et al. | Nov 2004 | A1 |
20050274327 | Johnsson et al. | Dec 2005 | A1 |
20060016399 | Torgerson | Jan 2006 | A1 |
20060037542 | Denes | Feb 2006 | A1 |
20060049212 | Freudinger | Mar 2006 | A1 |
20060112887 | Brown | Jun 2006 | A1 |
20070070803 | Urquhart | Mar 2007 | A1 |
20070157887 | Fernandez | Jul 2007 | A1 |
20070186860 | Dietrich | Aug 2007 | A1 |
20070215053 | Duke | Sep 2007 | A1 |
20070277737 | Maier et al. | Dec 2007 | A1 |
20080022932 | Rottier et al. | Jan 2008 | A1 |
20080202433 | Duke | Aug 2008 | A1 |
20080276871 | Auburger et al. | Nov 2008 | A1 |
20080314322 | Stellnert et al. | Dec 2008 | A1 |
20090050061 | Duke | Feb 2009 | A1 |
20090050062 | Auburger et al. | Feb 2009 | A1 |
20090064937 | Rottier et al. | Mar 2009 | A1 |
20090151641 | Schulze Wartenhorst et al. | Jun 2009 | A1 |
20090165724 | Mader et al. | Jul 2009 | A1 |
20090320760 | Torgerson et al. | Dec 2009 | A1 |
20100132626 | Torgerson et al. | Jun 2010 | A1 |
20100154900 | Torgerson et al. | Jun 2010 | A1 |
20100236487 | Stellnert et al. | Sep 2010 | A1 |
20100326360 | Duke et al. | Dec 2010 | A1 |
20110220028 | Duke | Sep 2011 | A1 |
20110220160 | Bosma | Sep 2011 | A1 |
20110232575 | Duke | Sep 2011 | A1 |
20120017836 | Torgerson et al. | Jan 2012 | A1 |
20120111275 | Torgerson et al. | May 2012 | A1 |
20120118237 | Torgerson et al. | May 2012 | A1 |
20120118238 | Torgerson et al. | May 2012 | A1 |
20120272911 | Duke | Nov 2012 | A1 |
20130199449 | Daniel | Aug 2013 | A1 |
20140283751 | Buck et al. | Sep 2014 | A1 |
20150173320 | Balkenhol et al. | Jun 2015 | A1 |
20150201577 | Duke | Jul 2015 | A1 |
20150260302 | Peterson et al. | Sep 2015 | A1 |
20160319947 | Balkenhol | Nov 2016 | A1 |
20170014837 | Duke | Jan 2017 | A1 |
20170164576 | Balkenhol et al. | Jun 2017 | A1 |
20170359995 | Sellner | Dec 2017 | A1 |
20180064056 | Torgerson et al. | Mar 2018 | A1 |
20180220616 | Torgerson et al. | Aug 2018 | A1 |
20190133067 | Stuessel | May 2019 | A1 |
20190133069 | Stuessel et al. | May 2019 | A1 |
20190145531 | Balkenhol et al. | May 2019 | A1 |
20200088310 | Balkenhol | Mar 2020 | A1 |
20200352129 | Torgerson et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
641229 | Sep 1993 | AU |
2013294747 | Nov 2016 | AU |
2015227478 | Jun 2018 | AU |
1801758 | Jun 1970 | DE |
1582939 | Jul 1970 | DE |
2622794 | Dec 1977 | DE |
3540058 | May 1987 | DE |
261300 | Oct 1988 | DE |
4006785 | Sep 1990 | DE |
10160161 | Jun 2003 | DE |
102013114595 | Jun 2015 | DE |
0277396 | Aug 1988 | EP |
0313109 | Apr 1989 | EP |
0319523 | Jun 1989 | EP |
0332235 | Sep 1989 | EP |
0459817 | Dec 1991 | EP |
0479397 | Apr 1992 | EP |
0527509 | Feb 1993 | EP |
0543463 | May 1993 | EP |
0583166 | Feb 1994 | EP |
0630557 | Dec 1994 | EP |
0728412 | Aug 1996 | EP |
0801893 | Oct 1997 | EP |
0945057 | Sep 1999 | EP |
1001199 | May 2000 | EP |
1219167 | Jul 2002 | EP |
1222853 | Jul 2002 | EP |
1089615 | Mar 2003 | EP |
1520469 | Apr 2005 | EP |
1543720 | Jun 2005 | EP |
1790217 | May 2007 | EP |
1795069 | Jun 2007 | EP |
1679956 | Dec 2008 | EP |
2113169 | Nov 2009 | EP |
1933616 | Jan 2011 | EP |
2277373 | Jan 2011 | EP |
1737291 | Nov 2013 | EP |
918766 | Feb 1963 | GB |
1160900 | Aug 1969 | GB |
1440901 | Jun 1976 | GB |
0324647.7 | Oct 2003 | GB |
0402119.2 | Jan 2004 | GB |
0408968.6 | Apr 2004 | GB |
0417392.8 | Apr 2004 | GB |
2002345955 | Dec 2002 | JP |
2002354958 | Dec 2002 | JP |
2005192404 | Jul 2005 | JP |
1016237 | Mar 2002 | NL |
1021950 | May 2004 | NL |
1676538 | Sep 1991 | SU |
199313651 | Jul 1993 | WO |
199828969 | Jul 1998 | WO |
199927775 | Jun 1999 | WO |
199946978 | Sep 1999 | WO |
199966767 | Dec 1999 | WO |
199966787 | Dec 1999 | WO |
0117337 | Mar 2001 | WO |
0117338 | Mar 2001 | WO |
0207506 | Jan 2002 | WO |
