Salts of N-[6-cis-2,6-Dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4'-(trifluoromethoxy)[1,1'-biphenyl]-3-carboxamide

Information

  • Patent Application
  • 20120035174
  • Publication Number
    20120035174
  • Date Filed
    October 13, 2011
    13 years ago
  • Date Published
    February 09, 2012
    12 years ago
Abstract
Salts of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide are prepared and characterized.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to salts of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide, as well as to pharmaceutical compositions comprising the same and methods of treatment using the same.


2. Related Background Art


The compound N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide has the formula (I):




embedded image


as described in WO 2007/131201. Valuable pharmacological properties are attributed to this compound; thus, it can be used, for example, as modulating the activity of the hedgehog signaling pathway useful in therapy for diseases which respond to modulating the activity of the hedgehog signaling pathway. WO 2007/131201 does not disclose any specific salts or salt hydrates or solvates of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide.


It has been found that the salt forms of the present invention shows that in addition to good physico-chemical properties that salts may have high permeability and high bioavailability.


SUMMARY OF THE INVENTION

The present invention is directed to salts of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide. Preferred embodiments of the present invention are directed to the hydrochloride, diphosphate and sulfate salts of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide.


The invention is further directed to pharmaceutical compositions comprising:


(a) a therapeutically effective amount of an inventive salt of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide; and


(b) at least one pharmaceutically acceptable carrier, diluent, vehicle or excipient.


The present invention is also directed to a method of treating a disease which responds to modulating the activity of the hedgehog signaling pathway comprising the step of administering to a subject in need of such treatment a therapeutically effective amount of an inventive salt of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the x-ray powder diffraction pattern for N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide diphosphate salt.



FIG. 2 shows the x-ray powder diffraction pattern for N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide monosulfate salt.



FIG. 3 shows the x-ray powder diffraction pattern for N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide monohydrochloride salt.





DETAILED DESCRIPTION OF THE INVENTION

As used herein, “salt” refers to a compound prepared by the reaction of an organic acid or base drug with a pharmaceutically acceptable mineral or organic acid or base; as used herein, “salt” includes hydrates and solvates of salts made in accordance with this invention. Exemplary pharmaceutically acceptable mineral or organic acids or bases are as listed in Tables 1-8 in Handbook of Pharmaceutical Salts, P. H. Stahl and C. G. Wermuth (eds.), VHCA, Zurich 2002, pp. 334-345. In particular, salts include, but are not limited to, hydrochloride, phosphate, sulfate, mesylate, esylate and besylate salt forms. As used herein, “polymorph” refers to a distinct “crystal modification” or “polymorphic form” or “crystalline form”, which differs from another with respect to x-ray powder diffraction pattern, physico-chemical and/or pharmacokinetic properties, and thermodynamic stability.


An embodiment of the present invention is directed to salts of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide. In preferred embodiments, the salt is selected from the mono hydrochloride, diphosphate and mono sulfate salts of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide. A particularly preferred embodiment of the of the present invention are the diphosphate and the mono sulfate salts of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide.


The present invention may be used for treating carcinoma including that of the bladder (including accelerated and metastatic bladder cancer), breast, colon (including colorectal cancer), kidney, liver, lung (including small and non-small cell lung cancer and lung adenocarcinoma), ovary, prostate, testes, genitourinary tract, lymphatic system, rectum, larynx, pancreas (including exocrine and endocrine pancreatic carcinoma), esophagus, stomach, gall bladder, cervix, thyroid, and skin (including squamous cell carcinoma); tumors of the central and peripheral nervous system including astrocytoma, neuroblastoma, glioma, medulloblastoma and schwannomas; tumors of mesenchymal origin including fibrosarcoma, rhabdomyosarcoma, and osteosarcoma; and other tumors including melanoma, Merkel cell carcinoma, xeroderma pigmentosum, keratoacanthoma, seminoma, thyroid follicular cancer, and teratocarcinoma. The present invention may also be used for treating mastocytosis, germ cell tumors, pediatric sarcomas, and other cancers.


The present invention is also useful for inhibiting the growth and proliferation of hematopoietic tumors of lymphoid lineage such as leukemia, including acute lymphocytic leukemia (ALL), acute lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkins lymphoma, non-Hodgkins lymphoma, hairy cell lymphoma, histiocytic lymphoma, and Burkitts lymphoma; and hematopoietic tumors of myeloid lineage including acute and chronic myelogenous leukemias (CML), myelodysplastic syndrome, myeloid leukemia, and promyelocytic leukemia.


