Safety valve supply circuit for the ignition of a gas burner

Information

  • Patent Application
  • 20080070170
  • Publication Number
    20080070170
  • Date Filed
    August 04, 2006
    18 years ago
  • Date Published
    March 20, 2008
    16 years ago
Abstract
A safety valve supply circuit for the ignition of a gas burner is disclosed. Said safety valve is directly supplied by a flame-detecting thermocouple, and said supply circuit comprises a supply capacitor that is charged from an alternating mains voltage, obtaining from the energy accumulated in said supply capacitor, due to said charging, an input voltage signal that is used to temporarily supply said safety valve in order to maintain it open. Said charging of the supply capacitor is carried out by momentarily activating a supply switch to temporarily connect said supply capacitor to said alternating mains voltage, said supply switch activation occurring concurrently with the activation of the gas burner. Said supply circuit also comprises conditioning means for converting said input voltage signal into an output voltage signal that is directly applied to said safety valve to supply it, and so maintain it open.
Description

DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of the supply circuit of the invention.



FIG. 2 is a schematic view of the supply circuit of FIG. 1, showing the conditioning means of said supply circuit.



FIG. 3 shows an example of the operating signal generated by the supply circuit of FIG. 1.



FIG. 4 is a schematic view of the supply circuit of FIG. 1, showing the signal generator of said supply circuit.



FIG. 5 shows an embodiment of the supply circuit of the invention.





DETAILED DISCLOSURE OF THE INVENTION

Referring to FIG. 1, a schematic view of the supply circuit 1 of the invention is shown. Said supply circuit 1 actuates a safety valve 9 which is powered by a flame-detecting thermocouple 2, and comprises conditioning means 10 for converting an input voltage signal Ve into an output voltage signal Vs that is capable of maintaining the safety valve 9 open. Said input voltage signal Ve is generated by an energy stored in a supply capacitor 3.


The supply capacitor 3 charges at the moment the gas burner is ignited. The supply circuit 1 comprises a supply switch 4 that connects said supply capacitor 3 with an alternating mains voltage Vr at the moment the user ignites the burner and disconnects it immediately after. More specifically, to activate the burner, the user presses a pushbutton (not shown in figures), using the supply switch 4 to connect said supply capacitor 3 to the alternating mains voltage Vr for the instant that the pushbutton remains pressed. In addition, supply circuit 1 comprises a spark generator (not shown in figures) that is also activated by said supply switch 4.


A rectifier and limiter block 30 is disposed between the supply capacitor 3 and the alternating mains voltage Vr, and it is used to charge said supply capacitor 3. With said block 30, said supply capacitor 3 is charged until a predetermined voltage.


The supply circuit 1 also comprises control means 20, preferably supplied from the rectifier and limiter block 30 with a DC voltage Vcc, which act on the conditioning means 10 for controlling the output voltage signal Vs, in order to obtain a substantially constant supply energy for the safety valve 9, when said safety valve 9 is supplied by the supply capacitor 3. With reference to FIG. 2, said control means 20 comprise a control switch 21 which is opened or closed for controlling said output voltage signal Vs, by means of an operating signal M.


The conditioning means 10 comprise a transformer 11, the input voltage signal Ve being the input signal of said transformer 11, and the output voltage signal Vs being obtained from the output signal of said transformer 11. When the control switch 21 is opened, during time intervals Toff, the circulation of a forward current I through the primary of said transformer 11 is prevented and the output voltage signal Vs becomes substantially null. Thus, as the charge of the supply capacitor 3 is decreasing and then said input voltage signal Ve is decreasing too, it is possible by means of said operating signal to operate on said control switch 21 to open or close it, in order to maintain a substantially constant supply energy for the safety valve 9.


The control means 20 also comprise detection means 23 which can detect the forward current I through the primary of the transformer 11, said control means 20 causing the opening of the control switch 21, by means of the operating signal M, when said detection means 23 determines that said forward current I has reached a specific value. As the charge of the supply capacitor 3 is decreasing and then the input voltage signal Ve is decreasing, the time at which the forward current I reaches its specific value is longer, so that the time that said control switch 21 remains open is longer too, being possible to maintain a substantially constant supply energy for the flame-detecting thermocouple 2.


