Flow controls find use in myriad applications. Pressure relief valves or “safety” valves are types of flow controls that protect against rapid increases in pressure of flowing fluids. These devices are often necessary to avoid overpressure conditions in super-heated steam that flows throughout thermal hydraulic power plants (and like facilities). Failure to contain overpressure can lead to extensive, and even catastrophic, damage to equipment or parts of the facility. However, although safety valves are required, improvements in output efficiencies for plant designs have led to operating conditions, including Advanced Ultra-Supercritical (AUSC) steam that regularly exceeds 760° C. (1400° F.), that outstrip even the most robust designs.
The subject matter of this disclosure relates to improvements that outfit safety valves to meet these new requirements. Of particular interest are embodiments that employ a unique disc/seat interface that can maintain seal tightness at pressure upwards of 4,200 psi at over 1,400° F. This interface incorporates overlapping geometry on both the disc and seat that maximizes contact stress at set pressure for the device.
Reference is now made briefly to the accompanying drawings, in which:
Where applicable, like reference characters designate identical or corresponding components and units throughout the several views, which are not to scale unless otherwise indicated. The embodiments disclosed herein may include elements that appear in one or more of the several views or in combinations of the several views. Moreover, methods are exemplary only and may be modified by, for example, reordering, adding, removing, and/or altering the individual stages.
The drawings and any description herein use examples to disclose the invention. These examples include the best mode and enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. An element or function recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or functions, unless such exclusion is explicitly recited. References to “one embodiment” or “one implementation” should not be interpreted as excluding the existence of additional embodiments or implementations that also incorporate the recited features.
The discussion now turns to describe features of the embodiments shown in drawings noted above. These embodiments perform better under extreme conditions because of unique geometry found at its seal interface. This geometry incorporates features that can flex or bend under pressure. These features create a more forceful seal that maintains its integrity very near the operating or set pressure for the safety valve. Other embodiments may be within the scope of this disclosure.
Broadly, the closure assembly 100 may be configured for extreme operating conditions. These configurations may include parts that create a metal-to-metal seal to prevent flow of fluid F through the device during “non-relieving” conditions. The parts are arranged so that the seal is “self-energizing” to maintain seal tightness at set pressure for the safety valve. This feature avoids leakage that may occur as the inlet pressure approaches the load that creates (and maintains) the seal between the parts of the device. As an added benefit, the proposed design does not compromise seal tightness after the load slams the valve shut, for example, following a rapid overpressure event.
The safety valve 102 may be configured to protect against these overpressure conditions. The configurations may find use in thermal-hydraulic power plants that flow high-pressure steam. However, this disclosure does contemplate that the concepts herein may apply to other applications, including those applications that handle fluids had high pressures and high temperatures. In one implementation, the valve mechanics 104 may regulate movement of the closure assembly 100 as between a closed position and an open position.
The pre-load unit 106 may be configured to maintain the metal-to-metal seal even under high pressure upstream of the closure assembly 100. These configurations may include mechanics to pre-load the biasing component 108. The mechanics may compress the compression spring 110 by an amount that generates spring force necessary to achieve load L to maintain the safety valve 100 in its closed position and prevent flow of fluid F through the closure assembly 100. Pressure upstream of the closure assembly 100 that exceeds load L may compress the compression spring 110 to cause the safety valve 102 to change to its open position. Fluid F will flow through the closure assembly 100 in this open position. In one implementation, the closure assembly 100 will remain open until pressure upstream falls below load L, which allows the compression spring 110 to return to its previous deflected position (associated with the closed position of the closure assembly 100).
In view of the foregoing, the improvements herein outfit safety valves to perform under extreme operating conditions. These improvements employ unique geometry to form a metal-to-metal seal that maintains its integrity under high pressures and temperatures, like those conditions consistent with super-heated steam in power plants. This geometry may include a flexible, finger-like projection from the disc. This projection tends to flex outwardly under downstream pressure to better engage with the seat at the metal-to-metal seal.
Examples appear below that include certain elements or clauses one or more of which may be combined with other elements and clauses to describe embodiments contemplated within the scope and spirit of this disclosure. The scope may include and contemplate other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
867702 | Clarke | Oct 1907 | A |
1668453 | Graesser | May 1928 | A |
2260381 | Kennon | Oct 1941 | A |
2335829 | McBride | Nov 1943 | A |
2429578 | Gleasman | Oct 1947 | A |
2628632 | Dayton | Feb 1953 | A |
2643671 | Dayton | Jun 1953 | A |
2670922 | Carlisle | Mar 1954 | A |
3025874 | Yocum | Mar 1962 | A |
3433250 | Noboru | Mar 1969 | A |
3811470 | Schaefer | May 1974 | A |
5011116 | Alberts | Apr 1991 | A |
5370151 | Smart | Dec 1994 | A |
5560343 | Werkmann | Oct 1996 | A |
8413955 | Rooney | Apr 2013 | B1 |
8505572 | Krithivasan | Aug 2013 | B2 |
20050205135 | Motojima | Sep 2005 | A1 |
20060196553 | Kane | Sep 2006 | A1 |
20190145537 | Kumar | May 2019 | A1 |
Number | Date | Country |
---|---|---|
1993014766 | Feb 1993 | JP |
20190133550 | Dec 2019 | KR |
Number | Date | Country | |
---|---|---|---|
20220333705 A1 | Oct 2022 | US |