Example 1
Preparation of the Diphosphate Salt

To a 250 mL, three-necked reaction flask 7.0 g (0.0144 mole) of 2-methyl-4′-trifluoromethoxy-biphenyl-3-carboxylic acid [6-(cis-2,6-dimethyl-morpholin-4-yl)-pyridin-3-yl]-amide free base and acetonitrile (178.5 mL, HPLC grade) was added under nitrogen. The suspension was heated to 58° C. under nitrogen over 20 minutes to obtain a clear solution. To the reaction solution 3.403 g of 85% phosphoric acid in water (2 equiv) was added over 18 minutes. Within 5 minutes of the phosphoric acid addition, N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide di-phosphate precipitates out. The white slurry was stirred and cooled to room temp over 100 minutes. The slurry was then cooled to 0±5° C. over 5 minutes and stirred for 1 hour. The mixture was filtered under suction and solid was washed with acetonitrile (3×9.4 mL). The drug substance was dried under vacuum at 50° C. for 16 hours to obtain 9.63 g of the phosphate salt (yield: 98%).


Example 2
Preparation for the Monosulfate Salt

To a 100 mL, three-necked reaction flask was charged 3.0 g (6.18 mmole) of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide free base and acetonitrile (35 mL, HPLC grade) under nitrogen. The suspension was heated to 50° C. under nitrogen over 30 minutes to obtain a clear solution. To the mixture was added a 1.5 mL of 6 M sulfuric acid (1.5 equiv) over 10 minutes. The mixture was stirred at 50° C. for 3 hours and allowed to cool to 25° C. over 25 minutes. Within 5 minutes the solids came out. The slurry was stirred at 25° C. for 16 hours. The mixture was filtered under suction and solid was washed with acetonitrile (10 mL). The drug substance was dried under vacuum at 55° C. for 16 hours to obtain 3.0 g of the sulfate salt (yield: 83%).


Example 3
Preparation for the Monohydrochloride Salt

To a 100 mL, three-necked reaction flask was charged 3.0 g (6.18 mmole) of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide free base and acetone (25 mL, HPLC grade) under nitrogen. The suspension was stirred at 25° C. under nitrogen for 30 minutes to obtain a clear solution. To the mixture was added a 1.5 mL of 6 M hydrochloric acid (1.5 equiv) over 10 minutes. Within 5 minutes the solids came out. The slurry was stirred at 25° C. for 16 hours. The mixture was filtered under suction and solid was washed with acetone (10 mL). The drug substance was dried under vacuum at 55° C. for 16 hours to obtain 3.0 g of the hydrogen chloride salt (yield: 93%).


Example 4

Table 1 below shows stability measured by degradation products (or assay) and appearance color. DPs are analyzed by HPLC (method see Table 3). They are calculated as area-% products. Compositions of the mixtures in mass % are as follows. Mixture 1: Lactose 200 mesh/maize starch modified 1500 LM/Aerosil 200/Magnesiumstearate 78.5:20:0.5:1 (m/m/m/m). Mixture 2: Mannitol/Avicel PH 102/Cutina HR (57:38:5) (m/m/m).










TABLE 1








Salt Form

















Hydrochloride,











Phosphate, di
Sulfate, mono
mono














DP
CL
DP
CL
DP
CL


Test Conditions
[%]

[%]

[%]





Unstressed drug














substance














Bulk
1.02

0.42

0.30









0.2 % solutions or



suspensions,



2 week 50° C.














pH 1
0.99
A↓






pH 3
1.07
A↓






pH 5
1.04
A↓






pH 7
1.06
A↓






pH 9
1.05
A↓






pH 11
1.03
A↓






Water
1.07
A↓
0.41
A↓
0.31
A↓


Methanol
1.02
A*
0.68
A*
2.06
A*


Acetonitrile
1.93
A*
0.44
A*
0.38
A*


Acetonitrile/Water
1.10
A*
0.80
A*
1.72
A*


(50:50)








2% (or 5%) solutions








or suspensions, 1 day














room temperature














0.5% CMC

A↓
0.45
A↓
0.33
A↓


HPMC Cellulose
1.04
A↓
0.47
A↓
0.32
A↓


4000








0.5%








Tween 80, 0.8%
1.07
A↓
0.43
A↓
0.31
A↓


Solid state, 2 week














50° C., tight container














Bulk (HPLC)
1.03
A
0.40
A
0.31
A


Bulk (XRPD)
No

No

No




change

change

change



Solid state, 2 week














80° C., tight container














Bulk (HPLC)
1.06
A
0.43
A
0.35
A


Bulk (DSC)
No

No

No




change

change

change



2 weeks 50° C.,














tight container














1% in mixture 1
0.96
A
0.41
A
0.27
A


1% in mixture 2
1.11
A
0.44
A
0.39
A


Solid state, 2 week














50° C./75% r.h.