A resistor 24 is disposed in series with the primary of the transformer 11. When there is a determined voltage between the terminals of said resistor 24, a current, substantially equal to the forward current I through said primary, of a specific value flows through said resistor 24. If the value of said resistor 24 is modified, said specific value of current changes, said specific value depending on the value of said resistor 24.


Preferably, the operating signal M is a squared signal as shown in FIG. 3, whose frequency varies as the charge of the supply capacitor 3 decreases. The time intervals Toff in which the control switch 21 remains open correspond with the negative pulses P− of said squared signal, and time intervals Ton in which said control switch 21 remains closed correspond with the positive pulses P+ of said squared signal. Thus, as the time that said control switch 21 remains closes is longer while the charge of said supply capacitor decreases, said positive pulses P+ becomes longer as said charge decreases. Preferably, said control switch 21 comprises a transistor which is stopped directly, by means of said operating signal M, when said forward current I has reached said specific value.


The operating signal M is generated by a signal generator 25 (for example, a timing circuit TLC555 from Texas Instruments), shown in FIG. 4, from the charge or discharge of an auxiliary capacitor 5. The positive pulse P+ extends until said auxiliary capacitor 5 is charged, and the negative pulse P− extends until said auxiliary capacitor 5 is discharged. Preferably, said auxiliary capacitor 5 is discharged through a discharging resistor 6, the discharging time being substantially constant, and then the time intervals Toff of said negative pulses P− being substantially constant. The charging circuit of said auxiliary capacitor 5 comprises a charging resistor 7, and the time of said charging can be modified by means of a charging transistor 8. When the forward current I has reached the specific value, said charging transistor 8 starts to direct, causing the charge of said auxiliary capacitor 5 ends, causing the positive pulse P+ of said operating signal M ends.


An embodiment of the supply circuit 1 is shown in FIG. 5. Said supply circuit 1 is able to supply a plurality of safety valves 9, and the supply capacitor 3 charges when any of the burners is ignited. A rectifier block 31 is disposed between the transformer 11 and the safety valves 9, and receives the output signal from said transformer 11, generating the output voltage signal Vs that the corresponding safety valve 9 receives.


Thanks to a temperature compensating block 32, the positive pulse P+ is always finished when the forward current I through the primary of the transformer 11 is equal to the specific value in spite of the temperature of the supply circuit 1. For that purpose, said block 32 comprises an compensating resistor 24′, said compensating resistor 24′ having to be equal to the resistor 24.

Claims
  • 1. A safety valve supply circuit for the ignition of a gas burner, said safety valve being directly supplied by a flame-detecting thermocouple, said supply circuit comprising a supply capacitor that is charged from an alternating mains voltage, obtaining from the energy accumulated in said supply capacitor, due to said charging, an input voltage signal that is used to temporarily supply said safety valve in order to maintain it open, said charging of the supply capacitor being carried out by momentarily activating a supply switch to temporarily connect the supply capacitor to said alternating mains voltage, said supply switch activation occurring concurrently with the activation of the gas burner, and said supply circuit also comprising conditioning means for converting said input voltage signal into an output voltage signal that is directly applied to said safety valve to supply it, and so maintain it open.
  • 2. The supply circuit according to claim 1, wherein the supply capacitor is always connected to the conditioning means.
  • 3. The supply circuit according to claim 1, wherein the conditioning means comprise a transformer, the input voltage signal being the input signal of said transformer and the output voltage signal being obtained from the output signal of said transformer, and said supply circuit comprises control means with a control switch disposed in series with said transformer, said control means generating an operating signal that can open said control switch to prevent a forward current from circulating through the primary of said transformer during determined time intervals as the charge of the supply capacitor decreases, so that, by means of said opening, said control means can control the value of the output voltage signal, in order to supply the safety valve a substantially constant energy.
  • 4. The supply circuit according to claim 3, wherein the control means comprise detection means that can detect the forward current through the primary of the transformer, said control means causing the opening of the control switch with the operating signal, when said detection means detect that said forward current has reached a specific value.
  • 5. The supply circuit according to claim 3, wherein the control switch comprises a transistor, causing said transistor to stop directing when the forward current has reached said specific value.
  • 6. The supply circuit according to claim 4, wherein the operating signal is a squared signal of variable frequency and the time intervals correspond with the negative pulses of said squared signal, the positive pulse of said squared signal being completed when the detection means detect that the forward current has reached the specific value thereby opening the control switch, the duration of said positive pulses being greater as the charge of the supply capacitor decreases.