A method and process to conduct SAGDOX EOR of bitumen, by injecting oxygen and steam separately, into a bitumen reservoir; and to remove, as necessary, non-condensable gases produced by combustion, to control the reservoir pressures. In one aspect of the invention a cogeneration operation is locally provided to supply oxygen and steam requirements.
The process, used widely for in situ recovery of bitumen in Canada, from the Athabasca or similar deposits, is SAGD.
But, SAGD has the following problems:
The process uses a considerable amount of water (0.25 to 0.50 bbl/bbl.bit.) even after recycle of produced water.
CO2 emissions are high (˜0.08 tonnes CO2/bbl bitumen).
CO2 emissions are not easily captured (diluted in flue gas).
Steam cannot be economically transported for more than 5 km; so a central steam plant cannot service a wide land area.
Reservoir in-homogeneities (including lean zones) can negatively impact SAGD performance.
Temperature is fixed by operating pressure. T cannot exceed saturated-steam temperatures. If we have to lower pressures, to help contain reservoir fluids, productivity is reduced.
SAGD cannot mobilize connate water by vaporization.
Produced water volumes are less than injected steam volumes, usually.
SAGD cannot reflux steam in the reservoir—it is a once-through steam process.
Well-bore hydraulics can limit effective well lengths to <1000 m using normal well sizes and a 5 m spacing between injector and producer.
SAGD cannot mobilize lean-zone water by vaporization. Lean zones, with reduced bitumen saturation, can block steam chamber growth and impair productivity.
SAGD, in the steam-swept zone, leaves behind residual bitumen (10-25%) that is not recovered.
SAGDOX may be defined herein with respect to the present invention as a SAGD add-on process that utilizes oxygen in addition to the steam used with SAGD and which mixes together to inject energy (heat) to the bitumen. Oxygen provides additional heat by combusting residual bitumen in a steam-swept zone. A SAGDOX process may be initiated as well without SAGD.
Implementing a SAGDOX process is capable of reduce the overall cost of energy delivered to the bitumen reservoir.
SAGDOX should use less water directly, and produces more water than used when accounting for connate water, combustion water and lean zone water.
CO2 is emitted in a concentrated stream, suitable for sequestration.
If some CO2 is sequestered in the reservoir or sequestered in an off-site location, SAGDOX can emit less CO2 than SAGD.
Oxygen can be economically transported in pipelines for over a 100 miles. We can centralize oxygen production.
A SAGDOX process will not be affected, as much as SAGD, by reservoir in-homogeneities.
In a SAGDOX process, the combustion component of energy delivery creates temperatures higher than saturated-steam T. For a given reservoir or process pressure, SAGDOX will have higher average T than SAGD.
Connate water will be vaporized and mobilized as steam in SAGDOX.
Since average SAGDOX T is greater than saturated steam T, we can reflux some steam in the reservoir.
Per unit production, produced fluid (bitumen+water) volumes are less than SAGD volumes, so we can extend the length of the horizontal production well without exceeding hydraulic limits.
A single well pair for a SAGDOX process can recover more oil than a comparable SAGD well pair.
Lean zone bitumen will be recovered or combusted, lean zone water will be vaporized.
Almost no recoverable bitumen will be left behind in the combustion-swept zone.
Oxygen ISC has been studied and practiced for many years (but not in bitumen reservoirs). But, there is a lot of work focused on steam+oxygen mixtures. Over a 30 year span, there are 4 relevant studies, as follows:
Steam+CO2—after oxygen reacts in the reservoir, the “working fluid” is a steam+CO2 mixture. In the early 1980's (Balog, Kerr and Pradt, OGJ, 1981), a study of steam+CO2 injection for cyclic steam EOR (CSS) was carried out. The steam+CO2 mix was produced by a WAO boiler, but the mix could also be produced, in situ, by injection of a steam+O2 mix. The mix contained about 9% (v/v) CO2 in steam, equivalent to a steam+O2 mix containing about 12% O2. We used a Calgary simulation consultant (Intercomp) to model Cold Lake CSS. After 3 CSS cycles, the key simulations results were:
Carbon dioxide (non-condensable gas) improved CSS performance by providing gas drive assist in the “puff” part of the CSS cycle. Cold Lake reservoir fluids also absorbed CO2. Carbon dioxide retention (ie sequestration) was considerable—70 MMSCF alter 3 cycles (1.8 MSCF/bbl bitumen produced). This volume (1.8 MSCF/bbl) is greater than CO2 produced in SAGDOX (9) and about ⅔ CO2 produced by SAGDOX (35).