Bulk (HPLC)
0.96
A
0.42
A
0.29
A


Bulk (XRPD)
Slightly

No

No



changed *
change*

change

change



Solid state, 2 week














80° C./75% r.h.














Bulk (HPLC)
1.02
A
1.34
A
0.35
A


Bulk (XRPD)
Changed**

No

No






change

change



2 weeks














50° C./75% r.h.














1% in mixture 1
1.59
A
0.70
A
2.85
A


1% in mixture 2
1.01
A
0.41
A
0.31
A


Xenon light














(approx. 1200 kLuxh)














Bulk (HPLC)
1.35
A
1.1 
A
1.46
B


Bulk (XRPD)
No

No

No




change

change

change









Bulk corrosivity











2 day 80% r.h.
No visible
No visible
No visible


with stainless
change in the
change in the
change in the


steel coupon
surface of
surface of
surface of



the stainless
the stainless
the stainless



steel coupon
steel coupon
steel coupon





*There is a new peak in the XRPD pattern when compared with the unstressed diphosphate.


**The XRPD pattern is similar to that of phosphate, yet with one extra peak.


↓Suspension


*Clear solution after stress test


— Test not performed


A No change of color


B Slight discoloration


C Medium discoloration


D Strong discoloration






Example 5

Table 2 below shows chemical and physico-chemical characteristics.










TABLE 2








Salt Form













Hydrochloride,


Parameter
Phosphate, di
Sulfate, mono
mono
















Elementary








analysis
calcul.
found
calcul.
found
calcul.
found





% C
45.82
46.06
53.51
53.28
59.83
60.11


% H
4.73
5
4.84
4.91
5.21
5.06


% F
8.36
8.35
9.77
9.44
10.92
10.69


% N
6.17
6.08
7.2
7.08
8.05
7.88


% O
25.82
25.29
19.19
20.29
9.2
9.93


% P
9.09
9.22






% S


5.49
5.68
.
.


% Cl




6.79
6.33







DSC-Purity










Heating rate
N/A
N/A
N/A


10° C./min










HPLC-Purity (e.g. area-%)











1.02
0.42
0.30







Melting point (DSC)










Heating rate
10
10
10


[° C./min]





Melting
N/A
N/A
N/A


enthalpy (J/g)










pH of 1% solution or suspension










In water
2.02
1.45
1.69







Solubility (approx. at 25° C., mg/ml)










0.1N HCL
0.004
0.003
0.002



(Final pH 1.04)
(Final pH 1.09)
(Final pH 1.02)


Phosphate
0.001
0.002
0.000


buffer, pH 6.8
(Final pH 2.86)
(Final pH 1.82)
(Final pH 5.93)


Water
0.009
0.007
0.005



(Final pH 1.94)
(Final pH 1.26)
(Final pH 1.67)


Methanol
>40
24.4
>40


Ethanol
19.7
19.7
56.4


2-Propanol
14.3
4
10.3


Acetone
2.8
1.7
3.2


Ethyl Acetate
0.3
0.09
2.5


Acetonitrile
0.4
1.4
4.1







Thermogravimetry (weight loss in %)










Heating rate
0.19% at
1.89% at
0.48% at


10° C./min (%)
150° C.
150° C.
150° C.







Residual solvents (%)











Heptane:
Acetonitrile:
Acetone:



0.0001463,
0.419087,
0.0002356, Water:



Acetonitrile,
Water: 1.36,
0.4,.







Intrinsic dissolution rate (mg min−1 cm−2)










HCl 0.1N





Water





Water +





Surfactant





(SDS)





NMR
Chemical
Chemical
Chemical



shift changed
shift changed
shift changed





* Attempts to measure intrinsic dissolution rate were not successful due to low solubility.






Example 6

Table 3 below shows morphic properties.










TABLE 3








Salt form















Hydrochloride,










Parameter
Phosphate, di
Sulfate, mono
mono










Thermal properties










As is





DSC
213° C.
N/A
N/A


XRPD (crystallinity)
Crystalline
Crystalline
Crystalline


After heating and cooling-





DSC
N/A
N/A
N/A


XRPD
N/A
N/A
N/A







Hygroscopicity










As is





Loss on drying by TGA
0.19 at 150° C.
1.89 at 150° C.
0.48 at 150° C.


