SAFTY MECHANISM IN AN AUTOMATIC ENGRAVING ASSEMBLY

Information

  • Patent Application
  • 20080050162
  • Publication Number
    20080050162
  • Date Filed
    August 24, 2006
    18 years ago
  • Date Published
    February 28, 2008
    17 years ago
Abstract
A safety mechanism includes multiple positioning recesses defined in a bottom face of the head of the adjusting sleeve, a stop received in one of the positioning recesses, a slot defined in a top face of the body, an urging spring received in the slot, and a urging ball partially received in the slot and urged by the urging spring. Therefore, rotation of the adjusting sleeve relative to the body is limited due to engagement between the urging ball and the stop which is received in one of the positioning recesses and separation between the adjusting sleeve and the body is avoided.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an automatic engraving assembly using a conventional engraving assembly;



FIG. 2A is a side plan view of the conventional engraving assembly;



FIG. 2B is an exploded perspective view of the engraving assembly in FIG. 1;



FIG. 2C is a cross sectional view taken from line 2C-2C in FIG. 1;



FIG. 3A is a side plan view showing the engraving assembly of the present invention;



FIG. 3B is an exploded perspective view of the engraving assembly in FIG. 1;



FIG. 3C is a cross sectional view taken from line 3C-3C in FIG. 3A; and



FIG. 3D is a perspective view of the upper sleeve of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference to FIGS. 3A to 3D, it is noted that the engraving assembly in the automatic engraving assembly includes a body (25) having a connection hole axially defined therein, a pad (27) firmly mounted inside a bottom opening of the body (25), a bearing (26) securely connected to a top face of the pad (27) and received inside the body (25), a master spring (28) one end of which is securely abutted against a side face of the bearing (26), a sleeve (231) received inside the body (25) to abut against the other end of the master spring (28), bearing balls (232) received inside the sleeve (231) for securing one end of an engraving knife (not shown), a plate (233) positioned inside the sleeve (231) to secure the bearing balls (232), a magnet (234) also positioned inside the sleeve (231) to abut a side face of the plate (233), a knife urging bolt (21) extending into the body (25) to abut a top face of he magnet (234), an adjusting sleeve (22) having a threaded extension (222) formed with a head (221) of the adjusting sleeve (22) and threadingly extending into body (25), wherein the knife urging bolt (21) is extended through the adjusting sleeve (22), and a securing cap (20) threadingly extending into the adjusting sleeve (22) to secure the knife urging bolt (21) inside the body (25). In addition, a side cap (226) is threadingly extended into the adjusting sleeve (22) to abut an outer periphery of the securing cap (20) to prevent the securing cap (20) from rotation such that the knife urging bolt (21) is firmly secured inside the body (25) when the automatic engraving assembly is in process.


After the aforementioned components are assembled according to the above sequence inside the body (25), the operator is able to proceed macro adjustment of the engraving knife relative to the body (25). However, when proceeding with micro adjustment of the extension of the engraving knife relative to the body (25), there is provided with a safety mechanism to limit the rotation of the adjusting sleeve (22) relative to the body (25). The safety mechanism of the present invention includes multiple positioning recesses (224) defined in a bottom face of the head (221) of the adjusting sleeve (22), a stop (223) received in one of the positioning recesses (224), a slot (251) defined through a top face of the body (25), an urging spring (243) received in the slot (251), a guiding tube (242) received inside the slot (251) and having the urging spring (243) mounted therearound and a urging ball (241) partially received in the slot (251) and urged by the urging spring (243).


After the safety mechanism of the present invention is assembled, it is noted from the depiction of the accompanying drawings that when the urging ball (241) is right below the stop (223), the extent of extension of the engraving knife is set to be zero (0 extension). Rotation of the adjusting sleeve (22) in either directions allows the urging ball (241) to be selectively received in a corresponding one of the positioning recesses (224). No matter how much the adjusting sleeve (22) is rotated, eventually the urging ball (241) engages with the stop (223), which limits further rotation of the adjusting sleeve (22). Accordingly the adjusting sleeve (22) is always kept in contact with the body (25).


Further, everytime the urging ball (241) falls into the corresponding positioning recess (224), a clicking sound is generated to inform the operator how much the adjusting sleeve (22) is rotated, which also performs a positioning effect to the adjusting sleeve (22) to the body (25).


In addition, the mutual cooperation between the pitch of each threading of the adjusting sleeve (22) and the distance between two adjacent positioning recesses (224) provides precise extension of the engraving knife out of the body (25). For example, if the pitch is set to be 1.15 mm, movement of the urging ball (241) from one positioning recess (224) to the adjacent positioning recess (224) provides 0.2 mm extension of the engraving knife. Therefore, if there are five positioning recesses (224), rotation of the adjusting sleeve (22) from the first positioning recess (224) to the fifth positioning recess (224), there will be 1 mm extension of the engraving knife.


In order to facilitate understanding of how much the engraving knife is extended out of the body (25), first marks (A) of different patterns and a second mark (B) are formed on an outer periphery of the adjusting sleeve (22) and the body (25) to indicate the degree of adjustment.


Meanwhile, the adjusting sleeve (22) is provided with a recessed area (225) defined in a top face thereof to receive therein the securing cap (20) having an enlarged head (201) formed on top of the securing cap (20) so that the securing cap (20) is kept on a position where the operator can always have access to operate the securing cap (20).


It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims
  • 1. In an automatic engraving assembly having a body (25) having a connection hole axially defined therein, a pad (27) firmly mounted inside a bottom opening of the body (25), a bearing (26) securely connected to a top face of the pad (27) and received inside the body (25), a master spring (28) one end of which is securely abutted against a side face of the bearing (26), a sleeve (231) received inside the body (25) to abut against the other end of the master spring (28), bearing balls (232) received inside the sleeve (231) for securing one end of an engraving knife, a plate (233) positioned inside the sleeve (231) to secure the bearing balls (232), a magnet (234) also positioned inside the sleeve (231) to abut a side face of the plate (233), a knife urging bolt (21) extending into the body (25) to abut a top face of he magnet (234), an adjusting sleeve (22) having a threaded extension (222) formed with a head (221) of the adjusting sleeve (22) and threadingly extending into body (25), wherein the knife urging bolt (21) is extended through the adjusting sleeve (22), and a securing cap (20) threadingly extending into the adjusting sleeve (22) to secure the knife urging bolt (21) inside the body (25), wherein the improvement comprises: multiple positioning recesses adapted to be defined in a bottom face of the head of the adjusting sleeve, a stop received in one of the positioning recesses, a slot adapted to be defined in a top face of the body, an urging spring received in the slot, and a urging ball partially received in the slot and urged by the urging spring such that rotation of the adjusting sleeve relative to the body is limited due to engagement between the urging ball and the stop which is received in one of the positioning recesses and separation between the adjusting sleeve and the body is avoided.
  • 2. The automatic engraving assembly as claimed in claim 1 further comprising a guiding tube received in the slot of the body and having the urging spring mounted therearound so as to guide movement of the urging spring.