Combustion Tube Tests—(“Parametric Study of Steam Assisted Insitu Combustion” R. G. Moore et al, Feb. 23, 1994 (U of C). Now, lets shift forward by 13 years. In the early 1990's a consortium of companies and government studied combustion tube behaviour of steam/oxygen mixes compared to dry and wet ISC. The crude oil (bitumen) and cores were from Primrose. The tests were conducted at U of C's combustion laboratory. Virgin cores and pre-steamed cores were used (pre-steamed cores were to simulate reservoir combustion where the reservoir had been previously swept by steam). Four combustion process types were evaluated:
The results were presented by a series of graphs, where the type of process was labeled by numbers. This makes interpretation difficult. But, the results/conclusions include the following:
Although the test results are somewhat difficult to interpret, they are very positive for SAGD and oxygen, as summed up by the following quotes directly from the report:
SAGD and oxygen Hybrid—Now we'll shift forward by another 15 years. In 2009 U of C published a simulation study of steam/oxygen mixtures for SAGD EOR (“Design of Hybrid Steam—ISC Bitumen Recover Process”, Yang and Gates, Nat. Resources Research, Sep. 3, 2009). The simulation study used a modified STARS model, based on Athabasca reservoir operating at 4 MPa (at an over pressure) in a confined/contained model with no “leakage”. The steam/O2 injection rate was controlled (in the model) to maintain the target pressure. Steam-oxygen mixtures varied from 0% (normal SAGD) to 80% oxygen. The results/observations of the results are as follows:
Compared to Long Lake and our SAGDOX proposal herein, the study had 3 “flaws”—firstly, the steam—O2 mixtures were too rich (20, 50, 80% (v/v) oxygen) compared to our range (9.35% O2). At 80% oxygen, about 98% of the energy injected comes from O2 combustion, so the hybrid process is biased (too much) toward ISC(O2). Secondly, the reservoir GD chamber was “contained” with no “leaks” or no well to remove non-condensable combustion gases. So, using the process controls built in to the model, CO2 gas build up in the reservoir impairs injectivity and reduces productivity. Productivity plots are not based on equal energy injection. Thirdly, the U of C group focused on an “energy” usage that consisted of steam heat content and energy needed to produce/compress O2 gas. There was no consideration of energy derived from oxygen combustion. There were no plots of productivity for equal energy inputs.
Based on the kinetic combustion model in the simulator (a pseudo-component kinetic model) and other STARS systems, the bitumen and GD chamber exhibited complex behaviour with elements that are normally seen in a ISC process, as follows:
Carbon dioxide from combustion diluted the steam reducing steam partial pressure, lowering steam T and increasing steam-swept bitumen levels to 25% (compared to “expected” levels of 10-15%).
The average T of the combustion zone was about 450-550° C.—indicating good HTO combustion (combustion tube was 550-650° C.).
Oxygen to bitumen ratios were in the range of 200-240 sm3/m3 or 1120 to 1350 SCF/bbl.
Water use was cut dramatically compared to SAGD because of the energy released by oxygen consumption and water produced via fuel oxidation in-situ.
Apparent bitumen productivity was 25 to 40% lower than SAGD due to injectivity limitations due to CO2 build up in the contained chamber without leaks or gas removal.
There was no discussions of CO2/CO ratios in the reservoir, although the paper did say (using a kinetic model) that CO2/CO ratios of 8.96 are expected for HTO of coke (90% oxidation of carbon to CO2). (Combustion tube tests predict 92 to 93% conversion of carbon to CO2).
The group also modelled a WAG-type process, using alternating slugs of steam and oxygen injection. This process showed promise, but if ignition is ever a concern, it is probably not a good idea, in practice.
An “energy”/bitumen plot was presented, with decreasing unit “energy” for SAGD and oxygen vs. increasing energy use for SAGD. This is very misleading since the “energy” used is the energy to produce/compress oxygen+the energy in steam. It does not include the combustion energy released to the reservoir
The SI-ISC process—(SAGD-initiated insitu combustion) is currently (2010) under development by ARC (the AACI program) and supported by Nexen. The idea is to use a traditional SAGD geometry to start up (transition) to ISC. The proposed process retains the SAGD production well to produce bitumen. In one version, a new VT well is drilled at the toe of the SAGD well pair to inject air and the SAGD injection well is converted to a combustion gas production well. In another version, the VT well at the SAGD toe is used to produce combustion gases and the SAGD injector is converted to an air injector. Nexen has use rights for the SI-ISC process.