(%)





DVS

















Sorp.
Desorp.
Sorp.
Desorp.
Sorp.
Desorp.



Weight
Weight
Weight
Weight
Weight
Weight


RH (%)
% chg.
% chg.
% chg.
% chg.
% chg.
% chg.





 0.0
0.000
−0.038
0.000
1.007
−0.0001
−0.0114


25.0
0.059
0.136
1.232
1.256
0.3334
0.3799


50.0
0.149
0.341
1.455
1.495
0.4660
0.4932


75.0
0.270
1.268
1.634
1.716
0.5753
0.6069


85.0
0.400
1.828
1.835

0.6525
0.6817


95.0
3.420
3.420
2.330
2.330
0.8784
0.8784










XRPD after DVS test
No change
No change
No change










Crystal modification after 72 hours vibration











DSC/XRPD/TG
DSC/XRPD/TG
DSC/XRPD/TG





Water
XRPD pattern
Dissociated to free
Dissociated to free



changed, different
base.
base



than free base.
Final pH 1.26
Final pH 1.94



Final pH 1.94




pH 6.8 buffer
XRPD pattern
Dissociated to free
No form change



changed, different
base
Final pH 5.93



than free base.
Final pH 1.82




Final pH 2.86




pH 3 buffer
XRPD pattern
Dissociated to free
Dissociated to free



changed, different
base
base



than free base.
Final pH 2.00
Final pH 2.89



Final pH 2.15




0.1N HCl solution
XRPD pattern
XRPD pattern
XRPD pattern



changed, different
changed, different
changed, different



than free base.
than that of free
than that of free




base.
base.


Methanol

Y, crystalline to





crystalline



Ethanol
XRPD pattern
N, no form change
N, no form change



changed, poorer





crystalline than the





original.




Iso Propanol
N, no form change
N, no form change
N, no form change


Ethyl acetate
N, no form change
N, no form change
N, no form change


Acetone
N, no form change
Y, crystalline to
N, no form change




crystalline



Acetonitrile
N, no form change
N, no form change
N, no form change







Effect of grinding











No change in
No change in
No change in



XRPD
XRPD
XRPD







Effect of compression











No change in
No change in
No change in



XRPD
XRPD
XRPD





N—no,


Y—yes






Example 7

Rat TK data of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide diphosphate dosed as a suspension, with a 10-fold increase in dose, showed a 3.1-fold increase in exposure from 10 to 100 mpk. The inter-subject exposure is slightly variable, especially at high dose (100 mpk). See Table 4.















TABLE 4







AUC0-24
AUC0-24/dose

Cmax/dose



Dose

(ng*h/
(ng*h/mL)/
Cmax
(ng/mL)/



(mg/kg)
Rat
mL)
(mg/kg/day)
(ng/mL)
(mg/kg/day)
tmax (h)





















10
001
43300
4330
2820
282
8.00



002
52800
5280
3160
316
8.00



003
49400
4940
3100
310
4.00


100
004
232000
2320
14800
148
8.00



005
96800
968
4520
45.2
8.00



006
131000
1310
7490
74.9
8.00









Example 8

A suspension formulation of the free form and the diphosphate salt of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide are dosed to rat at 3 mpk and 2.1 mpk, respectively. It was found that the disphosphate salt provided a large increase in exposure (16-fold increase) compared to the free form as outline in Table 5.












TABLE 5








2.1 mg/kg PO dose
3.0 mg/kg PO dose
IV 3 mg/kg**












in suspension
in suspension
Free




Diphosphate salt
Free base *
base














PK Parameter
Mean
SD
Mean
SD
Mean
SD
















AUClast
5747
1395
510
153
17500
n = 2


(nM*h)








AUClast/dose
2737
664
170
51
5830
n = 2


(nM*h)/mg/kg








AUCinf (nM*h)
5917
1451
512
140
17500
n = 2


AUCinf/dose
2818
691
171
46.7
5840
n = 2


(nM*h)/mg/kg








C0/Cmax (nM)
947
167
237
76.3
6108
n = 2


Cmax/dose
451
79.3
78.9
25.4




(nM/mg/kg)








Tmax (h)
2.00
0.00
0.500
0.00




% F
48%

3%












Example 9

Details about Methodology, Instruments and Standards Used in Examples 4-5


1 pH Value

The pH was determined by transferring approximately 10 mg of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide salt to a 20 mL vial and adding 10 mL of the corresponding buffer or water. The solutions were stirred continuously as the pH was measured.


2 Determination of Approximate Solubility

Excess salts were equilibrated in solvents for 1 day at 25±0.5° C. Slurries were filtered and the filtrate saved for HPLC solubility determination.