0223976 | Mar 2002 | WO |
03030630 | Apr 2003 | WO |
03077645 | Sep 2003 | WO |
03098998 | Dec 2003 | WO |
04032608 | Apr 2004 | WO |
2004030445 | Apr 2004 | WO |
05022986 | Mar 2005 | WO |
05043986 | May 2005 | WO |
05072516 | Aug 2005 | WO |
05102035 | Nov 2005 | WO |
2006029797 | Mar 2006 | WO |
2006091710 | Aug 2006 | WO |
2006110079 | Oct 2006 | WO |
2006117019 | Nov 2006 | WO |
2006135917 | Dec 2006 | WO |
200731783 | Mar 2007 | WO |
2007129884 | Nov 2007 | WO |
2007129888 | Nov 2007 | WO |
2008102567 | Aug 2008 | WO |
2008138862 | Nov 2008 | WO |
2009077607 | Jun 2009 | WO |
2009158000 | Dec 2009 | WO |
2010053577 | May 2010 | WO |
201128292 | Mar 2011 | WO |
201128293 | Mar 2011 | WO |
201128294 | Mar 2011 | WO |
2011102911 | Aug 2011 | WO |
2014016588 | Jan 2014 | WO |
2015118336 | Feb 2015 | WO |
2015145116 | Oct 2015 | WO |
2015150807 | Oct 2015 | WO |
2017191057 | Nov 2017 | WO |
2019090044 | May 2019 | WO |
2019090136 | May 2019 | WO |
Entry |
---|
“Grade A pasteurized milk ordinance” 2003 Revision; U.S. Department Health and Human Services, Public Health Service; Food and Drug Administration. |
“3-A® Accepted Practices for Permanently Installed Product and Solution Pipelines and Cleaning Systems Used in Milk and Milk Product Processing Plants, No. 605-04,” Section N; Aug. 20, 1994. |
Akam, D.N., “The Development of Equipment for the Mechanization of Manual Operations in Milking Machine,” 17th Annual Meeting, National Mastitis Counsel, Inc., Feb. 21-23, 1978, pp. 417-426. |
Grindal; et al., “Automatic application of teat disinfectant through the milking machine cluster” Journal of Dairy Research, 56:579-585 (1989). |
International Search Report and Written Opinion from PCT/US2011/00322, dated Dec. 20, 2011. |
Letter to Alex Ferguson from Jeffry W. Smith dated Dec. 22, 2006, 2pp. |
Neijenhuis; et al., “Health of dairy cows milked by an automatic milking system; Effects of milking interval on teat condition and milking performance with whole-udder take off”, Oct. 2003, 23 pages. |
Office Action for U.S. Appl. No. 10/576,744 dated Jun. 3, 2010, 8pp. |
May 17, 2018 EPO Communication; Details and minutes of the oral proceedings, Opposition of EP Patent 1737291, 9 pages. |
May 31, 2018 Interlocutory Decision in Opposition Proceedings, Opposition of EP Patent 1737291, 49 pages. |
Sep. 27, 2018 Statement of Grounds for Appeal, Opposition of EP Patent 1737291, 29 pages. |
International Search Report and Written Opinion from PCT/US2018/058897, dated Feb. 25, 2019, 19 pages. |
International Search Report and Written Opinion from PCT/US2018/059041, dated Mar. 8, 2019, 20 pages. |
International Search Report for PCT/EP2017/060232, dated Aug. 3, 2017, 2 pages. |
German Search Report for DE Application No. 10 2016 108 300.3, dated Mar. 10, 2017, 7 pages. |
Feb. 4, 2019 Reply to Grounds for Appeal, Opposition of EP Patent 1737291, 32 pages. |
Mar. 20, 2020 Examination Report for Australian Application No. 2018211343, 7 pages. |
European Search Report dated Jan. 30, 2020 for European Application No. 19204875.9, 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/059041, dated May 5, 2020, 12 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2018/058897, dated May 5, 2020, 10 pages. |
Oct. 15, 2020 Communication Regarding Oral Proceedings in Opposition to EP Patent 1737291, 10 pages. |
Office Action for U.S. Appl. No. 11/652,372 dated Feb. 11, 2008, 14pp. |
Office Action for U.S. Appl. No. 11/662,454 dated Aug. 16, 2010, 20 pp. |
Office Action for U.S. Appl. No. 16/178,996 dated Jun. 24, 2021. |
Office Action for U.S. Appl. No. 11/904,769 dated Feb. 20, 2008, 9pp. |
Office Action for U.S. Appl. No. 12/712,787 dated Jun. 27, 2011. |