Although the process may appear to be similar to SAGDOX, we have the following distinguishing features:
The above demonstrates that people are considering both steam EOR (SAGD) and ISC for bitumen. The benefits for ISC are compelling, particularly for an end-of-run process.
There is a paucity of R+D in this area. Only 4 studies are noted herein over a 30 year period.
But, use of oxygen in ISC has been considered for many years, going back to the 1960's (ie 50 years) the risk of LTO and injectivity difficulty into bitumen reservoirs has deterred many.
Few have contemplated the use of O2/steam mixtures.
There have been several field tests of dry ISC using oxygen.
The U of C combustion tests (1994) show superior combustion properties for steam+O2 compared to dry ISC or wet ISC processes. Combustion ignition, stability. Good bitumen recovery.
The steam+CO2 CSS simulation shows some benefits for CO2 (combustion product gas) and the prospects for some CO2 sequestration.
The U of C simulation study (2009) shows it is possible to model SAGDOX processes, and we can expect complex behaviour in our GD chamber.
The AACI tests (2010) indicate renewed interest in ISC.
It is therefore a primary object of the invention to provide a SAGDOX process wherein oxygen and steam are injected separately into a bitumen reservoir.
It is a further object of the invention to provide at least on well to vent produced gases from the reservoir to control reservoir pressures.
It is yet a further object of the invention to provide extended production wells extending a distance of greater than 1000 metres.
It is yet a further object of the invention to provide extended production wells extending a distance of greater than 500 metres.
It is yet a further object of the invention to provide oxygen at an amount of substantially 35% (v/v) and corresponding steam levels at 65%.
It is yet a further object of the invention to provide oxygen and steam from a local cogeneration and air separation unit proximate a SAGDOX process.
Further and other objects of the invention will be apparent to one skilled in the art when considering the following summary of the invention and the more detailed description of the preferred embodiments illustrated herein.
SAGDOX is a bitumen EOR process using a geometry similar to SAGD, whereby a mixture of steam and oxygen is injected into a bitumen reservoir, as a source of energy (heat). The reservoir is preheated with steam—either by conducting a SAGD process or by steam circulation—until communication is established between wells (a few months to a few years). Then, oxygen/steam mixtures are introduced. Steam provides energy by condensing (latent heat) or by direct heat transfer. Oxygen provides energy by combustion of residual bitumen in the steam-swept zone. The residual bitumen is heated by hot combustion gases, stripped of light ends (fractionated) and pyrolysed to produce a residual “coke” that is the actual fuel consumed by combustion.
A gas chamber is formed containing injected gases, gases that are the product of combustion, refluxed steam and vaporized connate water. Like SAGD, heated bitumen drains by gravity to the lower horizontal well (producer).
According to a primary aspect of the invention there is provided a method for the recovery of hydrocarbons from a subterranean hydrocarbon deposit comprising:
In a preferred embodiment said portion of said reservoir into which oxygen and steam are separately injected are generally at opposite ends of said reservoir.
In another embodiment said portion of said reservoir into which said oxygen and steam are separately injected are in an area generally above said production well of said reservoir.
Preferably said O2-containing gas is in the range of 95% to 97% oxygen. Alternatively said O2-containing gas is substantially pure O2.
In one embodiment said oxygen to steam ratio is about 500 SCF of oxygen per barrel of water. The preferred SAGDOX mixture is 35% (v/v) oxygen and 65% steam.
Preferably as a result of oxygen injection, the volume rates of steam use are cut by substantially 76% while still providing with the oxygen the same amount of energy as steam alone and resulting in smaller steam carrying pipe sizes than a steam injection process alone enabling longer pipe runs.
In another embodiment the oxygen injection well is 1 to 4 metres above the toe area of the steam injection well, proximate the end of the reservoir and preferably about 5-20 m in from the end thereof.
According to yet another aspect of the invention there is provided a method of conversion of a (in one embodiment a substantially depleted) SAGD process reservoir to a SAGDOX process reservoir by the addition of oxygen injection according to the methods outlined above herein. Preferably the oxygen is injected into or adjacent to a steam swept zone.
In a preferred embodiment steam and oxygen are supplied from the operation of an adjacent local integrated cogeneration and air separation unit as setout herein in great detail below.
Preferably when converting a SAGD process to SAGDOX packer(s) are used to isolate a portion of the injector well and simultaneously inject steam and oxygen (FIG. 2(1)). (swellable and mechanical downhole packers). The conversion uses the toe of the steam injector for oxygen injection to segregate O2 and steam to minimize corrosion.
