SAM-II RIBOSWITCH AND USES THEREOF

Abstract
Embodiments of the present invention provide for SAM-II riboswitches and analogs thereof, and methods for using the same. In certain embodiments of the present invention, test compounds are identified that associate with SAM-II riboswitches. In other embodiments, test compounds found to associate with SAM II can be used to increase or decrease gene expression of Gram-negative bacterial organisms.
Description
FIELD OF THE INVENTION

The present invention relates to compositions and methods of use thereof related to SAM-II riboswitch.


BACKGROUND OF THE INVENTION

Riboswitches are regulatory elements found within the 5′-untranslated regions (5′-UTRs) of many bacterial mRNAs. Riboswitches control gene expression in a cis-fashion through their ability to directly bind a specific small molecule metabolite. Ligand recognition is effected by the first domain of the riboswitch, termed the aptamer domain while the second, the expression platform, transduces the binding event into a regulatory switch. The switch includes an RNA element that can adapt to one of two mutually exclusive secondary structures. One of these structures is a signal for gene expression to be “on” and the other conformation turns the gene “off” (example in FIG. 1).). In Bacillus subtilis and other gram positive bacteria, it is believed riboswitches control greater than 2% of all genes, many of which are important for key pathways controlling the amino acid, nucleotide and cofactor metabolism.


Riboswitch aptamer domains are controlled by a diverse set of metabolites. In one example bacteria, amino acid metabolism in various Bacillus species is controlled by three known riboswitches: glycine, lysine and S-adenosylmethionine (SAM). Each has a distinct aptamer domain that has evolved to specifically recognize a specific ligand. Currently, there are three known distinct SAM riboswitches, one of which is dominant in gram positive bacteria, SAM-I, and one dominant in gram negative alpha-proteobacteria, SAM-II, and the third in lactobacteria, SAM-III. The SAM-II riboswitch is a cis-regulatory element found predominantly in alpha-proteobacteria that binds S-adenosyl methionine (SAM). Its structure and sequence appear to be unrelated to the SAM I riboswitch found in Gram-positive bacteria. This SAM II riboswitch is located upstream of the metA and metC genes in Agrobacterium tumefaciens, and other methionine and SAM biosynthesis genes in other alpha-proteobacteria. The SAM-II riboswitch is short with less than 70 nucleotides and is structurally relatively simple being composed of a single hairpin and a pseudoknot.


A need exist to better control bacterial growth, such as Gram negative bacterial growth, and generate effective treatments against bacterial infections. Embodiments of the present invention fulfill this need.


SUMMARY OF THE INVENTION

One aspect of the present invention provides for methods of identifying a compound that associates with a SAM-II riboswitch including modeling at least a portion of the atomic structure depicted in FIGS. 4A and 4B with a test compound; and determining the interaction between the test compound and the SAM-II riboswitch structure.


Certain embodiments herein concern crystalline atomic structures of SAM-II riboswitches. In accordance with the methods, the structures may also be used for modeling and assessing the interaction of a riboswitch with a binding ligand.


In other embodiments herein, a compound may be identified that associates with the SAM-II riboswitch and reduces bacterial gene expression or associates with the SAM-II riboswitch and induces bacterial gene expression. In a more particular embodiment, a bacteria can be a gram negative bacteria. In accordance with these embodiments, atomic coordinates of the atomic structure can include at least a portion of the atomic coordinates listed in Table 1 for atoms depicted in FIGS. 4A and 4B wherein said association determination step can include determining a minimum interaction energy, a binding constant, a dissociation constant, or a combination thereof, for the test compound in the model of the SAM-II riboswitch. In some particular embodiments, an association determination step can include determining the interaction of the test compound with a nucleotide of SAM-II riboswitch including U10, U11, U12, U20, U21, G22, U44, A45, A46, A47 or a combination thereof. In other embodiments, an association determination step can include determining the interaction of the test compound with an S-adenosyl-methionine moiety including a ribose sugar, a methionine side chain, a sulfur moiety, an adenine moiety or combination thereof. Alternatively, in a more particular embodiment, the association determination step can include determining the interaction of the test compound with a nucleotide of SAM-II riboswitch depicted in FIGS. 4A and 4B including U10, U12, U20, G22, U44, A46, A47 or a combination thereof. Other embodiments contemplated herein include an association determination step of determining the interaction of the test compound with a P2b helix region of the SAM-II riboswitch. Yet other embodiments contemplated herein can include an association determination step including determining the interaction of the test compound within a pocket created in a major groove of the SAM-II riboswitch. Further embodiments concern an association determination step including determining the interaction of the test compound with a major groove of a P2b helix of the SAM-II riboswitch.


Bacterial cells contemplated of use in the methods and compositions herein include, but are not limited to, Gram negative species, for example, proteobacteria including Escherichia coli, Salmonella, and other Enterobacteriaceae, Pseudomonas, Moraxella, Helicobacter, Stenotrophomonas, Bdellovibrio, acetic acid bacteria, Legionella and many others. Other groups of Gram-negative bacteria include the cyanobacteria, spirochaetes, green sulfur and green non-sulfur bacteria. Medically relevant Gram-negative cocci include three organisms, which cause a sexually transmitted disease (Neisseria gonorrhoeae), a meningitis (Neisseria meningitidis), and respiratory symptoms (Moraxella catarrhalis). Medically relevant Gram-negative bacilli include, but are not limited to those that primarily cause respiratory problems (Hemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa), principally urinary problems (Escherichia coli, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens), and usually gastrointestinal problems (Helicobacter pylori, Salmonella enteritidis, Salmonella typhi). Nosocomial gram negative bacteria can include Acinetobacter baumanii, which cause bacteremia, secondary meningitis, and ventilator-associated pneumonia. Medically relevant coccoid bacteria known to contain the SAM-II riboswitch include, but are not limited to, Bortedella pertusis and Bortedella bronchiseptica that causes whopping cough. In one embodiment, a bacterial organism can be medically relevant facultative intracellular bacteria known to contain the SAM-II riboswitch include, but are not limited to, Brucella melitenisis, which causes brucellosis in many areas of the world, and has been classified by the U.S. Center for Disease Control and Prevention as a potential agent in biological warfare. A related organism, Brucella suis, that also contains a SAM-II riboswitch, was the first pathogenic organism to be weaponized by the U.S. military in the 1950's, and thus represents a potential bioterrorism threat.


In certain embodiments, a SAM-II riboswitch disclosed herein can include one or more of the nucleotides listed in “Tertiary contacts” section of Table 2 where the nucleotide can be modified. In certain embodiments, the one or more modified nucleotides are selected from the group consisting of U10, U12, U20, G22, U44, A46, A47 or a combination thereof. In particular embodiments, the modified nucleotide of the SAM-II riboswitch can increase gene expression in a bacterial cell. For example, a test compound that contains a modified nucleotide may induce expression of a gene that is deleterious to a bacterial cell. In other embodiments, the modified nucleotide can decrease gene expression in a cell. For example, a test compound that contains a modified nucleotide may reduce expression of a gene that is necessary for survival of a bacterial cell. In certain particular embodiments, the modified nucleotide decreases sulfur production in a cell.


Embodiments of the present invention concern a test compound that associates with at least a portion of the SAM-II riboswitch atomic structure depicted in at least one of FIG. 4A or FIG. 4B. In accordance with these embodiments, the association can include association with at least one of nucleotides U10, U12, U20, G22, U44, A46, A47 or a combination thereof, wherein the composition is capable of modifying the SAM-II riboswitch activity of a bacterial organism by either inducing or reducing gene expression.


Certain embodiments concern compositions including, all of the 80 percent or more conserved nucleotides of the SAM-II riboswitch depicted in FIG. 1 (left) and 80% or greater, or 90% or greater or 95% or greater of the nucleotides depicted outside of the conserved region. One particular embodiment includes a composition of all 80 percent or more conserved nucleotides of the SAM-II riboswitch depicted in FIG. 1 (left) and all of the nucleotides depicted outside of the conserved region.


In one embodiment, the atomic coordinates of the atomic structure comprise the atomic coordinates listed in Table 1 for atoms depicted in FIGS. 4A and 4B.


Yet in another embodiment, the interaction determination step can include determining a minimum interaction energy, a binding constant, a dissociation constant, or a combination thereof, for the test compound in the model of the SAM-II riboswitch.


Still in other embodiments, the interaction determination step and test compound identification can include determining the interaction of the test compound with a nucleotide of SAM-II riboswitch comprising U10, U12, U20, G22, U44, A46, A47 or a combination thereof. Within this embodiment, the interaction determination step can include determining the interaction of the test compound with a nucleotide of SAM-II riboswitch comprising U10, U12, U20, G22, U44, A46, A47 or a combination thereof. In addition, the test compound that effectively interacts with one or more of the above mentioned nucleotides can be identified and expanded for use in targeting bacterial organisms disclosed herein.


Another aspect of the present invention provides, a method of regulating a gene in a cell by modulating an mRNA, said method comprising administering a SAM-II riboswitch modulating compound to the cell to modulate the SAM-II riboswitch activity of the mRNA. In certain embodiments, the gene expression is stimulated, while in other embodiments the gene expression is inhibited. Within certain embodiments where the gene expression is inhibited, the SAM-II riboswitch modulating compound forms a complex with the SAM-II riboswitch, thereby preventing the mRNA from forming an antiterminator element.


Certain embodiments include a compound that associates with one or more of the contact nucleotides and modulates the activity of the SAM-II riboswitch. In one particular embodiment, a compound capable of associating with one or more of the contact nucleotides may be capable of reducing sulfur metabolism in an organism having a SAM-II or SAM-II like riboswitch. In accordance with these embodiments, compounds of the present invention may be used to reduce infection caused by, or as a treatment for infection caused by an organism contemplated herein. In certain embodiments target organisms include bacteria. Bacteria contemplated herein include, but are not limited to Gram-negative bacterial organisms.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain embodiments of the present invention. The embodiments may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.



FIG. 1 represents a schematic of a secondary structural switching in the Env12 metX mRNA (SEQ ID NO:1). In high intracellular concentrations of SAM, the effector ligand binds to the aptamer domain (dark grey box, left) incorporating a switching sequence (grey shaded area) into this domain, forcing the formation of a downstream rho-independent transcriptional terminator stem-loop in the expression platform (light grey box, middle). In the absence of SAM, the switching sequence is free to be incorporated into a more stable antiterminator element, allowing for transcription to proceed (SEQ ID NO: 2).



FIGS. 2A-2C represents an exemplary schematic of (A) secondary structure of the Env12 metX SAM-2 riboswitch with base pairing reflecting the tertiary structure of the SAM-bound RNA (SEQ ID NO:5); (B) an exemplary schematic of the global structure of the RNA; and (C) 90° rotation of the perspective shown in (B).



FIG. 3A-3E represents a schematic of (3A) details of the interactions between L3 (magenta) and the P1 helix (blue) emphasizing the role of four stacked adenosine residues in cementing the loop to the minor groove. FIG. 3B represents a schematic of a binding pocket of SAM (salmon) with the P2b helix. FIG. 3C represents a schematic of a hydrogen bonding interactions involving the adenine moiety of SAM. FIG. 3D represents a schematic of hydrogen bonding and electrostatic interactions involving the positively charged sulfur moiety and the methyl group of SAM. FIG. 3E represents a schematic of interactions between the RNA and the main chain atoms of the methionine residue of SAM.



FIGS. 4A (SEQ ID NO:6) and 4B (SEQ ID NO:7) represent schematics of exemplary sequences and secondary structures of the SAM-binding mRNA pseudoknot from Env12 and an exemplary sequence of the crystallized RNA construct with changes made to the sequence shaded in grey.



FIGS. 5A and 5B represent a schematic of electron density maps around the SAM binding site promoter A of the SAM-II riboswitch contoured at 1σ (orange cage). The final model is superimposed upon the density (green, RNA; magenta, SAM). (A) Solvent flattened experimental electron density map. (B) Final 2Fo-Fc electron density map.



FIGS. 6A and 6B. represent a schematic of superposition of the three protomers in the asymmetric unit that were built and refined individually. The standard pairwise r.m.s.d. for all atoms in the RNA and SAM is 1.26 | and the maximum likelihood r.m.s.d. for all atoms is 0.19 Å, as calculated using the program THESEUS. The two perspectives correspond to (A) FIGS. 4A and (B) FIG. 4B (FIG. 4B). Colors correspond to: red, molecule A; blue, molecule B; defined in the PDB coordinate file.



FIG. 7 represents a schematic of a side-by-side comparisons of the pseudoknot from human telomerase RNA (hTR, left) and SAM-II/SAM complex (right). The colors reflect the secondary structures of the RNA (blue, P1; green, P2; orange, L1; magenta, L3); the coloring pattern of SAM-II is slightly different from FIGS. 4A and 4B to make a clearer comparison between the two RNAs. The hTR structure shown is model 1 from the family of structures derived from NMR constraints (PDB ID 1YMO).





DEFINITIONS

As used herein, “a” or “an” may mean one or more than one of an item.


DETAILED DESCRIPTION

In the following sections, various exemplary compositions and methods are described in order to detail various embodiments of the invention. It will be obvious to one skilled in the art that practicing the various embodiments does not require the employment of all or even some of the specific details outlined herein, but rather that molecules, test compounds, samples, concentrations, times and other specific details may be modified through routine experimentation. In some cases, well known methods or components have not been included in the description.


Embodiments of the present invention provide for compositions and methods concerning SAM-II riboswitch and SAM-II riboswitch-like molecules.


Riboswitch aptamer domains are controlled by a diverse set of metabolites. Amino acid metabolism in various Bacillus species is controlled by three known riboswitches: glycine, lysine and S-adenosylmethionine (SAM). Each has a distinct aptamer domain that has evolved to specifically recognize a specific ligand. Currently, there are three distinct SAM riboswitches, one of which is dominant in gram positive bacteria, SAM-I, and one dominant in gram negative alpha-proteobacteria, SAM-II, and the third in lactobacteria, SAM-III. Characterization of the binding of SAM analogs has indicated that this RNA recognizes every feature of the ligand, although the reactive methyl group indirectly. To further understand how this extreme degree of discrimination between SAM and closely related compounds can be achieved by this mRNA element, a crystal structure in complex with SAM has been solved.