PCT/GB04/004343—Written Opinion of ISA & IPRP dated Feb. 3, 2005, 5pp. |
“PCT/US06/023075—ISR & Written Opinion dated Oct. 16, 2006”. |
PCT/US09/006026—IPRP, Written Opinion of ISA & ISR dated Mar. 6, 2010, 9pp. |
“PCT/US09/03770—IPRP and Written Opinion dated Jan. 13, 2011, and ISR dated Oct. 7, 2009”. |
Preliminary Amendment for U.S. Appl. No. 10/576,744, filed Apr. 21, 2006, 16pp. |
Preliminary Amendment for U.S. Appl. No. 10/576,744, filed Aug. 7, 2008, 10 pp. |
Shearn; et al., “Reduction of bacterial contamination of teat cup liners by an entrained wash system,” Veterinary Record (1994), 134, 450, 1p. |
Thompson; et al. “The End-of-Milking Sequence and its Mechanization” 1976 Winter Mtg., Dec. 14-17, 1976, Anima Physiology and Genetics Inst., Beltsville, MD, 15pp. |
U.S. Appl. No. 60/566,313, filed Apr. 29, 2004, J.R.J. Duke. |
U.S. Appl. No. 60/566,314, filed Apr. 29, 2004, J.R.J. Duke. |
U.S. Appl. No. 60/578,997, filed Jun. 12, 2004, Kevin L. Torgerson (510). |
Notice of Opposition and Opposition brief for EP Patent 1737291, Filed on Aug. 26, 2014 by GEA Farm Technologies GmbH, 74 pages. |
Response filed Feb. 2, 2015 by An Udder IP Company in the Opposition of EP Patent 1737291, 53 pages. |
European Search Report dated Sep. 24, 2015 for EP Application No. 15171008.4, 6 pages. |
Reply filed on Dec. 16, 2015 by GEA Farm Technologies GmbH in the Opposition of EP Patent No. 1737291, 75 pages (English Translation). |
Wildbrett et al., “Über Reinigung und Desinfektion von Tanks” Materials and Corrosion 12(12):759-764. Nov. 1961. |
European Patent Office Preliminary Opinion and Summons to Attend Oral Proceedings dated Jan. 18, 2016, Opposition of EP Patent 1737291, 12 pages. |
European Search Report dated Aug. 13, 2014, EP Application No. 14159588.4, 5 pages. |
International Search Report and Written Opinion from PCT/EP2014/0//684, dated Apr. 10, 2015, 10 pages. |
Amendments and Observations filed Oct. 24, 2016 by An Udder IP Company Ltd in the Opposition of EP Patent 1737291, 47 pages. |
Amendments and Observations filed Oct. 25, 2016 by GEA Farm Technologies GmbH in the Opposition of EP Patent 1737291,13 pages. |
Nov. 10, 2016 EPO Communication re: the Proprietor, An Udder IP Company Ltd's request concerning the staying/postponement of the opposition proceedings, Opposition of EP Patent 1737291, 1 page. |
Nov. 25, 2016 EPO Communication re: results of the oral proceedings, Opposition of EP Patent 1737291, 5 pages. |
Dec. 8, 2016 EPO Communication; Details and minutes of the oral proceedings, Opposition of EP Patent 1737291, 13 pages. |
Mar. 30, 2017 EPO Communication, State of the Opposition Procedure and Invitation to File Observations, Opposition of EP Patent 1737291, 10 pages. |
Response filed by Udder IP Company LTD on Jun. 2, 2017, Opposition of EP Patent 1737291, 4 pages. |
Response filed by GEA Farm Technologies GmbH on May 29, 2017, Opposition of EP Patent 1737291, 5 pages. |
Jul. 27, 2017 EPO Communication; State of the Opposition Procedure and Summons to Attend Oral Proceedings, Opposition of EP Patent 1737291, 10 pages. |
European Search Report dated Oct. 13, 2017, for European Application No. 17171229.2, 6 pages. |
Mar. 13, 2018 Letter from the Proprietor, An Udder IP Company Ltd, Regarding the Opposition Procedure for Opposition of EP Patent 1737291, 23 pages. |
Number | Date | Country | |
---|---|---|---|
20210051914 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15887573 | Feb 2018 | US |
Child | 17092481 | US | |
Parent | 15366858 | Dec 2016 | US |
Child | 15887573 | US | |
Parent | 14588094 | Dec 2014 | US |
Child | 15366858 | US | |
Parent | 13269835 | Oct 2011 | US |
Child | 14588094 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12584475 | Sep 2009 | US |
Child | 13269835 | US |