3 Hygroscopicity

Sorption/desorption isotherms: Instrument, Surface Measurement System DVS-1 temperature at 25±0.5° C.


4 Polymorphism Behavior

Slurries of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide salts were stirred at high speed for 24 hours at 25±0.5° C. The slurries were filtered and the solids collected for XRPD analyses.


5 HPLC Method

Column: Symmetry C18, 3.5 micrometer particle diameter, 4.6×75 mm (Waters)


Column temperature: 35 degrees


Flow rate: 1 mL/min


Mobile phase: A=0.1% TFA in water, and B=acetonitrile


Gradient table shown below in Table 6:














TABLE 6







Time (min)
Flow (mL/min)
% A
% B




















1

1.00
85
15


2
10
1.00
15
85


3
10.5
1.00
15
85


4
10.6
1.00
85
15










Stability sample preparation for HPLC analysis:


For phosphate in pH 1 buffer solution, acetonitrile was added to dilute the 0.2% slurry to 0.1% clear solution. For phosphate in the rest of buffer solutions, tetrahydrofuran was added to dilute the 0.2% slurry to 0.1% clear solution. For salts in water, acetonitrile was added to dilute the 0.2% slurry to 0.1% clear solution. For salts in methanol, acetonitrile or acetonitrile/water (50:50, v/v), the corresponding solvent or solvent mixture was added to dilute the 0.2% slurry to 0.1% clear solution. For salts in 0.5% CMC, HPMC cellulose 4000 0.5%, or Tween 80, 0.8%, tetrahydrofuran and water were added to dilute the 2% slurry to 0.1% clear solution and to reach tetrahydrofuran/water 50:50 (v/v). For bulk stability samples (including the samples in excipient mixtures), acetonitrile/water (80:20, v/v) was added to make 0.1% clear solution.


Example 10

The sulfate salt and diphosphate salt of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide (Compound A in Table 7 below) are dosed as a suspension at 1 mg/mL in 0.5% Methyl Cellulose/0.5% Tween 80 at a dosing volume of 10 mL/kg to Wistar rats. The diphosphate salt was found to give 1.6× more exposure in terms of AUC (0-24 hours) ng*hr/mL when compared to the sulfate salt. Results are shown below in Table 7.
















TABLE 7






Dose


AUC0-24/

Cmax/Dose




(mg/

AUC0-24
dose (ng*h/mL)/
Cmax
(ng/mL)/



Compound
kg)
Rat
(ng*h/mL)
(mg/kg/day)
(ng/mL)
(mg/kg/day)
tmax (h)






















Compound A
10
1b
25900
2590
1900
190
4


Sulfate

2b
28700
2870
1860
190
2




3b
36200
3620
3560
360
1


Compound A
10
001
43300
4330
2820
282
8


Diphosphate

002
52800
5280
3160
316
8




003
49400
4940
3100
310
4









As shown in Table 7, the mean tmax for sulfate salt is shorter (2.3 hours) versus diphosphate salt (6.7 hours). The mean cmax/dose for phosphate is 303 and for sulfate is 244. The mean auc/dose for phosphate is 4850, for sulfate is 3030. Overall, the sulfate salt showed less exposure in-vivo (about 40% less) than the diphosphate salt.


While the invention has been described above with reference to specific embodiments thereof, it is apparent that many changes, modifications, and variations can be made without departing from the inventive concept disclosed herein. Accordingly, it is intended to embrace all such changes, modifications, and variations that fall within the spirit and broad scope of the appended claims. All patent applications, patents, and other publications cited herein are incorporated by reference in their entirety.

Claims
  • 1. A mono hydrochloride salt of N-[6-(cis-2,6-dimethylmorpholin-4-yl)pyridine-3-yl]-2-methyl-4′-(trifluoromethoxy)[1,1′-biphenyl]-3-carboxamide.
  • 2. A pharmaceutical composition comprising: (a) a therapeutically effective amount of a salt according to claim 1; and(b) at least one pharmaceutically acceptable carrier, diluent, vehicle or excipient.
Parent Case Info

This application is a divisional application of U.S. patent application Ser. No. 13/061,572, filed Mar. 1, 2001, which is a national stage of International Application No. PCT/US2009/56918, filed Sep. 15, 2009, which claims benefit of U.S. Provisional Application No. 61/097,580, filed Sep. 17, 2008.

Provisional Applications (1)
Number Date Country
61097580 Sep 2008 US
Divisions (1)
Number Date Country
Parent 13061572 Mar 2011 US
Child 13272814 US