The present invention generally relates to predicting sales for convenience retail outlets including, without limitation, before such an outlet opens, or where historical sales data are otherwise unavailable.
Typical methods for forecasting sales are mostly directed to existing stores and utilize in-store historical sales data. For new stores, where historical data do not exist or are insufficient, predictive methods are often based on external surrounding data which can be used to provide a rough estimate of sales. Such external surrounding data include, for example, an estimate of market share for a given area where the new store will be located, and/or references to sales for similar stores' that already exist in the proximate geographical area.
For predicting sales of new stores where those stores have physical constraints on customer accessibility and/or customer preference, the high resolution of underlying data as normally would be relied upon otherwise, is often unobtainable. Hence, a predictive method of sales for such new stores is desirable.
The present invention employs both high and low resolution data to predict sales for a new store in a certain geographical area. The method is preferably computer-based, and segments customers in the certain geographic area into Geographically Distributed Customer Segments (GDCS) such as e.g. residents, shoppers and workers that are within the certain geographic area, and generates a Consumer Demand Estimation Module (CDEM). The CDEM provides an estimate of Unit Demand for each GDCS using sub-grids of the certain geographic area, with geographic and non-geographic data comprised of the following: a Store Accessibility Model, a Store Attractiveness Model, a Customer Preference Model, and a Demand Adjustment Factor. The estimate of Unit Demand is utilized by a Sales Prediction Module which predicts potential sales for the new store and optionally the influence of the new store on existing, competing stores.
As will be illustratively explained in an embodiment of the present invention as further detailed below, the present invention provides a technique for predicting the sales for a new store in a certain geographical area. Without limitation, a store in this regard includes a convenience retail outlet. Preferably, the new store is or will be located proximate major traffic points, including e.g. fast food restaurants, coffee shops, convenience stores, ATM machines, gas stations and the like as further preferably located near shopping malls, supermarkets, railway stations, office buildings, residential complexes, etc.
In a preferred embodiment as hereinbelow described, the present invention partitions a low resolution grid into high resolution sub-grids (i.e. geographical elements), classifies them into different customer classes (also known as occasions), and then applies accessibility and attractiveness scores to estimate the Unit Demand for each class using a known Geographical Information System (GIS). GIS's serviceable in the invention are those conventionally available that effectively merge cartographic and database technology and as a system has the general abilities to integrate, store, edit, analyze, share and display geographic information, with ability to create interactive queries, e.g. user-based searches, analyze spatial information, edit data, maps and present attending results.
The invention integrates data from stores already existing in the certain geographic area, preferably in-store data (e.g. on-site shopper surveys, existing store sales data and the like), and external data (e.g. geographic and non-geographic data, the latter including demographic data) to generate a Customer Demand Estimation Module which can then be applied to new stores via a Sales Prediction Module to predict potential sales for the new store.
Once the certain geographic area for the new store is identified, non-geographic and geographic profile data are obtained from that area. As shown in
Geographic data includes without limitation the road connectivity of each GDSC in the certain geographic area to the new store location (e.g. from each customer segment, such as various residences, places of work and shopping centers to the new store), the conditions of the roads, the means of transportation, the cost of transportation, the visibility of the new store, the size of the new store, the reputation of existing stores in the area, the service level of the existing stores in the area, the environment of existing stores in the area.
Turning to
An embodiment for each Module and Model will now be described.
A CDEM for purposes of the invention comprises geographic and non-geographic information with customer segmentation (into residents, shoppers, workers) in the certain geographical area within which the new store is or will be located, which information is then used to form an Accessibility Model, an Attractiveness Model, a Customer Preference Model, and a Demand Adjustment Factor. From these, the CDEM provides an estimate of Unit Demand in, for example, dollars ($) per person, ascribable to a particular segment of customers within that certain geographical area. The estimates for Unit Demand are then used in a Sales Prediction Module which predicts the potential sales for the new store in that certain geographical area, and optionally, predicts the impact of the new store's sales on competitor stores in that certain geographical area.