Certain embodiments herein concern compositions and methods for selecting and identifying compounds that can activate, deactivate or block SAM-II riboswitch. Activation or deactivation of a SAM-II riboswitch refers to the change in state of the riboswitch upon binding of the compound of interest, a test compound. The term trigger molecule is used herein to refer to molecules and compounds that can activate the SAM-II riboswitch.


Deactivation of a riboswitch refers to the change in state of the riboswitch when the trigger molecule is not bound. A riboswitch can be deactivated by binding of compounds other than the trigger molecule and in ways other than removal of the trigger molecule. Blocking of a riboswitch refers to a condition or state of the riboswitch where the presence of the trigger molecule does not activate the riboswitch.


In certain particular embodiments, methods of identifying a compound that interact with a SAM-II riboswitch include modeling the atomic structure of the SAM-II riboswitch with a test compound and determining if the test compound interacts with the SAM-II riboswitch. In accordance with these embodiments, the atomic contacts of the SAM-II riboswitch and test compound can be determined by means known in the art. Further, analogs of a compound known to interact with a SAM-II riboswitch can be generated by analyzing the atomic contacts for example the contacts that interact with ligand binding, then optimizing the atomic structure of the analog to maximize interaction. In certain embodiments, these methods can be used in a high throughput screen.


Other embodiments concern methods for identifying compounds that block a riboswitch. For example, an assay can be performed for assessing the induction or inhibition of SAM-II riboswitch in the presence of a test compound.


Some embodiments herein concern compositions and methods for identifying a test compound for significantly reducing the activity or inactivating a SAM-II riboswitch by binding the test compound to at least a portion of the atomic structure represented in FIGS. 4A and 4B. In accordance with these embodiments, activity of the SAM-II riboswitch can be measured by any methods known in the art. For example, the activity of the riboswitch can be measured in the presence or absence of a test compound in order to identify the efficiency of the test compound to reduce the activity of or inactivate the SAM-II riboswitch. Inactivation of a riboswitch in this manner can result from, for example, an alteration that prevents an S-adenosylmethionine molecule from binding; that prevents the change in state of the SAM-II riboswitch upon binding of S-adenosylmethionine; or the binding of the test compound interferes with ligand interaction or prevents the change in state of the SAM riboswitch.


In other embodiments, a test compound that activates a SAM-II riboswitch can be identified. For example, test compounds that activate a riboswitch can be identified by bringing into contact a test compound and a SAM-II riboswitch including at least a portion of the SAM-II riboswitch of FIG. 4A and FIG. 4B and assessing activation of the riboswitch. Activation of a SAM-II riboswitch can be assessed in any suitable manner. For example, activation of the SAM-II riboswitch can be measured by expression level of or modification of the expression level of a reporter gene in the presence or absence of the test compound. Examples of a reporter gene include, but are not limited to, beta-galactosidase, luciferase or green-fluorescence protein.


The SAM-II riboswitch is known to regulate multiple operons in a number of bacteria. Example bacteria contemplated herein include, but are not limited to, Gram negative species, for example, proteobacteria including Escherichia coli, Salmonella, and other Enterobacteriaceae, Pseudomonas, Moraxella, Helicobacter, Stenotrophomonas, Bdellovibrio, acetic acid bacteria, Legionella and many others. Other groups of Gram-negative bacteria include the cyanobacteria, spirochaetes, green sulfur and green non-sulfur bacteria. Medically relevant Gram-negative cocci include three organisms, which cause a sexually transmitted disease (Neisseria gonorrhoeae), a meningitis (Neisseria meningitidis), and respiratory symptoms (Moraxella catarrhalis). Medically relevant Gram-negative bacilli include, but are not limited to those that primarily cause respiratory problems (Hemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa), principally urinary problems (Escherichia coli, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens), and usually gastrointestinal problems (Helicobacter pylori, Salmonella enteritidis, Salmonella typhi). Nosocomial gram negative bacteria can include Acinetobacter baumanii, which cause bacteremia, secondary meningitis, and ventilator-associated pneumonia. Other medically relevant coccoid bacteria known to contain the SAM-II riboswitch include, but are not limited to, Bortedella pertusis and Bortedella bronchiseptica that causes whopping cough. In other embodiments, medically relevant facultative intracellular bacteria known to contain the SAM-II riboswitch include Brucella melitenisis, which causes brucellosis in many areas of the world, and has been classified by the US Center for Disease Control and Prevention as a potential agent in biological warfare. In addition, contemplated in methods herein, a related organism, Brucella suis, that also contains a SAM-II riboswitch, was the first pathogenic organism to be weaponized by the U.S. military in the 1950's, and thus represents a potential bioterrorism threat.


Organization of Riboswitch RNAs

Structural probing studies demonstrate that bacterial riboswitch elements are composed of two domains: a natural aptamer that serves as the ligand-binding domain, and an ‘expression platform’ that interfaces with RNA elements that are involved in gene expression. Structural probing investigations suggest that the aptamer domain of most riboswitches adopts a particular secondary- and tertiary-structure fold when examined independently, that is essentially identical to the aptamer structure when examined in the context of the entire 5′ leader RNA. This implies that, in many cases, the aptamer domain is a modular unit that folds independently of the expression platform.


The ligand-bound or unbound status of the aptamer domain is interpreted through the expression platform, which is responsible for exerting an influence upon gene expression. The aptamer domains are highly conserved amongst various organisms, whereas the expression platform varies in sequence, structure, and in the mechanism by which expression of the appended open reading frame is controlled.


Aptamer domains for riboswitch RNAs typically range from ˜70 to 170 nucleotides in length. Some aptamer domains, when isolated from the appended expression platform, exhibit improved affinity for the target ligand over that of the intact riboswitch. (˜10 to 100-fold). Presumably, there is an energetic cost in sampling the multiple distinct RNA conformations required by a fully intact riboswitch RNA, which is reflected by a loss in ligand affinity. Since the aptamer domain must serve as a molecular switch, this might also add to the functional demands on natural aptamers that might help rationalize their more sophisticated structures.


Riboswitch Regulation

Bacteria primarily use two methods for termination of transcription. Certain genes incorporate a termination signal that is dependent upon the Rho protein, while others make use of Rho-independent terminators (intrinsic terminators) to destabilize the transcription elongation complex. The latter RNA elements are composed of a GC-rich stem-loop followed by a stretch of 6-9 uridyl residues. Intrinsic terminators are widespread throughout bacterial genomes, and are typically located at the 3′-termini of genes or operons. Interestingly, an increasing number of examples are being observed for intrinsic terminators located within 5″-UTRs.


In certain examples, RNA polymerase responds to a termination signal within the 5″-UTR in a regulated fashion. Under certain conditions, the RNA polymerase complex is directed by external signals either to perceive or to ignore the termination signal. Although transcription initiation might occur without regulation, control over mRNA synthesis (and of gene expression) is ultimately dictated by regulation of the intrinsic terminator. Presumably, one of at least two mutually exclusive mRNA conformations results in the formation or disruption of the RNA structure that signals transcription termination. A trans-acting factor, which in some instances an RNA is generally required for receiving a particular intracellular signal and subsequently stabilizing one of the RNA conformations. Riboswitches offer a direct link between RNA structure modulation and the metabolite signals that are interpreted by the genetic control machinery.


Certain mRNAs involved in thiamine biosynthesis bind to thiamine (vitamin B1) or its bioactive pyrophosphate derivative (TPP) without the participation of protein factors. The mRNA-effector complex adopts a distinct structure that sequesters the ribosome-binding site and leads to a reduction in gene expression. This metabolite-sensing mRNA system provides an example of a genetic “riboswitch” (referred to herein as a riboswitch) whose origin might predate the evolutionary emergence of proteins. It has been discovered that the mRNA leader sequence of the btuB gene of Escherichia coli can bind coenzyme B12 selectively, and that this binding event brings about a structural change in the RNA that is important for genetic control. It was also discovered that mRNAs that encode thiamine biosynthetic proteins also employ a riboswitch mechanism.


Although certain specific natural riboswitches such as SAM-I riboswitch was one of the first examples of mRNA elements that control genetic expression by metabolite binding, it is suspected that this genetic control strategy may be widespread in biology. If these metabolites were being biosynthesized and used before the advent of proteins, then certain riboswitches might be modern examples of the most ancient form of genetic control. A search of genomic sequence databases has revealed that sequences corresponding to the TPP aptamer exist in organisms from bacteria, archaea and eukarya-largely without major alteration. Although new metabolite-binding mRNAs are likely to emerge as evolution progresses, it is possible that the known riboswitches are molecular fossils from the RNA world.


In certain embodiments, it is contemplated that a SAM-II Reporter system can be used to assess whether a test compound activates or inactivates the SAM-II riboswitch. In certain particular embodiments, an in vitro selection protocol can be designed for example to assess whether a test compound activates or deactivates the SAM-II riboswitch. In one particular embodiment, binding of the ligand can be monitored by a mobility-shift assay, known in the art, to discern free and bound RNA, providing a basis for selection of binding-competent RNAs. Ligand binding to the RNA can cause a conformational and/or secondary structural change in the RNA that can result in a change in its migration in a native polyacrylamide gel.


In certain embodiments, a detectible tag can be incorporated into the SAM-II riboswitch. In accordance with these embodiments, a test compound can be placed in contact with the SAM-II riboswitch and the interaction of the test compound and the SAM-II riboswitch assessed by measuring the presence or absence of a detectible tag. In certain particular examples, a detectible tag may be undetectable in the presence of a test compound thereby quenching the signal. This mechanism can be adapted to existing SAM-II riboswitches, as this method can take advantage of assessing a ligand-mediated interaction of the SAM-II riboswitch. In certain particular embodiments, a detectible tag can be placed within the ligand interaction region. In more particular embodiments, a detectible tag can be placed on any one of ligand binding nucleic acids, including but not limited to, U10, U11, U12, U20, U21, G22, U44, A45, A46, A47, or a combination thereof of FIG. 4A or FIG. 4B of the SAM-II riboswitch. In these examples, a test compound can be combined with a SAM-II riboswitch depicted FIG. 4A or FIG. 4B and a detectible signal on the SAM-II riboswitch quenched when the test compound binds to at least one of the ligand-binding nucleic acids indicated above. In one particular example, a florescent tag molecule can be positioned in RNA adjacent to the binding site of SAM and binding can be monitored via a change in fluorescence of a reporter gene.


In other embodiments, control compounds can be used to assess interaction of the test compound compared to a known compound that interacts with a SAM-II riboswitch. To use riboswitches to report ligand binding by analyzing for a detectible tag, the appropriate construct can be determined empirically. The optimum length and composition of a test compound and its binding site on the riboswitch can be assessed systematically to result in the highest ligand binding region interaction possible. The validity of the assay can be determined by comparing apparent relative binding affinities of different SAM-II analogs, SAM-II antibodies or other SAM-II binding agents to a particular test compound (determined by the presence or level of detectible signal generation of the tag) to the binding constants determined by standard in-line probing.


In other embodiments, interaction of a test compound with at least a portion of the atomic structures depicted in FIG. 4A or FIG. 4B may be assessed by measuring uptake and/or synthesis of methionine and/or synthesis of SAM in a bacterial test cell system (e.g., cultures of B. subtilus). In accordance with these embodiments, a test compound confirmed to interact with at least a portion of the atomic structures depicted in FIG. 4A or 4B can be synthesized and/or purified for future use. In one example use, the test compound may be placed in contact with SAM-II riboswitch and the uptake and/or synthesis of methionine and/or synthesis of SAM can be measured. If a test compound is found to effectively block these functions, the test compound may be a candidate for use in inhibiting bacterial expansion or eliminating bacteria within a subject or a system.


In one example method, the structure depicted in FIG. 4A or 4B indicates that the RNA does not recognize the methyl group attached to the sulfur moiety, providing a place to build additional functionality that would be recognized by the RNA. Additionally, the positive charge on the sulfur is also recognized but not the sulfur atom itself, indicating that this region can be altered to ensure stability of the compound. Potential compounds could be computationally built and fit into the structure in place of SAM to determine if they would fit in the binding pocket of the riboswitch. Novel compounds can be synthesized by established chemistries and tested using a fluorescence or foot printing type assay to ensure that they are recognized by the RNA.


It is contemplated herein that test compounds capable of associating with the atomic structures depicted in FIG. 4A or 4B may be a nucleic acid molecule, a small molecule, an antibody, a pharmaceutical agent, small peptide, peptide mimetic, nucleic acid mimetic, modified saccharide or aminoglycoside. Preferred test compound compositions would be small molecule mimetics of SAM or nucleic acid mimetics that build off of the adenosine moiety of SAM.


Kits

In still further embodiments, kits for methods and compositions described herein are contemplated. In one embodiment, the kits have a point-of care application, for example, the kits may have portability for use at a site of suspected bacterial outbreak. In another embodiment, a kit for treatment of a subject having a bacterial-induced infection is contemplated. In accordance with this embodiment, the kit may be used to reduce the bacterial infection of a subject.


The kits may include a container means. Any of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which the testing agent, may be preferably and/or suitably aliquoted. Kits herein may also include a means for comparing the results such as a suitable control sample such as a positive and/or negative control.


Nucleic Acids

In various embodiments, isolated nucleic acids may be used as test compounds for binding the atomic structure depicted in FIG. 4A or 4B. The isolated nucleic acid may be derived from genomic RNA or complementary DNA (cDNA). In other embodiments, isolated nucleic acids, such as chemically or enzymatically synthesized DNA, may be of use for capture probes, primers and/or labeled detection oligonucleotides.


A “nucleic acid” includes single-stranded and double-stranded molecules, as well as DNA, RNA, chemically modified nucleic acids and nucleic acid analogs. It is contemplated that a nucleic acid may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 275, about 300, about 325, about 350, about 375, about 400, about 425, about 450, about 475, about 500, about 525, about 550, about 575, about 600, about 625, about 650, about 675, about 700, about 725, about 750, about 775, about 800, about 825, about 850, about 875, about 900, about 925, about 950, about 975, about 1000, about 1100, about 1200, about 1300, about 1400, about 1500, about 1750, about 2000 or greater nucleotide residues in length, up to a full length protein encoding or regulatory genetic element.