In another embodiment the conversion utilizes a packer(s) to isolate part of the injector well to remove produced gases (FIG. 2(4)).
In preferred and alternative embodiments of the invention the method includes properties of SAGDOX injection gases as set out in the table that follows:
Preferably the gas mixture of steam and oxygen contains 5 to 50 (v/v) % oxygen.
According to yet another aspect of the invention there is provided a process to recover bitumen comprising the following steps:
In one embodiment the process uses separate wells to inject steam and oxygen.
It is preferred that a separate well(s) is used to remove non condensable combustion gases to control reservoir pressure.
In an alternative embodiment the reservoir can sequester the gases (ie a leaky reservoir) and therefore a removal well is not needed.
In yet another embodiment of said process the produced gases are captured and sequestered in a separate (off-site) reservoir.
In yet another embodiment of said process the produced gases are captured and sequestered in a separate (on-site) reservoir.
In yet another embodiment said process is carried out with an O2 range of 10 to 40%.
In yet another embodiment said process is carried out with an O2 range of 30 to 40%.
According to yet another aspect of the many embodiments of the invention described herein there is provided a process to produce steam and oxygen (suitable for SAGDOX EOR), each available in separate streams, comprising:
Preferably any resulting steam/oxygen mixture is in the 20 to 60% (v/v) oxygen range.
Alternatively any resulting steam/oxygen mixture is in the 20-40% oxygen range.
In another embodiment of the process steam production is augmented by separate steam generation to produce a 4-40% oxygen range.
For SAGDOX one should address the following issues:
to keep steam and oxygen separate until they can mix in the reservoir, otherwise corrosion (particularly of carbon steel) will be rapid, damaging and costly
to start SAGDOX oxygen injection in a steam swept zone
to separate injection control (eg. Separate wells) for steam and oxygen
to define an injection strategy to ensure good contact with the reservoir (i.e. good conformance)
depending on the reservoir, to separate well(s) to remove non-condensable gas products of combustion. Otherwise back pressure can build up and limit injectivity.
All well patterns address all of the issues presented above.
SAGDOX is a bitumen EOR process that can be added on to SAGD and uses mixtures of steam and oxygen. Steam provides heat directly, oxygen adds heat by combusting residual bitumen in a steam-swept zone.
While it is possible to start a SAGD project using steam only and then implement SAGDOX by adding oxygen to the steam, this is not preferable because of high corrosion rates in a saturated steam and oxygen system, particularly using carbon steel pipes. The preferred strategy is to separately isolate steam and oxygen injection and allow mixing to occur in the reservoir. The separation can be accomplished by packers (swellable and mechanical downhole packers) or by using separate injector wells.
The preferred SAGDOX mixture is 35% (v/v) oxygen and 65% steam.
Lets define SAGDOX (Z) where Z=% (v/v) oxygen in the steam oxygen mixture. Table 1 presents properties of SAGDOX injection gases. Some of the features of the gas mixtures are as follows:
As the percent of oxygen in the mix increases, the total volume to inject a fixed amount of energy drops by up to a factor of 10.
For our preferred mix (SAGDOX (35)), to inject the same amount of energy as steam, our volume rates are cut by 76%. We can expect smaller pipe sizes than a SAGD project.
Compared to SAGD steam for SAGDOX(35) our oxygen injection rate is 8.5% of the volume rate. Our O2 injector (and produced gas) well can be very small.
The SAGD well pair is conventional—parallel horizontal wells with length of 400-1000 m and separation of 4-6 m. The lower horizontal well is about 2-8 m above the bottom of the reservoir. The upper well is a steam injector. The lower horizontal is the bitumen (+water) producer.
The SAGDOX oxygen injector is above the toe area of the steam injector (1-4 m). The well is not at the end of the pattern (about 5-20 m in from the end).
Two produced gas removal wells are on the pattern boundaries (i.e. only 1 net well) toward the heel area of the SAGD well pair. The wells are completed near the top of the reservoir (1-10 m) below the ceiling.
This configuration enables the following:
Separate control of O2/steam injection
Oxygen injection into the steam-swept area
Removal of (cool) non condensable gases
2(net) new wells (small vertical wells) compared with SAGD
If the reservoir is “leaky”, with enough capacity to sequester non-condensable gases produced by combustion, we may not need produced gas removal wells or we can reduce the number of produced gas removal wells.
Of course, our preferred SAGDOX well configuration is not the only way to implement SAGDOX.