In one aspect of the invention, both geographic profile and non-geographic profiles are integrated into a Geographic Information System (GIS) platform, as conventionally known and available, and analyzed together,
Segmenting Customers within the Certain Geographical Area into Geographically Distributed Customer Segments (GDCS):
Customer segmentation is performed by Geographical Element Type, and is referred to herein as GDSC (see
An on-site customer survey is performed by dividing the geographical areas into small grids, e.g. 200 m×200 m, as illustrated in
For a randomly selected customer who comes into the store to buy, the investigator will ask that customer some questions.
For example:
Question 1: which grid on the map are you from? (The investigator will show the customer a map of the geographical area divided into the grids as aforesaid).
Question 2: how much have you to spend in this store (The investigator will record the answer in a two-dimensional data table.)
Thus, as shown in
This customer survey period will last for some period of time suitable to know the store's sales in this same period, and to know the relative proportion of each grid so that the sales contribution from each store i (element 503) to grid j (element 504): s(i,j) (element 505).
Turning to
For example:
Suppose there are M candidate paths from a GDCS to a store, and the i-th path is divided into Ki segments, wherein each segment has certain attributes, e.g. length (l), walking time (t). Thus:
p
i
={ps
i,1(li,1,ti,1),psi,2(li,2,ti,2), . . . ,psi,Ki(li,Ki,ti,Ki)}
Then the accessibility can be evaluated by:
a=min(Σti,k)
iε{1,2 . . . M} k=1
The attractiveness model is used to measure a store's ability to attract customers. A store's attractiveness can be set by people's experiences. In a preferred embodiment, a quantitative closed-loop feedback mechanism (see
The variables above are defined in
The customer preference model estimates the probability that a customer segment selects each competing store based on the difference in each store's attractiveness and accessibility scores. The customer preference can be computed by:
Here, c is a function to measure the composite score of a store and belong to [0,1]. We use g(t,a,b; θ) to represent c.
c=g(t,a,b; θ)=composite score, cε[0,1]
An example of g is as the following (also shown in
g(t=residential, a,b=θ)
θ1+(1−θ1)(1−a/R1) 0≦a≦R1
θ2+(θ1−θ2)(1−(a−R1)/(R2−Ri)) R1<a≦R2
θ2(1−(a−R2)/(R3−R2)) R2<a≦R3
0 a>R3
For other situations that b≠1:
g(t,a,b; θ)=g(t, a/b, 1; θ)
Here, θ={θ1, θ2, R1, R2, R3} is the parameter list, the meanings of these parameters are shown in
t(k)=type of GDCS k (shopping center, office building, residential subdivision, etc.)
a(k)=accessibility scores of store i and competitors for GDCS k
b=attractiveness scores of store i and competitors
The demand adjustment factor model adjusts the final sales contribution to a store, taking into further consideration certain discounts to said model based on attractiveness, accessibility, store clustering effect, and the probability of selection. The demand adjustment factor is represented by:
f
c(t,a,b;θ)=cmax(ctotal/cmax)μp με[0,1]
wherein:
This module implements demand evaluation and sales prediction.
For demand evaluation, information needed includes;
Unit demand for residents: $ per person
Unit demand for office workers: $ per unit are of office space
Unit demand for shoppers: $ per $1 M sales
For sales prediction, wherein the prediction is variously for sales of new and existing stores, and can include the impact on competitors, a high resolution demand model is constructed in order to perform the demand evaluation:
While, U(t) and θ have been decided, the sales of store i can be written as:
Here, fi(t(k),a(k),b; θ) is the demand adjustment factor (element 104,
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with a system, apparatus, or device running an instruction.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with a system, apparatus, or device running an instruction. Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may run entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present invention are described below with reference to flowchart illustrations (e.g.,
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which run on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more operable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be run substantially concurrently, or the blocks may sometimes be run in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
Although an illustrative embodiment of the present invention has been described herein with reference to the accompanying drawings, it is understood that the invention is not limited to the illustrative embodiment and that various other changes and modifications may be made by one of skill in the art without departing from the scope of the invention.