Construction of Nucleic Acids

Isolated nucleic acids may be made by any method known in the art, for example using standard recombinant methods, synthetic techniques, or combinations thereof. In some embodiments, the nucleic acids may be cloned, amplified, or otherwise constructed.


The nucleic acids may conveniently comprise sequences in addition to a portion of a SAM-II riboswitch. For example, a multi-cloning site comprising one or more endonuclease restriction sites may be added. A nucleic acid may be attached to a vector, adapter, or linker for cloning of a nucleic acid. Additional sequences may be added to such cloning and sequences to optimize their function, to aid in isolation of the nucleic acid, or to improve the introduction of the nucleic acid into a cell. Use of cloning vectors, expression vectors, adapters, and linkers is well known in the art.


Recombinant Methods for Constructing Nucleic Acids

Isolated nucleic acids may be obtained from bacterial or other sources using any number of cloning methodologies known in the art. In some embodiments, oligonucleotide probes which selectively hybridize, under stringent conditions, to the nucleic acids of a bacterial organism. Methods for construction of nucleic acid libraries are known and any such known methods may be used.


Nucleic Acid Screening and Isolation

Bacterial RNA or cDNA may be screened for the presence of an identified genetic element of interest using a probe based upon one or more sequences. Various degrees of stringency of hybridization may be employed in the assay. As the conditions for hybridization become more stringent, there must be a greater degree of complementarity between the probe and the target for duplex formation to occur. The degree of stringency may be controlled by temperature, ionic strength, pH and/or the presence of a partially denaturing solvent such as formamide. For example, the stringency of hybridization is conveniently varied by changing the concentration of formamide within the range up to and about 50%. The degree of complementarity (sequence identity) required for detectable binding will vary in accordance with the stringency of the hybridization medium and/or wash medium. In certain embodiments, the degree of complementarity can optimally be about 100 percent; but in other embodiments, sequence variations in the RNA may result in <100% complementarity, <90% complimentarity probes, <80% complimentarity probes, <70% complimentarity probes or lower depending upon the conditions. In certain examples, primers may be compensated for by reducing the stringency of the hybridization and/or wash medium.


High stringency conditions for nucleic acid hybridization are well known in the art. For example, conditions may comprise low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C. to about 70° C. Other exemplary conditions are disclosed in the following Examples. It is understood that the temperature and ionic strength of a desired stringency are determined in part by the length of the particular nucleic acid(s), the length and nucleotide content of the target sequence(s), the charge composition of the nucleic acid(s), and by the presence or concentration of formamide, tetramethylammonium chloride or other solvent(s) in a hybridization mixture. Nucleic acids may be completely complementary to a target sequence or may exhibit one or more mismatches.


Nucleic Acid Amplification

Nucleic acids of interest may also be amplified using a variety of known amplification techniques. For instance, polymerase chain reaction (PCR) technology may be used to amplify target sequences directly from bacterial RNA or cDNA. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences, to make nucleic acids to use as probes for detecting the presence of a target nucleic acid in samples, for nucleic acid sequencing, or for other purposes.


Synthetic Methods for Constructing Nucleic Acids

Isolated nucleic acids may be prepared by direct chemical synthesis by methods such as the phosphotriester method, or using an automated synthesizer. Chemical synthesis generally produces a single stranded oligonucleotide. This may be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template. While chemical synthesis of DNA is best employed for sequences of about 100 bases or less, longer sequences may be obtained by the ligation of shorter sequences.


Covalent Modification of Nucleic Acids

A variety of cross-linking agents, alkylating agents and radical generating species may be used to bind, label, detect, and/or cleave nucleic acids. In addition, covalent crosslinking to a target nucleotide using an alkylating agent complementary to the single-stranded target nucleotide sequence can be used. A photoactivated crosslinking to single-stranded oligonucleotides mediated by psoralen can be used. Use of N4, N4-ethanocytosine as an alkylating agent to crosslink to single-stranded oligonucleotides has also been disclosed. Various compounds to bind, detect, label, and/or cleave nucleic acids are known in the art.


Nucleic Acid Labeling

In various embodiments, tag nucleic acids may be labeled with one or more detectable labels to facilitate identification of a target nucleic acid sequence bound to a capture probe on the surface of a microchip. A number of different labels may be used, such as fluorophores, chromophores, radio-isotopes, enzymatic tags, antibodies, chemiluminescent, electroluminescent, affinity labels, etc. One of skill in the art will recognize that these and other label moieties not mentioned herein can be used. Examples of enzymatic tags include urease, alkaline phosphatase or peroxidase. Colorimetric indicator substrates can be employed with such enzymes to provide a detection means visible to the human eye or spectrophotometrically. A well-known example of a chemiluminescent label is the luciferin/luciferase combination.


In preferred embodiments, the label may be a fluorescent, phosphorescent or chemiluminescent label. Exemplary photodetectable labels may be selected from the group consisting of Alexa 350, Alexa 430, AMCA, aminoacridine, BODIPY 630/650, BODIPY 650/665, BODIPY-FL, BODIPY-R6G, BODIPY-TMR, BODIPY-TRX, 5-carboxy-4′,5′-dichloro-2′,7′-dimethoxy fluorescein, 5-carboxy-2′,4′,5′,7′-tetrachlorofluorescein, 5′-carboxyfluorescein, 5-carboxyrhodamine, 6-carboxyrhodamine, 6-carboxytetramethyl amino, Cascade Blue, Cy2, Cy3, Cy5,6-FAM, dansyl chloride, Fluorescein, HEX, 6-JOE, NBD (7-nitrobenz-2-oxa-1,3-diazole), Oregon Green 488, Oregon Green 500, Oregon Green 514, Pacific Blue, phthalic acid, terephthalic acid, isophthalic acid, cresyl fast violet, cresyl blue violet, brilliant cresyl blue, para-aminobenzoic acid, erythrosine, phthalocyanines, azomethines, cyanines, xanthines, succinylfluoresceins, rare earth metal cryptates, europium trisbipyridine diamine, a europium cryptate or chelate, diamine, dicyanins, La Jolla blue dye, allopycocyanin, allococyanin B, phycocyanin C, phycocyanin R, thiamine, phycoerythrocyanin, phycoerythrin R, REG, Rhodamine Green, rhodamine isothiocyanate, Rhodamine Red, ROX, TAMRA, TET, TRIT (tetramethyl rhodamine isothiol), Tetramethylrhodamine, and Texas Red. These and other labels are available from commercial sources, such as Molecular Probes (Eugene, OR).


Solid Supports


Solid supports are solid-state substrates or supports with which molecules (such as trigger molecules, e.g., SAM) and riboswitches (or other components used in, or produced by, the disclosed methods) can be associated. Riboswitches and other molecules can be associated with solid supports directly or indirectly. For example, analytes (e.g., trigger molecules, test compounds) can be bound to the surface of a solid support or associated with capture agents (e.g., compounds or molecules that bind an analyte) immobilized on solid supports. As another example, riboswitches can be bound to the surface of a solid support or associated with probes immobilized on solid supports. An array is a solid support to which multiple riboswitches, probes or other molecules have been associated in an array, grid, or other organized pattern.


In some embodiments, a solid-state substrate may be used. Solid supports contemplated of use can include any solid material with which components can be associated, directly or indirectly. These material include but are not limited to acrylamide, agarose, cellulose, nitrocellulose, glass, gold, polystyrene, polyethylene vinyl acetate, polypropylene, polymethacrylate, polyethylene, polyethylene oxide, polysilicates, polycarbonates, teflon, fluorocarbons, nylon, silicon rubber, polyanhydrides, polyglycolic acid, polylactic acid, polyorthoesters, functionalized silane, polypropylfumerate, collagen, glycosaminoglycans, and polyamino acids. Solid-state substrates can have any useful form including thin film, membrane, bottles, dishes, fibers, woven fibers, shaped polymers, particles, beads, microparticles, or a combination. Solid-state substrates and solid supports can be porous or non-porous. A chip is a rectangular or square small piece of material. Preferred forms for solid-state substrates are thin films, beads, or chips. A useful form for a solid-state substrate is a microtiter dish. In some embodiments, a multi-well glass slide can be employed.


In certain embodiments, an array can include a plurality of riboswitches, trigger molecules, other molecules, compounds or probes immobilized at identified or predefined locations on the solid support. Each predefined location on the solid support generally has one type of component (that is, all the components at that location are the same). Alternatively, multiple types of components can be immobilized in the same predefined location on a solid support. Each location will have multiple copies of the given components. The spatial separation of different components on the solid support allows separate detection and identification.


Although useful, it is not required that the solid support be a single unit or structure. A set of riboswitches, trigger molecules, other molecules, compounds and/or probes can be distributed over any number of solid supports. For example, in some embodiments, each component can be immobilized in a separate reaction tube or container, or on separate beads or microparticles.


Methods for immobilization of oligonucleotides to solid-state substrates are well established. Oligonucleotides, including address probes and detection probes, can be coupled to substrates using established coupling methods. For example, suitable attachment methods are described by Pease et al., Proc. Natl. Acad. Sci. USA 91(11):5022-5026 (1994), and Khrapko et al., Mol Biol (Mosk) (USSR) 25:718-730 (1991). A method for immobilization of 3′-amine oligonucleotides on casein-coated slides is described by Stimpson et al., Proc. Natl. Acad. Sci. USA 92:6379-6383 (1995). A useful method of attaching oligonucleotides to solid-state substrates is described by Guo et al., Nucleic Acids Res. 22:5456-5465 (1994).


Each of the components (for example, riboswitches, trigger molecules, or other molecules) immobilized on the solid support can be located in a different predefined region of the solid support. The different locations can be different reaction chambers. Each of the different predefined regions can be physically separated from each other of the different regions. The distance between the different predefined regions of the solid support can be either fixed or variable. For example, in an array, each of the components can be arranged at fixed distances from each other, while components associated with beads will not be in a fixed spatial relationship. In particular, the use of multiple solid support units (for example, multiple beads) will result in variable distances. In accordance with these examples, components can be associated or immobilized on a solid support at any density. Components can be immobilized to the solid support at a density exceeding 400 different components per cubic centimeter. Arrays of components can have any number of components depending on the circumstances.


Pharmaceutical Compositions

In certain embodiments, compositions of identified test compounds may be generated for use in a subject having a bacterial infection in order to reduce or eliminate the infection in the subject. In accordance with these embodiments, the compositions can be administered in a subject in a biologically compatible form suitable for pharmaceutical administration in vivo. By “biologically compatible form suitable for administration in vivo” is meant a form of the active agent (e.g., pharmaceutical chemical, protein, gene, antibody etc of the embodiments) to be administered in which any toxic effects are outweighed by the therapeutic effects of the active agent. Administration of a therapeutically active amount of the therapeutic compositions is defined as an amount effective, at dosages and for periods of time necessary to achieve the desired result. For example, a therapeutically effective amount of an antibody or nucleic acid molecule reactive with at least a portion of SAM-II riboswitch depicted in FIG. 4A or FIG. 4B may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of antibody to elicit a desired response in the individual. Dosage regimens may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.


In one embodiment, the compound (e.g., pharmaceutical chemical, nucleic acid molecule, gene, protein, antibody etc of the embodiments) may be administered in a convenient manner such as by injection such as subcutaneous, intravenous, by oral administration, inhalation, transdermal application, intravaginal application, topical application, intranasal or rectal administration. Depending on the route of administration, the active compound may be coated in a material to protect the compound from the degradation by enzymes, acids and other natural conditions that may inactivate the compound. In a preferred embodiment, the compound may be orally administered. In another preferred embodiment, the compound may be inhaled in order to make the compound bioavailable to the lung.


A compound may be administered to a subject in an appropriate carrier or diluent, co-administered with enzyme inhibitors or in an appropriate carrier such as liposomes. The term “pharmaceutically acceptable carrier” as used herein is intended to include diluents such as saline and aqueous buffer solutions. To administer a compound that stimulates or inhibits a SAM-II riboswitch by other than parenteral administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation. Enzyme inhibitors include pancreatic trypsin inhibitor, diisopropylfluorophosphate (DEP) and trasylol. Liposomes include water-in-oil-in-water emulsions as well as conventional liposomes. The active agent may also be administered parenterally or intraperitoneally. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms.


Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. In all cases, the composition must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The pharmaceutically acceptable carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of microorganisms can be achieved by various antibacterial and antifungal agents (i.e., parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like). In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. A compound such as aluminum monostearate and gelatin can be included to prolong absorption of the injectable compositions.


Sterile injectable solutions can be prepared by incorporating active compound (e.g., a chemical that modulates the SAM-II riboswitch) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a dispersion medium and other required ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient (i.e., a chemical agent, antibody etc.) plus any additional desired ingredient from a previously sterile-filtered solution thereof.


When the active agent is suitably protected, as described above, the composition may be orally administered (or otherwise indicated), for example, with an inert diluent or an assimilable edible carrier. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms are dictated by and directly dependent on (a) the unique characteristics of the active agent and the particular therapeutic effect to be achieved, and (b) the limitations inherent an active agent for the therapeutic treatment of individuals.


EXAMPLES

The following examples are included to illustrate various embodiments. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered to function well in the practice of the claimed methods, compositions and apparatus. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes may be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.


Riboswitches act as genetic regulatory elements through the interplay of two distinct domains in the 5′-untranslated region (5′-UTR) of an mRNA: the aptamer domain that directly binds a specific cellular metabolite and a downstream expression platform containing a secondary structural switch that determines whether the gene will be expressed. Among the known mRNA elements that specifically bind small molecules in vivo, there are now at least three characterized S-adenosylmethionine (SAM)-responsive riboswitches: SAM-I, SAM-II (SAM-α), and SAM-III (SAM-MK), underscoring the importance of riboregulation of sulfur metabolism by SAM. Each riboswitch is unique in its primary or secondary structure and appears to be exclusive within a particular bacterial genome. SAM-I, the only SAM riboswitch whose tertiary structure has been solved.