Using a packer(s) we can isolate a portion of our injector well and simultaneously inject steam and oxygen (FIG. 2(1)). (swellable and mechanical downhole packers) If we can use the toe of the steam injector for oxygen injection we can segregate O2 and steam to minimize corrosion. Even with some corrosion, we are willing to sacrifice the toe of the injector. Because steam demands for SAGDOX are much less than SAGD (Table 1), there is plenty of “room” to segregate O2 and steam in the SAGD producer.
Using a packer(s) we can similarly isolate part of the injector well to remove produced gases (FIG. 2(4)).
We can install multiple oxygen injectors, to improve conformance and allow more control (FIG. 2(3)).
Similarly, we can install multiple produced gas removal wells, to improve conformance and control (FIG. 2(6).
FIG. 2(7) shows how SAGDOX can improve SAGD. Because liquid volumes in the production well are reduced for SAGDOX compared to SAGD we are no longer limited to a horizontal well pair length of about 1000 m. Table 2 shows that we can expect, for the same bitumen production, the produced volume rates for SAGDOX (35) in the lower horizontal well will be about 28% of the volume rate for SAGD. So with reduced hydraulic limits on well length we can extend SAGD wells beyond the 1000 m limit.
This may have to be drilled initially (not as a SAGD add-on). The extended-reach version of SAGDOX can: (c/w SAGD)
Increase productivity
Increase recovery
Decrease number of wells needed to exploit resource
Well positions, within limits stated
1 well-multiple wells (better control)
O2 concentration in SAGDOX mix (5 to 50% (v/v) range)
Pressure of reservoir
CH5=reduced formula for “coke” that is combusted. Ignores trace components (eg S, N . . . ). Doesn't imply molecular structure, only ratio of H/C in large molecules
Best guess of net “reservoir oxidation chemistry”
Oxidation of combustion front (assumes 10% carbon goes to CO)=CH5+1.075O2→0.9CO2+0.1CO+0.25H2O+HEAT
Water gas shift, in reservoir:
CO+0.1H2O→0.1CO2+0.1H2
Net reaction stoichiometry:
CH0.5+1.075O2→1.0CO2+0.1H2+0.15H2O
Where:
(1) non-condensable gas make (CO2+H2)=102% of Oxygen volume
(2) combustion water make=14% of oxygen volume
(3) hydrogen make=9.3% of oxygen volume
(4) produced gas composition (v/v) %
Heat release=480 BTU/SCF O2
Table 3 shows the efficiencies for various SAGDOX mixtures using the assumptions of Table 2. The following points are evident:
SAGDOX is more efficient than SAGD
The efficiency improvement increases with increasing oxygen content in SAGDOX mixtures.
For SAGD the energy loss is 26%. This loss for SAGDOX is 16 to 6% depending on oxygen content—an improvement of 10-20% or a factor of 1.6 to 4.3.
If we reduce oxygen purity to say the 95-97% range, energy needed to produce oxygen drops by about 25% and SAGDOX efficiencies increase even more than above (see Table 3)
SAGDOX creates some energy in a reservoir by combustion. The “coke” that is prepared by hot combustion gases fractionating and polymerizing residual bitumen, can be represented by a reduced formula of CH.5. This ignores trace components (S, N, O . . . etc.) and it doesn't imply a molecular structure, only that the “coke” has a H/C atomic ratio of 0.5. Let's assume CO in the product gases is about 10% of the carbon combusted Water-gas-shift reactions, occur in the reservoir
CO+H2O→CO2+H2+HEAT
This reaction is favored by lower T (lower than combustion T) and high concentrations of steam (ie SAGDOX). The heat release is small compared to combustion.
Then our net combustion stoichimetry is as follows:
Features are as follows:
Non-condensable gas make=102% of oxygen used (v/v)
Combustion water make=14% of oxygen used (v/v) (net)
hydrogen gas make=9.3% of oxygen used
produced gas composition (v/v %)=
Combustion temperature is controlled by “coke” content. Typically combustion T is between about 400 and 650° C. for HTO reactions.
The importance of Steam
For SAGD heat transfer is dominated by steam. For SAGDOX we add heat transfer from hot combustion gas. Compared to hot non-condensable gases, steam has 2 significant advantages:
Including latent heat when steam condenses, a fixed volume of steam will deliver more than twice the amount of heat available from the same volume of hot combustion gases When steam condenses, it creates a transient low pressure zone that draws in more steam—ie a heat pump without the plumbing
For SAGDOX and SAGD we expect stream use/creation to be a dominant factor for productivity.