In one exemplary method, to further illuminate how mRNAs respond to SAM, the structure of a second class of SAM-responsive RNA: SAM-II was determined. To find a SAM-II mRNA that yielded diffraction-quality crystals, 13 phylogenetic variants were examined that differed in the lengths of its two primary helices in the predicted secondary structure. Crystals that diffracted X-rays to 2.8 Å resolution were obtained in the presence of SAM of an RNA derived from a Sargasso Sea environmental sequence (Env12) upstream of the metX gene (homoserine acetyltransferase). Phasing by SIRAS was achieved using a cesium atom bound to a G•U phasing module engineered into a non-conserved region of the P1 helix. All of the nucleotides in the RNA as well as SAM were found in three slightly different RNA-ligand complexes in the asymmetric unit were built and refined without NCS constraints to yield a final model with Rxtal=20.6% and Rfree=26.3% (Table 1).


The global architecture of the SAM-II riboswitch comprises a classic (H-type) pseudoknot8 (FIGS. 4A and 4B). The secondary structure consists of two Watson-Crick paired helices (P1 and P2a) and two loop regions (L1 and L3). A third helical element, not predicted from sequence alignment, is formed from highly conserved sequences in L2 and L3 to form P2b (FIG. 4, FIG. 4A). The loops L1 and L3 interact with the major and minor grooves of P2a/b and P1, respectively, to form an intricate tertiary structure with the SAM binding pocket located in the center of P2b (FIG. 4B). Each of the helical segments stack upon the others without distortions creating a nearly straight structure.


Consistent with the sequence conservation patterns of classic pseudoknots, L1 is uracil rich while L3 is adenine rich. Bases in L3 do not form planar triples with the minor groove of P1, but rather are skewed at an ˜70° angle with respect to P1 forming hydrogen bonding interactions with two successive base pairs (FIG. 5A). A stack of four adenosines in L3 (A33, A35-37) rotate clockwise (as viewed from A33) along P1, such that A33 interacts via its Hoogsteen face, while A37 uses its sugar face in a fashion akin to a type-1 A-minor groove triple9. As a result, residues of L3 form extensive hydrogen bonding interactions with the minor groove side of every base pair of P1 except the C2-G30 base pair at the very top (FIG. 5A).


The SAM binding pocket is created by the formation of an extended triplex between L1 and the major groove of P2b. The beginning of the P2b-L1 interaction is defined by a single minor groove triple between A24-U40•A41 (FIG. 4A), followed by a series of major groove triples formed by nucleotides G8-U12 in L1 with the face of P2b. The Watson-Crick face of each nucleotide in L1 interacts with the Hoogsteen face of nucleotides in 3′-strand of the P2b helix (nucleotides 42-46). This near-perfect triplex is terminated by a sheared A19•A47 pair. Below this pair, the P2b triplex transitions into the P2a helix, defining the lower boundary of the SAM binding pocket. An isolated A13•(U18-A48) triple and a sheared G17•A49 pair comprise this transition. The final nucleotide of L1, which is not conserved in phylogeny, is flipped out and makes no contacts with the two-base-pair helix of P2a that corresponds to the second helix of the classic pseudoknot fold.


SAM binds in an extended trans-configuration along the major groove face of the P2b/L1 triplex forming direct contacts with five successive base pairs and triples (FIG. 3B, C). The adenine moiety of SAM (ASAM) participates in a base triple between U10 and U44 using its Hoogsteen face to pair with U44 (FIGS. 5A and 5B) similar to that observed in the SAM-I structure. Interestingly, this site appears to be created by the deletion of a single residue between U21 and G22; this “hole” thus requires adenine to be threaded through the helix sideways such that its Watson-Crick face is solvent exposed on the minor groove face of the triplex. The positively charged sulfur moiety and activated methyl group are recognized by the carbonyl oxygens of U11 and U21 (FIG. 3D) explaining the ability of SAM-II to discriminate between SAM and S-adenosylhomocysteine (SAH). Again, this is strikingly similar to discrimination by SAM-I, which uses the minor groove carbonyl moieties of two universally conserved A-U pairs to interact electrostatically with the positive charge. The main chain atoms of methionine (carboxylate and amino groups) are positioned in the major groove adjacent to the sheared A19•A47 pair (FIG. 3E). However, these groups are in different configurations in the three protomers in the asymmetric unit (FIGS. 6A and 6B). Molecules A and C place the amino and carboxylate groups along the Watson-Crick face of A47 (FIG. 3E), while molecule B does not place the amino group in hydrogen bonding contact with the RNA. Recognition of the main chain atoms by the Watson-Crick face of an adenine base is similar to that observed in SAM-I, in which the Watson-Crick face of a guanine forms a salt bridge with the carboxylate moiety. Thus, all of the available functional groups in SAM appear to be directly or indirectly recognized by the mRNA, consistent with an investigation of the binding of SAM analogs to the SAM-II riboswitch. Despite the extensive recognition of SAM, the ligand is not nearly as extensively buried within the RNA (64% solvent inaccessible) as observed in other riboswitch-small molecule complexes.


RNA pseudoknot motifs are ubiquitous throughout all classes of structured RNAs stabilizing local tertiary structure and acting as protein recognition elements. They function in diverse pathways from translational regulation like those found in viral genomes to their role in telomerase RNA (hTR) as a key element of TERT repeat addition processivity. SAM-II has an architecture consistent with other H-type pseudoknots, most notably the hTR pseudoknot core that is involved in protein recognition (FIGS. 7A and 7B). Both the hTR RNA and SAM-II contain triplexes at the junction between P1 and P2a/b that have a strong preference for A•U base pairs in this region. The hTR core is a five-base-pair triplex broken only by a non-canonical A•U Hoogsteen base pair in the center. Similarly, the SAM-II core is a five-base-pair triplex, containing the ASAM motif in the center that forms a Hoogsteen base pair with U44. Thus, the SAM-II riboswitch employs a ligand-independent structure with which to scaffold the binding pocket; deletion of a single critical residue in the middle of the triplex destabilizes the tertiary structure such that SAM is required to fully form the pseudoknot.


Most riboswitches contain a switching sequence within the 3′-side of the P1 helix that is either incorporated within the aptamer domain or forms part of a secondary structure in the expression platform, depending upon whether the aptamer domain is ligand-bound14. Typically, the tertiary architecture of the aptamer domain in the presence of ligand stabilizes formation of the P1 helix. The SAM-II riboswitch differs from most other riboswitches in that its pseudoknot architecture prevents pairing of the 5′- and 3′-ends of the aptamer domain (FIG. 1). Despite this difference, the switching sequence (nucleotides 40-47) remains localized to the 3′-side of the aptamer domain, residing in P2b. In-line probing of the riboswitch in the absence and presence of SAM reveals strong ligand-dependent protections corresponding to nucleotides G8-U12 in L14. SAM binding to P2b, stabilizes the formation of key tertiary interactions between L1 and the 3′-side of P2b that serve to cement the switching sequence into the aptamer domain and thereby fating the secondary structure of the downstream expression platform. Thus, this structure lends support to a general mechanism of riboswitch action in which ligand binding is communicated to the expression platform via ligand-induced tertiary interactions with a switching sequence.


Methods and Materials.

RNA library synthesis and purification. A series of RNAs corresponding to secondary structure and sequence variations of the SAM-II RNA observed across phylogeny was constructed according to the length of the P1 and P2 helices of the minimal riboswitch (FIG. 4). These helices vary between 5-8 base pairs and 2-6 base pairs, respectively. Combinations of different helix length resulted in an initial library containing 13 representative RNAs that included the metA RNA previously characterized. RNAs were constructed by standard PCR methods using overlapping DNA oligonucleotides (Integrated DNA Technologies). The resulting DNA fragment, which contained EcoRI and NcoI restriction sites at the 5′ and 3′ ends, respectively, as well as sequences coding for a T7 RNA polymerase promoter and an 3′ HδV ribozyme was ligated into pRAV12. The resulting plasmid was verified by sequence analysis. Template DNA for in vitro transcription was generated by PCR from each individual plasmid using primers directed against the T7 RNA polymerase promoter at the 5′ end and the 3′ side HdV ribozyme (5′GCGCGCGAATTCTAATACGACTCACTATAG (SEQ ID NO: 3); 3′ GCACAGTCTAGAGGTCCCATTCGCCATGCCGAAGCATGTTG (SEQ ID NO: 4)). RNA was transcribed in a 12.5 mL reactions containing 30 mM Tris-HCl (pH 8.0), 10 mM DTT, 0.1% Triton X-100, 0.1 mM spermidine-HCl, 6 mM of both ATP and GTP, 4 mM of both UTP and CTP, 36 mM MgCl2, 25 mg/mL T7 RNA polymerase, 1 mL of ˜0.5 mM template3, and 1 unit/mL inorganic pyrophosphatase. The reaction was incubated for 2 hr at 37 ° C. RNA was precipitated in 70% EtOH, pelleted, and resuspended in load buffer containing 4 M urea, 100 mM Na-EDTA, pH 8.0, 25% formamide, xylene cyanol, and bromophenol blue, and purified by denaturing 12% PAGE. Gel slices containing target RNA were excised from the gel, electroeluted in 1× TBE buffer, collected, exchanged against 3×15 ml aliquots of buffer containing 10 mM K+-HEPES, pH 7.5 using a 10,000 MWCO centrifugal filter device (Amicon, Ultra-15), and concentrated to ˜500 μL. RNA concentrations were determined from the magnitude of the UV absorbance at 260 nm and the calculated extinction coefficient (556,400 M−1 cm−1) of the individual RNA's base composition.


RNA crystallization. SAM-II riboswitch crystals were obtained by the hanging drop/vapor diffusion method in which the RNA solution was mixed in a 1:1 ratio with mother liquor. The initial library of RNAs was screened versus the PEG-Ion, Crystal Screen, Natrix, and Nucleic Acid Mini-screen (Hampton Research). RNAs and promising conditions were further refined based on crystal morphology and size, as well as diffraction quality and space group. The final RNA construct was further refined to contain a heavy-ion binding phasing module in the P1 helix that did not alter any of the residues that are conserved across phylogeny (FIG. 4). The final conditions that yielded diffractions quality crystals contained 8 mM cobalt hexammine chloride, 640 mM ammonium acetate, 10% PEG 1K, 10 mM barium chloride, 50 mM Na+-cacodylate, pH 6.0, 25 ° C. Single crystal growth required cat whisker micro-seeding from a solution containing microcrystals from previously grown, but polymorphic, SAM-II crystals suspended in mother liquor plus 8% (2R,3R)-(−)-2,3-butanediol. Crystals reached their maximum size (-200 mM, cube-like) in 3-5 days, and were subsequently backsoaked in 30 μl one of two heavy-atom derivative solutions. Crystals designated for isomoprphous replacement were backsoaked in mother liquor containing 2 mM magnesium chloride, 10 mM SAM, and 200 mM cesium chloride for ˜10 minutes. Crystals designated as native were backsoaked in mother liquor that only contained 320 mM ammonium acetate (all other components remaining the same) with the addition of 2 mM magnesium chloride, 10 mM SAM, and 600 mM lithium chloride also for ˜10 minutes. This was followed by a 10 minute exchange into the same solutions containing the addition of 8% (2R,3R)-(−)-2,3-butanediol. Crystals were looped and flash-frozen in liquid nitrogen. Diffraction data was collected on a home X-ray source (Rigaku MSC) using CuKα radiation. Anomalous diffraction data was collected by an inverse-beam experiment and was integrated, indexed, and scaled using HKL2000.


Phasing and structure determination. Phases were determined using a single wavelength isomorphous replacement with anomalous scattering (SIRAS) experiment and diffraction data extending to 2.5 Å resolution for that native data set and 2.8 Å resolution for the derivative set. In this experiment, cesium was treated as the heavy atom derivative, yielding anomalous signal at CuKα wavelength (f′=1.16, f″=8.80), while a lithium backsoaked crystal was treated as the native data set. A phasing solution containing four heavy atoms (FOM=0.27, Z-score=17) was generated in SOLVE. Following density modification in CNS, the figure of merit improved to 0.35. An experimental electron density map was of sufficient quality to follow the trace of the phosphate backbone and identify regions of base-pairing for two of the three molecules in the asymmetric unit. Using a combination of model and experimental phases, a final density modified electron density map was calculated (FOM=0.74) and the location of the third protomer was identified. All nucleotides in the three RNAs, as well as the locations of SAM, and three Cs atoms were eventually built through subsequent rounds of iterative model building in Pymol and refinement in CNS while following the improvement of Rfree. Solvent molecules were added using two rounds of the water-picking in CNS. The 5′- and 3′-ends of the RNAs contained functional groups that required additional refinement at the end of the building process. The addition of a 5′ppGTP and a 2′-3′-cyclic phosphate at the RNA termini were supported by the electron density in these regions. A Mg2+ ion was also identified in the region where protomers A and B stack 5′ to 5′ and 3′ to 3′ causing the two 5′-diphosphate groups to come into close proximity. The final R and Rfree are 20.6% and 26.3%, respectively.



FIG. 1 represents an exemplary schematic of secondary structural switching in the Env12 metX mRNA. In high intracellular concentrations of SAM, the effector ligand binds to the aptamer domain (dark grey box, left) incorporating a switching sequence (grey shaded area) into this domain, forcing the formation of a downstream rho-independent transcriptional terminator stem-loop in the expression platform (light grey box). In the absence of SAM, the switching sequence is free to be incorporated into a more stable antiterminator element, allowing for transcription to proceed.



FIG. 2. represents an exemplary schematic of (A) secondary structure of the Env12 metX SAM-2 riboswitch with base pairing reflects the tertiary structure of the SAM-bound RNA. Base interactions are shown using the notation of Neocoles and Westhof. Circles indicate an interaction involving the Watson-Crick face, squares the Hoogsteen face, and triangles the sugar edge; black symbols denote a parallel arrangement while open symbols denote an antiparallel arrangement. Dashed lines denote hydrogen bonding interactions that cannot be described as one of the standard pairing interactions. Colors of the bases reflect their position in the tertiary structure (blue, P1 or P2a; green, P2b; magenta, L3; orange, L1). (B) represents an exemplary schematic of the global structure of the RNA; colors are consistent with the secondary structure. The red dots represent the van der Waals surface of S-adenosylmethionine. (C) 90° rotation of the perspective shown in (B).



FIG. 3A-3E represents in (A) details of the interactions between L3 (magenta) and the P1 helix (blue) emphasizing the role of four stacked adenosine residues in cementing the loop to the minor groove. (B) represents a schematic of a binding pocket of SAM (salmon) with the P2b helix. The adenine base of SAM is accommodated by an opening in the 5′-strand of P2b between U21 and G22, while the ribose sugar and methionine residue reside in the narrow major groove of the triplex. (C) represents hydrogen bonding interactions involving the adenine moiety of SAM. (D) represents hydrogen bonding and electrostatic interactions involving the positively charged sulfur moiety and the methyl group of SAM. (E) represents interactions between the RNA and the main chain atoms of the methionine residue of SAM.



FIG. 4 represents in (A) Sequence and secondary structure of the SAM-binding mRNA pseudoknot from Env12. The nomenclature for the stems and loops (P1-P2 and L1-L3, respectively) is derived from standard naming of H-type pseudoknots. Light grey nucleotides are those whose identity is >95% conserved and dark grey nucleotides corresponds to >80% conservation of identity. (B) represents a schematic of sequence of the crystallized RNA construct with changes made to the sequence shaded in grey. Each change was made for a specific purpose: U1G for efficient transcriptional initiation by T7 RNA polymerase, G52A for efficient 3′-end processing by a 3′-HδV ribozyme, and (C6G,U7C,A25G,G26U) to add a cesium/iridium hexammine ion binding site for phasing.



FIG. 5 represents electron density maps around the SAM binding site protomer A of the SAM-II riboswitch contoured at 1σ (orange cage). The final model is superimposed upon the density (green, RNA; magenta, SAM). (A) Solvent flattened experimental electron density map. (B) Final 2Fo-Fc electron density map.



FIG. 6 represents an exemplary schematic of superposition of the three protomers in the asymmetric unit that were built and refined individually. The standard pairwise r.m.s.d. for all atoms in the RNA and SAM is 1.26 Å and the maximum likelihood r.m.s.d. for all atoms is 0.19 Å, as calculated using in one example, the program THESEUS. The two perspectives correspond to (A) FIGS. 6B and (b) FIG. 6C (FIGS. 6B and C represent protomer A). Colors correspond to: red, molecule A; blue, molecule B; green, molecule C, as defined in the PDB coordinate file.



FIG. 7 represents an exemplary schematic of side-by-side comparisons of the pseudoknot from human telomerase RNA (hTR, left) and SAM-II/SAM complex (right). The colors reflect secondary structures of the RNA (blue, P1; green, P2; orange, L1; magenta, L3); the coloring pattern of SAM-II is slightly different from FIG. 4 to make a clearer comparison between the two RNAs. The hTR structure shown is model 1 from the family of structures derived from NMR constraints (PDB ID 1YMO).









TABLE 1







Data collection, phasing, and refinement statistics (SIRAS)










Native
Derivative













Data collection




Space group
C2
C2


Cell dimensions


a, b, c (Å)
115.26, 48.10, 109.62
115.64, 48.29, 109.51


α, β, γ (°)
90, 108.26, 90
90, 108.20, 90











Resolution (Å)
20-2.6
(2.69-2.60)
20-2.8
(2.90-2.80)1


Rmerge
0.053
(0.368)
0.061
(0.349)


I/σI
28.5
(2.5)
31.9
(5.0)


Completeness (%)
89.6
(54.4)
97.9
(94.7)


Redundancy
3.6
(2.8)
7.8
(7.7)









Refinement




Resolution (Å)

20-2.8


No. reflections

26,866


Rwork/Rfree

20.6/26.3


No. atoms


RNA

3,375


Ligand/ion

84


Water

154


B-factors


RNA

64.90


Ligand/ion

64.87


Water

45.50


R. m. s. deviations


Bond lengths (Å)

0.0059


Bond angles (°)

1.017






1Reflections obtained from a single crystal. Values in parentheses are for highest-resolution shell.

















TABLE 2







REMARK
3




REMARK
3
REFINEMENT.


REMARK
3
  PROGRAM
:  CNS 1.2


REMARK
3
  AUTHORS
:  BRUNGER, ADAMS, CLORE, DELANO,


REMARK
3

   GROS, GROSSE-KUNSTLEVE, JIANG,


REMARK
3

   KUSZEWSKI, NILGES, PANNU, READ,


REMARK
3

   RICE, SIMONSON, WARREN


REMARK
3









REMARK
3
 DATA USED IN REFINEMENT.











REMARK
3
  RESOLUTION RANGE HIGH
(ANGSTROMS)
:  2.80


REMARK
3
  RESOLUTION RANGE LOW
(ANGSTROMS)
:  19.90


REMARK
3
  DATA CUTOFF
(SIGMA(F))
:  0.0


REMARK
3
  DATA CUTOFF HIGH
(ABS(F))
:  1022121.53


REMARK
3
  DATA CUTOFF LOW
(ABS(F))
:    0.000000











REMARK
3
  COMPLETENESS (WORKING + TEST)
(%)
:  97.9


REMARK
3
  NUMBER OF REFLECTIONS

:  26866


REMARK
3









REMARK
3
 FIT TO DATA USED IN REFINEMENT.










REMARK
3
  CROSS-VALIDATION METHOD
:  THROUGHOUT


REMARK
3
  FREE R VALUE TEST SET SELECTION
:  RANDOM











REMARK
3
  R VALUE
(WORKING SET)
:  0.206


REMARK
3
  FREE R VALUE

:  0.263











REMARK
3
  FREE R VALUE TEST SET SIZE
(%)
:  7.2










REMARK
3
  FREE R VALUE TEST SET COUNT
:  1924


REMARK
3
  ESTIMATED ERROR OF FREE R VALUE
:  0.006


REMARK
3


REMARK
3
 FIT IN THE HIGHEST RESOLUTION BIN.










REMARK
3
  TOTAL NUMBER OF BINS USED
:   6











REMARK
3
  BIN RESOLUTION RANGE HIGH
(A)
:  2.80


REMARK
3
  BIN RESOLUTION RANGE LOW
(A)
:  2.97


REMARK
3
  BIN COMPLETENESS (WORKING + TEST)
(%)
:  94.8











REMARK
3
  REFLECTIONS IN BIN
(WORKING SET)
:  4033


REMARK
3
  BIN R VALUE
(WORKING SET)
:  0.407


REMARK
3
  BIN FREE R VALUE

:  0.408











REMARK
3
  BIN FREE R VALUE TEST SET SIZE
(%)
:  7.4










REMARK
3
  BIN FREE R VALUE TEST SET COUNT
:   324


REMARK
3
  ESTIMATED ERROR OF BIN FREE R VALUE
:  0.023


REMARK
3









REMARK
3
 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.










REMARK
3
  PROTEIN ATOMS
:    0


REMARK
3
  NUCLEIC ACID ATOMS
:  1050


REMARK
3
  HETEROGEN ATOMS
:   81


REMARK
3
  SOLVENT ATOMS
:  154


REMARK
3


REMARK
3
 B VALUES.











REMARK
3
  FROM WILSON PLOT
(A**2)
:129.5


REMARK
3
  MEAN B VALUE
(OVERALL, A**2)
:  65.6









REMARK
3
  OVERALL ANISOTROPIC B VALUE.


REMARK
3
   B11 (A**2)  :  34.88


REMARK
3
   B22 (A**2)  :  −5.03


REMARK
3
   B33 (A**2)  :  −29.85


REMARK
3
   B12 (A**2)  :   0.00


REMARK
3
   B13 (A**2)  :  23.73


REMARK
3
   B23 (A**2)  :   0.00


REMARK
3


REMARK
3
 BULK SOLVENT MODELING.










REMARK
3
  METHOD USED
:  FLAT MODEL


REMARK
3
  KSOL
:  0.25


REMARK
3
  BSOL
:  9.21319 (A**2)









REMARK
3



REMARK
3
 ESTIMATED COORDINATE ERROR.











REMARK
3
  ESD FROM LUZZATI PLOT
(A) :
0.40


REMARK
3
  ESD FROM SIGMAA
(A) :
0.62


REMARK
3
  LOW RESOLUTION CUTOFF
(A) :
5.00


REMARK
3









REMARK
3
 CROSS-VALIDATED ESTIMATED COORDINATE ERROR.











REMARK
3
  ESD FROM C-V LUZZATI PLOT
(A) :
0.50


REMARK
3
  ESD FROM C-V SIGMAA
(A) :
0.62


REMARK
3









REMARK
3
 RMS DEVIATIONS FROM IDEAL VALUES.