As we add oxygen to steam we expect less steam in the reservoir, as more and more of the heat injection comes from combustion. So, if everything else was equal, we would expect decreasing productivity or increasing ETOR for constant productivity. But, oxidation processes offer 3 ameliorating factors:
Some extra steam is produced as a product of combustion
Some extra steam is produced by vaporizing connate water in combustion swept zones
Some extra steam is produced when hot gases or hot bitumen vaporizes condensed water (i.e. reflux)
So we expect, if SAGDOX is to have the same productivity as SAGD, to inject more energy than SAGD (to compensate for reduced steam inventory) and to have significant reflux of steam, accounting for extra steam sources. Table 2 shows one such balance—but there may be several and each reservoir may be different.
With some assumptions, we can compare SAGDOX performance with SAGD. Nexen has simulated SAGD under the following assumptions:
a homogenous sandstone bitumen reservoir
generic properties for LLK bitumen
25 m, clean, homogeneous pay zone
800 m, SAGD well pair at 100 m spacing, with 5 m separation between steam injector and bitumen/water producer
10° C. sub cool for production control
2 MPa pressure for injection control
4 mos. start-up period, using steam circulation
discretized well-bore model
The simulation production results are shown in
bitumen recovery=333.6 km3=2.099 MMbbl
average bitumen production=575 bbl/d
peak bitumen rate (end yr. 2)=159.2 m3/d=1002 bbl/d
steam used=1124.9 km3=7.078 MMbbl=2.477×1012 BTU
average steam rate=1939 bbl/d
peak steam (end yr. 4)=456.7 m3/d=2874 bbl/d
average SOR=3.37 (average ETOR=1.180)
recovery factor=63.4% OBIP
OBP in pattern=3.31 MMbbl
We will use this simulation as the basis for SAGDOX production comparisons.
SAGDOX has 2 separate sources of reservoir heat delivery—steam condensation, and oxygen combustion of residual bitumen. Before we develop comparisons to SAGD, lets look at a simulation of SAGD so we can understand the mechanisms that are important.
A combustion-swept zone with zero residual bitumen and zero residual water;
A combustion front, indicated by a share increase in bitumen saturation;
A bank of hot bitumen, partially fractionated (stripped of light ends) and partially upgraded by pyrolysis from hot combustion gases. The bitumen bank temperatures are higher than saturated steam, so bitumen draining is hot and can reflux steam as it meets condensed water below the plane;
A steam swept zone made up of 2 parts—superheated zone with no steam condensate and a saturated-steam zone with condensed water;
The cold-bitumen: saturated-steam interface where steam condenses to heat bitumen; Bitumen drains downward (and inward) from 2 areas—the hot bitumen bank near the combustion front and heated bitumen, near the cold bitumen interface. (Most of the bitumen produced comes from the later zone);
Water also drains from 2 areas—the saturated steam zone and near the bitumen interface. (Most of the water drained comes from the later zone).
Let's first look at SAGD (steam gravity drainage). The process is complex with many steps, as follows:
steam is injected at the sand face;
steam enters the reservoir, in a steam-swept zone, at (near) saturated steam temperature;
as the steam moves through the reservoir heat losses reduce steam quality, but T is relatively constant;
when steam reaches the cold bitumen interface, it condenses (to water) and releases its latent heat;
the latent heat is conducted in the interface and heats the matrix rock and the reservoir fluids (bitumen and connate water);
the heated bitumen drains downward and inward to the horizontal production well, about 5 m underneath the steam injector well—(drainage distances are ≦50 m);
condensed water also drains to the same well;
the bitumen/water mixture is pumped/conveyed to the surface.
Productivity (rate of bitumen production) is determined by the cumulative rate of all of these steps. The slowest step (rate-limiting step) is usually considered to be bitumen drainage to the production well (step (6)). Drainage rates are dependent on the drainage distance, the matrix permeability and the viscosity of the heated bitumen. Bitumen viscosity is the key variable and it is a strong function of temperature.
SAGDOX has a similar geometry to SAGD, but the process is more complex. The mechanisms for steam (SAGD) EOR are still active, but the combustion component adds the following steps:
ignition occurs at the combustion front, where oxygen reacts with residual fuel (coke);
hot combustion gases fractionate residual bitumen, in (or near to) the steam-swept zone, and pyrolyse bitumen to prepare residual fuel (coke) for combustion;
connate water, in the steam-swept zone, is vaporized to steam;
hot combustion gases superheat steam;
hot bitumen and hot combustion gases vaporize (reflux) condensed steam;
at the cold bitumen interface, some heat is transferred directly from hot combustion gases to cold bitumen, connate water and matrix rock;
a hot bitumen bank is formed downstream of the combustion front;
This hot bitumen drains downward and inward to the horizontal production well;
Temperatures are greater than saturated steam temperatures;
Heat exchange (reflux) from the hot bitumen in (G) and (H) to condensed water draining to the production well.
So SAGDOX has all the mechanisms/steps of SAGD plus the additional steps arising from combustion processes. It is not obvious, for productivity and kinetics, what is the rate-limiting step for SAGDOX.
Below about 5% oxygen in a steam+oxygen mixture combustion may become unstable and it becomes difficult to keep oxygen flux rates to sustain HTO. It also becomes difficult to vaporize and mobilize all connate water.
Above about 50% oxygen in steam, the reflux rates to sustain productivity are more than 70% of the total steam. This may be difficult in practice. Also, above this limit the bitumen (“coke”) fuel that is consumed starts to be greater than the residual fuel left behind in the steam-swept zone. Also, above this limit it isn't possible to produce steam/electricity mixes from an integrated cogen: ASU for SAGDOX. Compared to SAGD, SAGDOX (50) may have lower recoveries.
So the preferred range is 5 to 50 (v/v) % oxygen in the steam+oxygen mixture injected. If we are more concerned about safety factors, a range of 10 to 40 (v/v) % oxygen, may be preferred.
Based on an economic study the preferred oxygen content is about 35% (v/v) % or a range of 30 to 40% (v/v).
A synergy is an “unexpected” benefit. The cumulative benefits of the steam-oxygen mix are more than the benefits of the stand-alone components.
How does Oxygen Help Steam EOR Benefits?
surface steam demand (water use) is directly reduced;
extra steam is created directly in the reservoir by combustion of coke;
heat of combustion vaporizes connate water to increase steam in the reservoir;
heat of combustion results in vaporization of condensed steam (water reflux);
in situ combustion can increase avg. T in the steam/combustion swept zones beyond the saturated steam T limit;
the use of oxygen improves overall energy efficiency;
non-condensable gases produced from combustion insulates the top of the pay zone to reduce energy losses and increases lateral vapour chamber growth rates. This can be beneficial if the reservoir has top water or top gas because SAGDOX steam+oxygen mixes cost less than pure steam for the same energy content, we can extend production beyond the economic limit for steam-only and increase ultimate recovery/reserves if some CO2 is retained in the reservoir or if some CO2 is captured and sequestered off-site, we can reduce CO2 emissions compared to steam only.
How does Steam Help Combustion?
steam pre-heats the reservoir, so oxygen gas will ignite to start combustion (this is now the accepted method for ISC);
in the presence of increased T (400-600° C. range) and a solid rock matrix, steam adds OH and H radicals (ions) to the combustion zone. This improves combustion kinetics (analogy to smokeless flares);
steam added (and created) acts as an efficient heat transfer medium to convey heat from the combustion zone to the cold bitumen interface. This improves EOR kinetics;
Steam stimulates increased combustion completeness, even for lean mixes (ie more CO2 less CO);
Steam stabilizes combustion (HTO is more likely than LTO);
Steam supplies some direct heat.
Lets define EOR energy efficiency as:
For SAGD (SAGDOX (O)), if we assume that the energy content of bitumen (heating valve) is 6MMBTU/bbl, and that the net efficiency of steam production and delivery to the sand face is 75% (85% in a boiler and 10% loss in distribution); then our SAGD efficiency is:
For our simulation (4.2) our average ETOR is 1.180 MMBTU/bbl and our SAGD efficiency is 73.8%.
For SAGDOX our energy calculation is more complex. The steam component will have a similar factor (ETOR (steam)/0.75), but oxygen will be different. If we assume our oxygen ASU oxygen use is 390 kWh/tonne O2 (for 99.5% pure oxygen) and that electricity if produced on-site from a gas-fired, combined-cycle power plant at 55% efficiency, for every MMBTU of gas used to produce power, oxygen in the reservoir releases 5.191 MMBTU of combustion energy. Using these, our SAGDOX efficiency is:
To qualify as a true invention the proposal/process/equipment has to be not obvious to one “skilled in the art”. SAGDOX meets this criteria for the following reasons:
It is no obvious that there should be limits on preferred oxygen concentration ranges for SAGDOX injection gases. On the low end, the stability of combustion in situ at low oxygen levels in steam has not been widely studied nor reported. On the high end, the idea that steam use or steam inventory is the deciding factor in bitumen productivity, has not been widely proposed nor published. The specific range and rationale has not been claimed by others.