REMARK
3
  BOND LENGTHS
(A) :
0.006


REMARK
3
  BOND ANGLES
(DEGREES) :
1.0


REMARK
3
  DIHEDRAL ANGLES
(DEGREES) :
21.5


REMARK
3
  IMPROPER ANGLES
(DEGREES) :
1.40


REMARK
3









REMARK
3
 ISOTROPIC THERMAL MODEL : RESTRAINED


REMARK
3











REMARK
3
 ISOTROPIC THERMAL FACTOR RESTRAINTS.
RMS
SIGMA












REMARK
3
  MAIN-CHAIN BOND
(A**2) :
NULL ;
NULL


REMARK
3
  MAIN-CHAIN ANGLE
(A**2) :
NULL ;
NULL


REMARK
3
  SIDE-CHAIN BOND
(A**2) :
NULL ;
NULL


REMARK
3
  SIDE-CHAIN ANGLE
(A**2) :
NULL ;
NULL


REMARK
3


REMARK
3
 NCS MODEL : NONE


REMARK
3











REMARK
3
 NCS RESTRAINTS.
RMS
SIGMA/WEIGHT












REMARK
3
  GROUP 1 POSITIONAL
(A) :
NULL ;
NULL


REMARK
3
  GROUP 1 B-FACTOR
(A**2) :
NULL ;
NULL


REMARK
3










REMARK
3
 PARAMETER FILE 1
: CNS_TOPPAR/protein_rep.param


REMARK
3
 PARAMETER FILE 2
: dna-rna_rep_revise4.param


REMARK
3
 PARAMETER FILE 3
: CNS_TOPPAR/water_rep.param


REMARK
3
 PARAMETER FILE 4
: CNS_TOPPAR/ion.param


REMARK
3
 PARAMETER FILE 5
: sam7.param


REMARK
3
 TOPOLOGY FILE 1
: CNS_TOPPAR/protein.top


REMARK
3
 TOPOLOGY FILE 2
: dna-rna_rep_revise4.top


REMARK
3
 TOPOLOGY FILE 3
: CNS_TOPPAR/water_rep.top


REMARK
3
 TOPOLOGY FILE 4
: CNS_TOPPAR/ion.top


REMARK
3
 TOPOLOGY FILE 5
: sam7.top


REMARK
3














REMARK
3
OTHER
REFINEMENT
REMARKS :
BULK
SOLVENT
MODEL USED























SEQRES
1
A
52
GUA
CYT
GUA
CYT
GUA
GUA
CYT
GUA
ADE
URI
URI
URI
ADE


SEQRES
2
A
52
ADE
CYT
CYT
GUA
URI
ADE
URI
URI
GUA
CYT
ADE
GUA
URI


SEQRES
3
A
52
CYT
GUA
CYT
GUA
URI
GUA
ADE
URI
ADE
ADE
ADE
URI
GUA


SEQRES
4
A
52
URI
ADE
GUA
CYT
URI
ADE
ADE
ADE
ADE
ADE
GUA
GUA
ADE


SEQRES
1
B
52
GUA
CYT
GUA
CYT
GUA
GUA
CYT
GUA
ADE
URI
URI
URI
ADE


SEQRES
2
B
52
ADE
CYT
CYT
GUA
URI
ADE
URI
URI
GUA
CYT
ADE
GUA
URI


SEQRES
3
B
52
CYT
GUA
CYT
GUA
URI
GUA
ADE
URI
ADE
ADE
ADE
URI
GUA


SEQRES
4
B
52
URI
ADE
GUA
CYT
URI
ADE
ADE
ADE
ADE
ADE
GUA
GUA
ADE


SEQRES
1
C
52
GUA
CYT
GUA
CYT
GUA
GUA
CYT
GUA
ADE
URI
URI
URI
ADE


SEQRES
2
C
52
ADE
CYT
CYT
GUA
URI
ADE
URI
URI
GUA
CYT
ADE
GUA
URI


SEQRES
3
C
52
CYT
GUA
CYT
GUA
URI
GUA
ADE
URI
ADE
ADE
ADE
URI
GUA


SEQRES
4
C
52
URI
ADE
GUA
CYT
URI
ADE
ADE
ADE
ADE
ADE
GUA
GUA
ADE














CRYST1
115.258
48.095
109.617
90.00
108.25
90.00 C 2
12











ORIGX1
1.000000
0.000000
0.000000
0.00000


ORIGX2
0.000000
1.000000
0.000000
0.00000


ORIGX3
0.000000
0.000000
1.000000
0.00000


SCALE1
0.008676
0.000000
0.002862
0.00000


SCALE2
0.000000
0.020792
0.000000
0.00000


SCALE3
0.000000
0.000000
0.009606
0.00000


















ATOM
1
O6P
GUA
A
1
−3.122
22.893
35.812
1.00
79.01
A


ATOM
2
O3P
GUA
A
1
−2.183
21.111
37.439
1.00
75.49
A


ATOM
3
O4P
GUA
A
1
−1.328
21.287
35.020
1.00
77.61
A


ATOM
4
O5P
GUA
A
1
−0.763
23.120
36.591
1.00
81.95
A


ATOM
5
P2
GUA
A
1
−1.851
22.131
36.189
1.00
81.46
A


ATOM
6
P
GUA
A
1
−0.796
20.349
37.787
1.00
70.43
A


ATOM
7
O1P
GUA
A
1
0.242
21.364
38.237
1.00
69.31
A


ATOM
8
O2P
GUA
A
1
−0.373
19.586
36.525
1.00
67.03
A


ATOM
9
O5′
GUA
A
1
−0.900
19.278
39.005
1.00
62.45
A


ATOM
10
C5′
GUA
A
1
0.300
18.834
39.669
1.00
58.69
A


ATOM
11
C4′
GUA
A
1
0.890
17.581
39.014
1.00
53.75
A


ATOM
12
O4′
GUA
A
1
1.235
17.789
37.609
1.00
53.70
A


ATOM
13
C1′
GUA
A
1
2.550
17.294
37.340
1.00
52.22
A


ATOM
14
N9
GUA
A
1
3.421
18.451
37.118
1.00
53.59
A


ATOM
15
C4
GUA
A
1
4.803
18.541
37.218
1.00
53.64
A


ATOM
16
N3
GUA
A
1
5.653
17.553
37.565
1.00
53.63
A


ATOM
17
C2
GUA
A
1
6.917
17.975
37.595
1.00
53.12
A


ATOM
18
N2
GUA
A
1
7.905
17.149
37.950
1.00
51.55
A


ATOM
19
N1
GUA
A
1
7.309
19.248
37.290
1.00
53.64
A


ATOM
20
C6
GUA
A
1
6.459
20.280
36.926
1.00
53.32
A


ATOM
21
O6
GUA
A
1
6.922
21.401
36.675
1.00
50.63
A


ATOM
22
C5
GUA
A
1
5.104
19.855
36.904
1.00
54.13
A


ATOM
23
N7
GUA
A
1
3.951
20.571
36.615
1.00
54.92
A


ATOM
24
C8
GUA
A
1
2.986
19.704
36.753
1.00
55.27
A


ATOM
25
C2′
GUA
A
1
2.921
16.420
38.535
1.00
51.79
A


ATOM
26
O2′
GUA
A
1
2.437
15.113
38.346
1.00
51.21
A


ATOM
27
C3′
GUA
A
1
2.199
17.146
39.660
1.00
51.46
A


ATOM
28
O3′
GUA
A
1
1.933
16.312
40.761
1.00
46.95
A


ATOM
29
P
CYT
A
2
2.157
16.875
42.244
1.00
48.57
A


ATOM
30
O1P
CYT
A
2
1.929
18.348
42.278
1.00
42.96
A


ATOM
31
O2P
CYT
A
2
1.391
15.995
43.167
1.00
46.56
A


ATOM
32
O5′
CYT
A
2
3.706
16.597
42.479
1.00
47.77
A


ATOM
33
C5′
CYT
A
2
4.204
15.277
42.381
1.00
45.44
A


ATOM
34
C4′
CYT
A
2
5.702
15.280
42.403
1.00
45.59
A


ATOM
35
O4′
CYT
A
2
6.215
15.773
41.143
1.00
46.82
A


ATOM
36
C1′
CYT
A
2
7.449
16.434
41.369
1.00
47.01
A


ATOM
37
N1
CYT
A
2
7.263
17.843
41.054
1.00
47.95
A


ATOM
38
C6
CYT
A
2
6.035
18.339
40.736
1.00
47.93
A


ATOM
39
C2
CYT
A
2
8.361
18.671
41.107
1.00
48.84
A


ATOM
40
O2
CYT
A
2
9.458
18.170
41.388
1.00
52.02
A


ATOM
41
N3
CYT
A
2
8.215
19.990
40.851
1.00
48.53
A


ATOM
42
C4
CYT
A
2
7.016
20.470
40.531
1.00
48.44
A


ATOM
43
N4
CYT
A
2
6.913
21.769
40.247
1.00
48.35
A


ATOM
44
C5
CYT
A
2
5.868
19.636
40.471
1.00
49.66
A


ATOM
45
C2′
CYT
A
2
7.763
16.289
42.859
1.00
46.37
A


ATOM
46
O2′
CYT
A
2
8.562
15.149
43.091
1.00
45.81
A


ATOM
47
C3′
CYT
A
2
6.364
16.166
43.439
1.00
44.45
A


ATOM
48
O3′
CYT
A
2
6.412
15.484
44.675
1.00
41.89
A


ATOM
49
P
GUA
A
3
6.252
16.299
46.043
1.00
42.10
A


ATOM
50
O1P
GUA
A
3
5.280
17.407
45.892
1.00
40.61
A


ATOM
51
O2P
GUA
A
3
6.050
15.280
47.092
1.00
39.17
A


ATOM
52
O5′
GUA
A
3
7.692
16.926
46.261
1.00
44.58
A


ATOM
53
C5′
GUA
A
3
8.831
16.078
46.324
1.00
42.59
A


ATOM
54
C4′
GUA
A
3
10.078
16.903
46.297
1.00
42.78
A


ATOM
55
O4′
GUA
A
3
10.222
17.528
44.995
1.00
44.47
A


ATOM
56
C1′
GUA
A
3
10.876
18.778
45.148
1.00
45.39
A


ATOM
57
N9
GUA
A
3
9.983
19.828
44.670
1.00
48.03
A


ATOM
58
C4
GUA
A
3
10.288
21.163
44.574
1.00
49.13
A


ATOM
59
N3
GUA
A
3
11.468
21.727
44.896
1.00
50.26
A


ATOM
60
C2
GUA
A
3
11.459
23.035
44.705
1.00
51.54
A


ATOM
61
N2
GUA
A
3
12.545
23.757
44.991
1.00
54.67
A


ATOM
62
N1
GUA
A
3
10.385
23.732
44.223
1.00
51.22
A


ATOM
63
C6
GUA
A
3
9.162
23.176
43.880
1.00
50.02
A


ATOM
64
O6
GUA
A
3
8.267
23.902
43.447
1.00
50.31
A


ATOM
65
C5
GUA
A
3
9.148
21.767
44.095
1.00
49.23
A


ATOM
66
N7
GUA
A
3
8.143
20.830
43.893
1.00
48.38
A


ATOM
67
C8
GUA
A
3
8.683
19.694
44.245
1.00
47.42
A


ATOM
68
C2′
GUA
A
3
11.186
18.924
46.639
1.00
43.47
A


ATOM
69
O2′
GUA
A
3
12.459
18.377
46.910
1.00
45.99
A


ATOM
70
C3′
GUA
A
3
10.077
18.083
47.243
1.00
42.30
A


ATOM
71
O3′
GUA
A
3
10.414
17.644
48.543
1.00
43.04
A


ATOM
72
P
CYT
A
4
9.640
18.244
49.810
1.00
45.36
A


ATOM
73
O1P
CYT
A
4
8.240
18.530
49.414
1.00
46.28
A


ATOM
74
O2P
CYT
A
4
9.919
17.323
50.937
1.00
43.82
A


ATOM
75
O5′
CYT
A
4
10.345
19.649
50.068
1.00
43.71
A


ATOM
76
C5′
CYT
A
4
11.712
19.831
49.737
1.00
42.38
A


ATOM
77
C4′
CYT
A
4
12.118
21.257
49.960
1.00
40.12
A


ATOM
78
O4′
CYT
A
4
12.112
21.977
48.706
1.00
40.61
A


ATOM
79
C1′
CYT
A
4
11.708
23.313
48.930
1.00
41.97
A


ATOM
80
N1
CYT
A
4
10.437
23.527
48.227
1.00
44.61
A


ATOM
81
C6
CYT
A
4
9.659
22.471
47.856
1.00
46.63
A


ATOM
82
C2
CYT
A
4
10.033
24.820
47.950
1.00
44.55
A


ATOM
83
O2
CYT
A
4
10.754
25.743
48.291
1.00
46.38
A


ATOM
84
N3
CYT
A
4
8.862
25.031
47.319
1.00
45.19
A


ATOM
85
C4
CYT
A
4
8.102
23.996
46.969
1.00
44.95
A


ATOM
86
N4
CYT
A
4
6.953
24.242
46.367
1.00
45.12
A


ATOM
87
C5
CYT
A
4
8.491
22.662
47.228
1.00
47.16
A


ATOM
88
C2′
CYT
A
4
11.590
23.475
50.444
1.00
40.74
A


ATOM
89
O2′
CYT
A
4
12.850
23.840
50.938
1.00
42.41
A


ATOM
90
C3′
CYT
A
4
11.217
22.064
50.867
1.00
39.44
A


ATOM
91
O3′
CYT
A
4
11.634
21.823
52.196
1.00
39.48
A


ATOM
92
P
GUA
A
5
10.570
21.822
53.397
1.00
40.65
A


ATOM
93
O1P
GUA
A
5
9.225
22.097
52.851
1.00
41.86
A


ATOM
94
O2P
GUA
A
5
10.792
20.615
54.220
1.00
38.51
A


ATOM
95
O5′
GUA
A
5
11.010
23.078
54.260
1.00
40.18
A


ATOM
96
C5′
GUA
A
5
10.119
24.153
54.485
1.00
39.67
A


ATOM
97
C4′
GUA
A
5
10.754
25.446
54.064
1.00
38.08
A


ATOM
98
O4′
GUA
A
5
11.037
25.373
52.646
1.00
38.21
A


ATOM
99
C1′
GUA
A
5
10.629
26.579
52.018
1.00
41.62
A


ATOM
100
N9
GUA
A
5
9.439
26.289
51.222
1.00
42.26
A


ATOM
101
C4
GUA
A
5
8.684
27.173
50.489
1.00
43.07
A


ATOM
102
N3
GUA
A
5
8.883
28.501
50.392
1.00
45.16
A


ATOM
103
C2
GUA
A
5
7.985
29.083
49.613
1.00
43.59
A


ATOM
104
N2
GUA
A
5
8.014
30.407
49.437
1.00
39.55
A


ATOM
105
N1
GUA
A
5
6.993
28.408
48.963
1.00
44.54
A


ATOM
106
C6
GUA
A
5
6.782
27.037
49.043
1.00
46.16
A


ATOM
107
O6
GUA
A
5
5.867
26.515
48.401
1.00
51.42
A


ATOM
108
C5
GUA
A
5
7.713
26.413
49.892
1.00
43.96
A


ATOM
109
N7
GUA
A
5
7.838
25.086
50.251
1.00
44.24
A


ATOM
110
C8
GUA
A
5
8.868
25.061
51.044
1.00
43.14
A


ATOM
111
C2′
GUA
A
5
10.392
27.578
53.146
1.00
40.55
A


ATOM
112
O2′
GUA
A
5
11.615
28.116
53.575
1.00
40.58
A


ATOM
113
C3′
GUA
A
5
9.859
26.661
54.221
1.00
39.47
A


ATOM
114
O3′
GUA
A
5
10.051
27.260
55.484
1.00
39.23
A


ATOM
115
P
GUA
A
6
8.814
27.981
56.202
1.00
39.81
A


ATOM
116
O1P
GUA
A
6
7.644
27.061
56.084
1.00
34.66
A


ATOM
117
O2P
GUA
A
6
9.244
28.441
57.539
1.00
38.23
A


ATOM
118
O5′
GUA
A
6
8.606
29.286
55.316
1.00
37.57
A


ATOM
119
C5′
GUA
A
6
9.549
30.343
55.374
1.00
35.30
A


ATOM
120
C4′
GUA
A
6
9.070
31.533
54.575
1.00
35.94
A


ATOM
121
O4′
GUA
A
6
8.934
31.175
53.178
1.00
36.31
A


ATOM
122
C1′
GUA
A
6
7.826
31.865
52.619
1.00
37.34
A


ATOM
123
N9
GUA
A
6
6.814
30.888
52.222
1.00
38.69
A


ATOM
124
C4
GUA
A
6
5.667
31.157
51.531
1.00
39.43
A


ATOM
125
N3
GUA
A
6
5.244
32.379
51.154
1.00
39.49
A


ATOM
126
C2
GUA
A
6
4.118
32.327
50.467
1.00
39.64
A


ATOM
127
N2
GUA
A
6
3.564
33.461
50.032
1.00
38.79
A


ATOM
128
N1
GUA
A
6
3.456
31.160
50.161
1.00
39.77
A


ATOM
129
C6
GUA
A
6
3.864
29.881
50.541
1.00
40.75
A


ATOM
130
O6
GUA
A
6
3.190
28.886
50.209
1.00
36.84
A


ATOM
131
C5
GUA
A
6
5.079
29.929
51.300
1.00
41.36
A


ATOM
132
N7
GUA
A
6
5.824
28.910
51.883
1.00
38.94
A


ATOM
133
C8
GUA
A
6
6.836
29.527
52.427
1.00
38.93
A


ATOM
134
C2′
GUA
A
6
7.332
32.845
53.679
1.00
35.62
A


ATOM
135
O2′
GUA
A
6
8.027
34.065
53.563
1.00
35.89
A


ATOM
136
C3′
GUA
A
6
7.718
32.115
54.948
1.00
34.49
A


ATOM
137
O3′
GUA
A
6
7.848
33.067
55.974
1.00
33.17
A


ATOM
138
P
CYT
A
7
6.760
33.100
57.135
1.00
36.95
A


ATOM
139
O1P
CYT
A
7
6.435
31.689
57.467
1.00
36.80
A


ATOM
140
O2P
CYT
A
7
7.223
34.013
58.202
1.00
37.25
A


ATOM
141
O5′
CYT
A
7
5.510
33.776
56.427
1.00
37.87
A


ATOM
142
C5′
CYT
A
7
5.579
35.130
56.015
1.00
39.08
A


ATOM
143
C4′
CYT
A
7
4.321
35.514
55.296
1.00
41.04
A


ATOM
144
O4′
CYT
A
7
4.262
34.828
54.017
1.00
41.75
A


ATOM
145
C1′
CYT
A
7
2.927
34.445
53.751
1.00
42.97
A


ATOM
146
N1
CYT
A
7
2.856
32.986
53.794
1.00
44.72
A


ATOM
147
C6
CYT
A
7
3.633
32.261
54.651
1.00
45.48
A


ATOM
148
C2
CYT
A
7
1.986
32.351
52.935
1.00
44.06
A


ATOM
149
O2
CYT
A
7
1.282
33.047
52.206
1.00
46.39
A


ATOM
150
N3
CYT
A
7
1.923
31.003
52.920
1.00
42.20
A


ATOM
151
C4
CYT
A
7
2.679
30.299
53.754
1.00
43.31
A


ATOM
152
N4
CYT
A
7
2.577
28.971
53.721
1.00
43.90
A


ATOM
153
C5
CYT
A
7
3.574
30.926
54.666
1.00
46.03
A


ATOM
154
C2′
CYT
A
7
2.076
35.118
54.820
1.00
43.20
A


ATOM
155
O2′
CYT
A
7
1.826
36.454
54.434
1.00
47.51
A


ATOM
156
C3′
CYT
A
7
3.038
35.108
55.987
1.00
40.73
A


ATOM
157
O3′
CYT
A
7
2.664
36.118
56.886
1.00
38.58
A


ATOM
158
P
GUA
A
8
1.936
35.720
58.247
1.00
42.00
A


ATOM
159
O1P
GUA
A
8
2.563
34.485
58.780
1.00
41.25
A


ATOM
160
O2P
GUA
A
8
1.927
36.956
59.061
1.00
38.47
A


ATOM
161
O5′
GUA
A
8
0.458
35.310
57.814
1.00
43.41
A


ATOM
162
C5′
GUA
A
8
−0.427
36.243
57.189
1.00
45.59
A


ATOM
163
C4′
GUA
A
8
−1.864
35.893
57.503
1.00
47.15
A


ATOM
164
O4′
GUA
A
8
−2.222
34.610
56.904
1.00
46.35
A


ATOM
165
C1′
GUA
A
8
−2.960
33.871
57.845
1.00
47.37
A


ATOM
166
N9
GUA
A
8
−2.819
32.449
57.568
1.00
50.30
A


ATOM
167
C4
GUA
A
8
−3.739
31.651
56.951
1.00
52.71
A


ATOM
168
N3
GUA
A
8
−4.914
32.058
56.430
1.00
53.07
A


ATOM
169
C2
GUA
A
8
−5.611
31.051
55.942
1.00
53.51
A


ATOM
170
N2
GUA
A
8
−6.804
31.279
55.392
1.00
55.21
A


ATOM
171
N1
GUA
A
8
−5.189
29.744
55.960
1.00
55.13
A


ATOM
172
C6
GUA
A
8
−3.975
29.298
56.485
1.00
55.81
A


ATOM
173
O6
GUA
A
8
−3.683
28.085
56.453
1.00
56.49
A


ATOM
174
C5
GUA
A
8
−3.216
30.374
57.012
1.00
53.87
A


ATOM
175
N7
GUA
A
8
−1.969
30.380
57.615
1.00
51.04
A


ATOM
176
C8
GUA
A
8
−1.770
31.633
57.919
1.00
52.05
A


ATOM
177
C2′
GUA
A
8
−2.329
34.255
59.174
1.00
46.97
A


ATOM
178
O2′
GUA
A
8
−3.150
33.861
60.245
1.00
43.61
A


ATOM
179
C3′
GUA
A
8
−2.172
35.760
58.994
1.00
48.46
A


ATOM
180
O3′
GUA
A
8
−3.372
36.455
59.313
1.00
51.14
A


ATOM
181
P
ADE
A
9
−3.597
37.012
60.803
1.00
54.42
A


ATOM
182
O1P
ADE
A
9
−3.394
38.489
60.798
1.00
52.70
A


ATOM
183
O2P
ADE
A
9
−2.835
36.144
61.759
1.00
51.84
A


ATOM
184
O5′
ADE
A
9
−5.147
36.795
61.060
1.00
55.36
A


ATOM
185
C5′
ADE
A
9
−5.675
35.492
61.258
1.00
54.25
A


ATOM
186
C4′
ADE
A
9
−7.003
35.374
60.562
1.00
52.00
A


ATOM
187
O4′
ADE
A
9
−6.781
34.888
59.210
1.00
49.91
A


ATOM
188
C1′
ADE
A
9
−7.716
33.866
58.919
1.00
49.59
A


ATOM
189
N9
ADE
A
9
−7.032
32.582
59.020
1.00
46.92
A


ATOM
190
C4
ADE
A
9
−7.519
31.391
58.552
1.00
46.44
A


ATOM
191
N3
ADE
A
9
−8.686
31.187
57.925
1.00
45.85
A


ATOM
192
C2
ADE
A
9
−8.834
29.901
57.630
1.00
46.76
A


ATOM
193
N1
ADE
A
9
−8.009
28.877
57.867
1.00
46.92
A


ATOM
194
C6
ADE
A
9
−6.837
29.122
58.492
1.00
46.05
A


ATOM
195
N6
ADE
A
9
−6.009
28.100
58.715
1.00
46.20
A


ATOM
196
C5
ADE
A
9
−6.565
30.444
58.865
1.00
44.50
A


ATOM
197
N7
ADE
A
9
−5.493
31.028
59.515
1.00
44.66
A


ATOM
198
C8
ADE
A
9
−5.818
32.296
59.582
1.00
45.49
A


ATOM
199
C2′
ADE
A
9
−8.808
34.000
59.975
1.00
51.40
A


ATOM
200
O2′
ADE
A
9
−9.692
35.040
59.615
1.00
54.37
A


ATOM
201
C3′
ADE
A
9
−7.974
34.382
61.182
1.00
51.00
A


ATOM
202
O3′
ADE
A
9
−8.768
35.020
62.172
1.00
49.06
A


ATOM
203
P
URI
A
10
−9.231
34.196
63.471
1.00
51.70
A


ATOM
204
O1P
URI
A
10
−8.107
33.313
63.874
1.00
50.55
A


ATOM
205
O2P
URI
A
10
−9.786
35.166
64.454
1.00
48.53
A


ATOM
206
O5′
URI
A
10
−10.403
33.261
62.918
1.00
51.67
A


ATOM
207
C5′
URI
A
10
−11.358
33.775
61.994
1.00
52.81
A


ATOM
208
C4′
URI
A
10
−12.176
32.661
61.394
1.00
54.72
A


ATOM
209
O4′
URI
A
10
−11.443
31.990
60.339
1.00
54.38
A


ATOM
210
C1′
URI
A
10
−11.921
30.661
60.223
1.00
54.28
A


ATOM
211
N1
URI
A
10
−10.816
29.747
60.502
1.00
54.62
A


ATOM
212
C6
URI
A
10
−9.672
30.161
61.130
1.00
54.70
A


ATOM
213
C2
URI
A
10
−10.988
28.448
60.125
1.00
55.57
A


ATOM
214
O2
URI
A
10
−11.989
28.064
59.553
1.00
55.75
A


ATOM
215
N3
URI
A
10
−9.951
27.613
60.440
1.00
56.18
A


ATOM
216
C4
URI
A
10
−8.785
27.952
61.079
1.00
55.37
A


ATOM
217
O4
URI
A
10
−7.964
27.073
61.337
1.00
58.05
A


ATOM
218
C5
URI
A
10
−8.676
29.330
61.425
1.00
54.29
A


ATOM
219
C2′
URI
A
10
−12.991
30.472
61.295
1.00
54.86
A


ATOM
220
O2′
URI
A
10
−14.268
30.721
60.757
1.00
56.63
A


ATOM
221
C3′
URI
A
10
−12.577
31.521
62.312
1.00
55.55
A


ATOM
222
O3′
URI
A
10
−13.695
31.899
63.096
1.00
58.29
A


ATOM
223
P
URI
A
11
−14.115
31.020
64.373
1.00
59.94
A


ATOM
224
O1P
URI
A
11
−12.956
30.853
65.283
1.00
59.36
A


ATOM
225
O2P
URI
A
11
−15.352
31.662
64.888
1.00
60.92
A


ATOM
226
O5′
URI
A
11
−14.431
29.576
63.768
1.00
59.83
A


ATOM
227
C5′
URI
A
11
−15.507
29.360
62.854
1.00
59.21
A


ATOM
228
C4′
URI
A
11
−15.684
27.878
62.593
1.00
59.51
A


ATOM
229
O4′
URI
A
11
−14.571
27.380
61.805
1.00
59.78
A


ATOM
230
C1′
URI
A
11
−14.284
26.036
62.175
1.00
59.78
A


ATOM
231
N1
URI
A
11
−12.899
25.949
62.662
1.00
59.00
A


ATOM
232
C6
URI
A
11
−12.236
27.040
63.169
1.00
57.75
A


ATOM
233
C2
URI
A
11
−12.291
24.707
62.615
1.00
58.51
A


ATOM
234
O2
URI
A
11
−12.834
23.726
62.144
1.00
59.28
A


ATOM
235
N3
URI
A
11
−11.027
24.658
63.137
1.00
56.77
A


ATOM
236
C4
URI
A
11
−10.319
25.699
63.680
1.00
57.51
A


ATOM
237
O4
URI
A
11
−9.224
25.475
64.189
1.00
58.27
A


ATOM
238
C5
URI
A
11
−11.000
26.961
63.666
1.00
57.92
A


ATOM
239
C2′
URI
A
11
−15.266
25.639
63.276
1.00
59.82
A


ATOM
240
O2′
URI
A
11
−16.313
24.858
62.743
1.00
58.65
A


ATOM
241
C3′
URI
A
11
−15.673
27.001
63.833
1.00
60.24
A


ATOM
242
O3′
URI
A
11
−16.953
26.967
64.437
1.00
63.21
A


ATOM
243
P
URI
A
12
−17.085
26.618
65.999
1.00
66.40
A


ATOM
244
O1P
URI
A
12
−16.143
27.477
66.754
1.00
66.07
A


ATOM
245
O2P
URI
A
12
−18.527
26.661
66.331
1.00
68.45
A


ATOM
246
O5′
URI
A
12
−16.586
25.107
66.094
1.00
65.97
A


ATOM
247
C5′
URI
A
12
−17.182
24.093
65.296
1.00
67.36
A


ATOM
248
C4′
URI
A
12
−16.479
22.772
65.505
1.00
69.81
A


ATOM
249
O4′
URI
A
12
−15.173
22.795
64.879
1.00
70.39
A


ATOM
250
C1′
URI
A
12
−14.329
21.861
65.529
1.00
69.88
A


ATOM
251
N1
URI
A
12
−13.093
22.547
65.926
1.00
70.58
A


ATOM
252
C6
URI
A
12
−13.009
23.915
65.928
1.00
70.52
A


ATOM
253
C2
URI
A
12
−12.019
21.765
66.322
1.00
70.85
A


ATOM
254
O2
URI
A
12
−12.042
20.550
66.310
1.00
72.51
A


ATOM
255
N3
URI
A
12
−10.916
22.462
66.734
1.00
69.65
A


ATOM
256
C4
URI
A
12
−10.779
23.828
66.789
1.00
70.03
A


ATOM
257
O4
URI
A
12
−9.773
24.304
67.296
1.00
70.62
A


ATOM
258
C5
URI
A
12
−11.917
24.566
66.335
1.00
70.95
A


ATOM
259
C2′
URI
A
12
−15.089
21.334
66.747
1.00
70.55
A


ATOM
260
O2′
URI
A
12
−15.628
20.071
66.444
1.00
71.94
A


ATOM
261
C3′
URI
A
12
−16.158
22.402
66.939
1.00
70.69
A


ATOM
262
O3′
URI
A
12
−17.305
21.860
67.579
1.00
72.76
A


ATOM
263
P
ADE
A
13
−17.510
22.068
69.158
1.00
74.36
A


ATOM
264
O1P
ADE
A
13
−18.547
21.100
69.565
1.00
73.45
A


ATOM
265
O2P
ADE
A
13
−17.701
23.513
69.441
1.00
72.68
A


ATOM
266
O5′
ADE
A
13
−16.133
21.590
69.797
1.00
76.15
A


ATOM
267
C5′
ADE
A
13
−15.971
20.254
70.263
1.00
80.22
A


ATOM
268
C4′
ADE
A
13
−15.731
20.261
71.749
1.00
83.46
A


ATOM
269
O4′
ADE
A
13
−14.414
20.806
71.974
1.00
83.69
A


ATOM
270
C1′
ADE
A
13
−14.387
21.437
73.233
1.00
84.72
A


ATOM
271
N9
ADE
A
13
−13.487
22.587
73.160
1.00
83.53
A


ATOM
272
C4
ADE
A
13
−12.161
22.593
73.518
1.00
83.42
A


ATOM
273
N3
ADE
A
13
−11.430
21.552
73.955
1.00
83.67
A


ATOM
274
C2
ADE
A
13
−10.186
21.936
74.234
1.00
83.32
A


ATOM
275
N1
ADE
A
13
−9.634
23.151
74.139
1.00
83.45
A


ATOM
276
C6
ADE
A
13
−10.399
24.177
73.701
1.00
84.07
A


ATOM
277
N6
ADE
A
13
−9.855
25.395