The synergistic benefits of oxygen and stream are no well-known, not obvious and not published (to my knowledge).
The well configurations for SAGDOX are unique. No one else has tried SAGDOX.
The fact that SAGDOX can also result in extended well lengths, has not been appreciated elsewhere.
No one else has proposed/contemplated an integrated Cogen: ASU plant.
Hydrogen gas production has been noted in some ISC projects for heavy/medium oil, but there is no experience in bitumen. Reservoir conditions in SAGDOX should be ideal for hydrogen production.
The advantages of SAGDOX in inhomogeneous reservoirs and leaky reservoirs are intuitive. No field tests have been conducted.
O2 content in mix, within range claimed;
Geometry of well configurations;
Method of supplying steam and oxygen gas;
Purity of oxygen (but no more than ˜5% impurities and impurities are “inert”);
Length of horizontal wells (up to hydraulic limit).
SAGDOX is a bitumen EOR process that uses mixtures of steam and oxygen gas in the preferred range of 5 to 50 (v/v) % oxygen in steam. To control corrosion, it is preferable to inject separate streams of oxygen and steam and allow mixing in the reservoir to create the desired mix. We can provide these gases using separate facilities—steam boilers to generate steam and cryogenic air separation units (ASU) to produce oxygen gas. The boilers require a fuel-natural gas is preferred and the ASU requires electricity.
If we integrate steam and oxygen facilities, on site, we can use a cogen plant to produce steam and electricity. We can then dedicate the electricity to the ASU (
On a net basis, the integrated plant would consume natural gas and produce oxygen and steam for SAGDOX. A typical high-efficiency modern gas turbine has efficiencies in the range of 40-45%. On the low-side turbine efficiencies are about 20-25%. As we will show these limits if applied, would limit SAGDOX gas concentrations to about 25-30% oxygen on the low side or 50-55% on the high side. In order to extend the low side to the preferred SAGDOX range we can simply add a conventional steam boiler as shown in
The advantages of an integrated approach include:
Then at the cogen plant, steam demand=1.111 E (1-x) MMBTU/bbl bit oxygen demand=xE MMBTU in the reservoir from combustion=0.0002717 xEZ MMBTU(e) at the cogen plant.
Table 3 shows an analysis of the above, using ETOR values in Table 2. We have defined energy efficiency as:
Table 4 compares efficiencies. The following comments are noteworthy.
An integrated Cogen:ASU plant to produce separate streams of steam and oxygen gas
We have simulated a SAGD process in a typical Athabasca reservoir—25 m.net pay, 800 m. SAGD wells separated by 5 m., 2 MPa pressure. This acts as a base case for SAGDOX comparison. The results are shown in
Bitumen drains both from the bitumen bank and from the cold bitumen front. Water drains from the saturated-steam zone and from the bitumen front.
SAGDOX is a complex process—more complex than SAGD. We are not sure what is the rate-limiting step for SAGDOX, but we believe steam use and steam inventory are key factors. Steam is an ideal fluid to effect heat transfer. Compared to hot combustion gases, steam has 2 big advantages. A fixed volume of steam will deliver a least twice as much heat when it condenses compared to hot combustion gases, and, when steam condenses, it creates a transient low pressure zone that draws in more steam. Steam in a gas chamber acts like a heat pump, to the cold walls, with the plumbing.
Despite lower heat transfer rates than steam, combustion has some decided advantages. Combustion will vaporize connate water, reflux some condensed steam and produce some steam as a product of combustion. These will all add to the steam inventory and aid transfer. But, as the oxygen content, in SAGDOX injection mix, increases the amount of steam injection decreases, for constant energy injection rates. Table 1 shows the properties of steam-oxygen mixtures.
We expect that for SAGD productivity, we will need to inject more energy than SAGD (ie higher ETOR values), increasing as oxygen levels increase. Table 2 shows this for several SAGDOX mixtures.
The preferred range of O2 concentration is between 5 and 50 (v/v) %. Below 5% oxidation may be unstable and there is little extra heat to ensure connate water evaporation and steam reflux. Above 50%, we start to oxidize bitumen that we could otherwise produce and it may be difficult to sustain water reflux rates to maintain productivity.
As many changes therefore may be made to the embodiments of the invention without departing from the scope thereof. It is considered that all matter contained herein be considered illustrative of the invention and not in a limiting sense.
Number | Date | Country | |
---|---|---|---|
61507196 | Jul 2011 | US |