73.624
1.00
85.24
A


ATOM
278
C5
ADE
A
13
−11.735
23.898
73.358
1.00
83.50
A


ATOM
279
N7
ADE
A
13
−12.765
24.696
72.874
1.00
82.37
A


ATOM
280
C8
ADE
A
13
−13.776
23.872
72.768
1.00
82.92
A


ATOM
281
C2′
ADE
A
13
−15.818
21.829
73.620
1.00
85.51
A


ATOM
282
O2′
ADE
A
13
−16.107
21.444
74.949
1.00
86.56
A


ATOM
283
C3′
ADE
A
13
−16.675
21.184
72.518
1.00
85.91
A


ATOM
284
O3′
ADE
A
13
−17.914
20.556
72.906
1.00
87.87
A


ATOM
285
P
ADE
A
14
−17.976
19.507
74.134
1.00
88.89
A


ATOM
286
O1P
ADE
A
14
−16.620
19.050
74.536
1.00
88.89
A


ATOM
287
O2P
ADE
A
14
−18.998
18.501
73.756
1.00
89.39
A


ATOM
288
O5′
ADE
A
14
−18.566
20.387
75.314
1.00
88.88
A


ATOM
289
C5′
ADE
A
14
−18.936
21.735
75.070
1.00
91.70
A


ATOM
290
C4′
ADE
A
14
−20.142
22.101
75.891
1.00
94.04
A


ATOM
291
O4′
ADE
A
14
−21.326
22.017
75.082
1.00
95.65
A


ATOM
292
C1′
ADE
A
14
−22.438
21.956
75.937
1.00
97.65
A


ATOM
293
N9
ADE
A
14
−23.456
21.153
75.272
1.00
101.14
A


ATOM
294
C4
ADE
A
14
−24.067
21.476
74.086
1.00
103.55
A


ATOM
295
N3
ADE
A
14
−23.868
22.580
73.342
1.00
104.35
A


ATOM
296
C2
ADE
A
14
−24.625
22.549
72.244
1.00
104.89
A


ATOM
297
N1
ADE
A
14
−25.490
21.609
71.836
1.00
104.95
A


ATOM
298
C6
ADE
A
14
−25.664
20.510
72.608
1.00
104.89
A


ATOM
299
N6
ADE
A
14
−26.516
19.566
72.198
1.00
104.41
A


ATOM
300
C5
ADE
A
14
−24.924
20.428
73.805
1.00
104.57
A


ATOM
301
N7
ADE
A
14
−24.871
19.469
74.808
1.00
104.45
A


ATOM
302
C8
ADE
A
14
−23.990
19.947
75.654
1.00
103.05
A


ATOM
303
C2′
ADE
A
14
−21.959
21.406
77.289
1.00
95.73
A


ATOM
304
O2′
ADE
A
14
−22.285
22.320
78.317
1.00
96.76
A


ATOM
305
C3′
ADE
A
14
−20.450
21.191
77.068
1.00
93.55
A


ATOM
306
O3′
ADE
A
14
−19.615
21.602
78.153
1.00
89.70
A


ATOM
307
P
CYT
A
15
−19.810
20.980
79.624
1.00
85.69
A


ATOM
308
O1P
CYT
A
15
−18.605
20.172
79.932
1.00
84.11
A


ATOM
309
O2P
CYT
A
15
−21.155
20.352
79.716
1.00
86.79
A


ATOM
310
O5′
CYT
A
15
−19.795
22.277
80.554
1.00
83.02
A


ATOM
311
C5′
CYT
A
15
−20.789
23.293
80.395
1.00
78.80
A


ATOM
312
C4′
CYT
A
15
−20.213
24.670
80.663
1.00
75.64
A


ATOM
313
O4′
CYT
A
15
−19.728
24.752
82.029
1.00
75.02
A


ATOM
314
C1′
CYT
A
15
−18.542
25.525
82.071
1.00
72.30
A


ATOM
315
N1
CYT
A
15
−17.419
24.625
82.362
1.00
71.80
A


ATOM
316
C6
CYT
A
15
−17.508
23.282
82.117
1.00
70.65
A


ATOM
317
C2
CYT
A
15
−16.246
25.171
82.878
1.00
71.69
A


ATOM
318
O2
CYT
A
15
−16.209
26.387
83.120
1.00
72.35
A


ATOM
319
N3
CYT
A
15
−15.185
24.364
83.102
1.00
70.96
A


ATOM
320
C4
CYT
A
15
−15.272
23.060
82.838
1.00
69.95
A


ATOM
321
N4
CYT
A
15
−14.194
22.315
83.047
1.00
68.69
A


ATOM
322
C5
CYT
A
15
−16.467
22.470
82.339
1.00
70.20
A


ATOM
323
C2′
CYT
A
15
−18.407
26.168
80.696
1.00
72.73
A


ATOM
324
O2′
CYT
A
15
−19.148
27.365
80.658
1.00
71.72
A


ATOM
325
C3′
CYT
A
15
−19.026
25.095
79.821
1.00
73.99
A


ATOM
326
O3′
CYT
A
15
−19.470
25.667
78.607
1.00
74.25
A


ATOM
327
P
CYT
A
16
−18.436
25.845
77.399
1.00
72.99
A


ATOM
328
O1P
CYT
A
16
−17.774
24.535
77.181
1.00
72.15
A


ATOM
329
O2P
CYT
A
16
−19.150
26.508
76.283
1.00
73.64
A


ATOM
330
O5′
CYT
A
16
−17.369
26.872
77.971
1.00
71.54
A


ATOM
331
C5′
CYT
A
16
−17.678
28.252
78.047
1.00
70.37
A


ATOM
332
C4′
CYT
A
16
−16.510
29.015
78.622
1.00
70.94
A


ATOM
333
O4′
CYT
A
16
−16.071
28.393
79.858
1.00
70.27
A


ATOM
334
C1′
CYT
A
16
−14.679
28.598
80.016
1.00
69.83
A


ATOM
335
N1
CYT
A
16
−14.026
27.287
80.081
1.00
70.24
A


ATOM
336
C6
CYT
A
16
−14.719
26.140
79.812
1.00
70.01
A


ATOM
337
C2
CYT
A
16
−12.676
27.232
80.424
1.00
70.90
A


ATOM
338
O2
CYT
A
16
−12.073
28.290
80.649
1.00
71.93
A


ATOM
339
N3
CYT
A
16
−12.061
26.033
80.502
1.00
71.06
A


ATOM
340
C4
CYT
A
16
−12.745
24.918
80.250
1.00
71.12
A


ATOM
341
N4
CYT
A
16
−12.098
23.759
80.356
1.00
72.78
A


ATOM
342
C5
CYT
A
16
−14.123
24.944
79.883
1.00
70.62
A


ATOM
343
C2′
CYT
A
16
−14.212
29.422
78.815
1.00
70.28
A


ATOM
344
O2′
CYT
A
16
−14.284
30.798
79.118
1.00
72.82
A


ATOM
345
C3′
CYT
A
16
−15.249
29.041
77.777
1.00
70.11
A


ATOM
346
O3′
CYT
A
16
−15.331
30.049
76.783
1.00
68.85
A


ATOM
347
P
GUA
A
17
−14.822
29.729
75.302
1.00
70.04
A


ATOM
348
O1P
GUA
A
17
−15.539
28.515
74.834
1.00
68.06
A


ATOM
349
O2P
GUA
A
17
−14.890
30.975
74.499
1.00
68.97
A


ATOM
350
O5′
GUA
A
17
−13.292
29.349
75.528
1.00
70.16
A


ATOM
351
C5′
GUA
A
17
−12.336
30.346
75.879
1.00
69.19
A


ATOM
352
C4′
GUA
A
17
−11.021
29.706
76.258
1.00
69.17
A


ATOM
353
O4′
GUA
A
17
−11.239
28.790
77.365
1.00
69.13
A


ATOM
354
C1′
GUA
A
17
−10.382
27.666
77.235
1.00
69.09
A


ATOM
355
N9
GUA
A
17
−11.205
26.467
77.085
1.00
67.10
A


ATOM
356
C4
GUA
A
17
−10.803
25.158
77.245
1.00
65.67
A


ATOM
357
N3
GUA
A
17
−9.569
24.740
77.593
1.00
66.51
A


ATOM
358
C2
GUA
A
17
−9.485
23.415
77.633
1.00
66.53
A


ATOM
359
N2
GUA
A
17
−8.323
22.819
77.952
1.00
66.24
A


ATOM
360
N1
GUA
A
17
−10.530
22.577
77.359
1.00
65.61
A


ATOM
361
C6
GUA
A
17
−11.810
22.988
77.003
1.00
66.05
A


ATOM
362
O6
GUA
A
17
−12.686
22.143
76.771
1.00
67.69
A


ATOM
363
C5
GUA
A
17
−11.913
24.399
76.955
1.00
65.35
A


ATOM
364
N7
GUA
A
17
−12.996
25.207
76.645
1.00
65.91
A


ATOM
365
C8
GUA
A
17
−12.532
26.422
76.738
1.00
66.71
A


ATOM
366
C2′
GUA
A
17
−9.467
27.952
76.040
1.00
69.82
A


ATOM
367
O2′
GUA
A
17
−8.322
28.647
76.492
1.00
68.53
A


ATOM
368
C3′
GUA
A
17
−10.351
28.854
75.190
1.00
69.79
A


ATOM
369
O3′
GUA
A
17
−9.536
29.659
74.347
1.00
71.64
A


ATOM
370
P
URI
A
18
−9.841
29.732
72.773
1.00
75.29
A


ATOM
371
O1P
URI
A
18
−10.045
28.347
72.291
1.00
75.45
A


ATOM
372
O2P
URI
A
18
−10.896
30.747
72.545
1.00
74.13
A


ATOM
373
O5′
URI
A
18
−8.478
30.266
72.138
1.00
78.88
A


ATOM
374
C5′
URI
A
18
−8.001
31.590
72.399
1.00
84.21
A


ATOM
375
C4′
URI
A
18
−6.671
31.537
73.125
1.00
87.36
A


ATOM
376
O4′
URI
A
18
−6.874
30.864
74.406
1.00
92.07
A


ATOM
377
C1′
URI
A
18
−5.734
30.059
74.718
1.00
94.03
A


ATOM
378
N1
URI
A
18
−6.098
28.632
74.613
1.00
98.01
A


ATOM
379
C6
URI
A
18
−6.878
28.149
73.574
1.00
99.76
A


ATOM
380
C2
URI
A
18
−5.611
27.772
75.590
1.00
99.81
A


ATOM
381
O2
URI
A
18
−4.936
28.154
76.531
1.00
99.86
A


ATOM
382
N3
URI
A
18
−5.946
26.447
75.423
1.00
101.21
A


ATOM
383
C4
URI
A
18
−6.707
25.898
74.406
1.00
101.59
A


ATOM
384
O4
URI
A
18
−6.922
24.682
74.399
1.00
101.64
A


ATOM
385
C5
URI
A
18
−7.186
26.848
73.439
1.00
101.34
A


ATOM
386
C2′
URI
A
18
−4.684
30.427
73.679
1.00
90.65
A


ATOM
387
O2′
URI
A
18
−3.971
31.589
74.065
1.00
91.21
A


ATOM
388
C3′
URI
A
18
−5.588
30.677
72.493
1.00
87.49
A


ATOM
389
O3′
URI
A
18
−4.851
31.276
71.460
1.00
83.08
A


ATOM
390
P
ADE
A
19
−3.932
30.345
70.538
1.00
81.25
A


ATOM
391
O1P
ADE
A
19
−3.088
31.243
69.704
1.00
80.29
A


ATOM
392
O2P
ADE
A
19
−4.832
29.356
69.885
1.00
80.09
A


ATOM
393
O5′
ADE
A
19
−2.994
29.564
71.567
1.00
79.28
A


ATOM
394
C5′
ADE
A
19
−1.630
29.937
71.742
1.00
77.82
A


ATOM
395
C4′
ADE
A
19
−0.795
28.745
72.158
1.00
77.72
A


ATOM
396
O4′
ADE
A
19
−1.556
27.877
73.031
1.00
77.57
A


ATOM
397
C1′
ADE
A
19
−1.016
26.564
72.971
1.00
77.68
A


ATOM
398
N9
ADE
A
19
−2.106
25.618
72.713
1.00
78.65
A


ATOM
399
C4
ADE
A
19
−2.044
24.245
72.774
1.00
78.79
A


ATOM
400
N3
ADE
A
19
−0.979
23.488
73.085
1.00
79.18
A


ATOM
401
C2
ADE
A
19
−1.292
22.193
73.032
1.00
79.24
A


ATOM
402
N1
ADE
A
19
−2.462
21.612
72.727
1.00
78.75
A


ATOM
403
C6
ADE
A
19
−3.515
22.399
72.424
1.00
78.55
A


ATOM
404
N6
ADE
A
19
−4.681
21.818
72.123
1.00
76.43
A


ATOM
405
C5
ADE
A
19
−3.313
23.793
72.444
1.00
79.04
A


ATOM
406
N7
ADE
A
19
−4.162
24.861
72.185
1.00
79.73
A


ATOM
407
C8
ADE
A
19
−3.401
25.916
72.359
1.00
80.36
A


ATOM
408
C2′
ADE
A
19
0.063
26.576
71.886
1.00
77.49
A


ATOM
409
O2′
ADE
A
19
1.327
26.762
72.486
1.00
76.48
A


ATOM
410
C3′
ADE
A
19
−0.343
27.792
71.064
1.00
78.16
A


ATOM
411
O3′
ADE
A
19
0.795
28.312
70.379
1.00
79.19
A


ATOM
412
P
URI
A
20
1.119
27.836
68.871
1.00
79.14
A


ATOM
413
O1P
URI
A
20
0.046
28.324
67.964
1.00
76.77
A


ATOM
414
O2P
URI
A
20
2.536
28.205
68.611
1.00
78.22
A


ATOM
415
O5′
URI
A
20
1.015
26.249
68.908
1.00
75.01
A


ATOM
416
C5′
URI
A
20
2.060
25.466
69.454
1.00
72.40
A


ATOM
417
C4′
URI
A
20
1.807
24.016
69.163
1.00
71.99
A


ATOM
418
O4′
URI
A
20
0.764
23.525
70.046
1.00
71.40
A


ATOM
419
C1′
URI
A
20
−0.064
22.610
69.348
1.00
70.50
A


ATOM
420
N1
URI
A
20
−1.419
23.173
69.278
1.00
69.99
A


ATOM
421
C6
URI
A
20
−1.641
24.526
69.396
1.00
69.65
A


ATOM
422
C2
URI
A
20
−2.470
22.296
69.079
1.00
69.79
A


ATOM
423
O2
URI
A
20
−2.315
21.091
68.976
1.00
69.83
A


ATOM
424
N3
URI
A
20
−3.711
22.883
69.006
1.00
68.93
A


ATOM
425
C4
URI
A
20
−4.003
24.223
69.116
1.00
68.00
A


ATOM
426
O4
URI
A
20
−5.179
24.586
69.103
1.00
66.76
A


ATOM
427
C5
URI
A
20
−2.863
25.066
69.320
1.00
68.94
A


ATOM
428
C2′
URI
A
20
0.552
22.421
67.960
1.00
71.39
A


ATOM
429
O2′
URI
A
20
1.424
21.310
67.946
1.00
69.58
A


ATOM
430
C3′
URI
A
20
1.267
23.750
67.771
1.00
72.13
A


ATOM
431
O3′
URI
A
20
2.338
23.633
66.851
1.00
74.59
A


ATOM
432
P
URI
A
21
2.098
23.975
65.301
1.00
75.64
A


ATOM
433
O1P
URI
A
21
3.447
24.101
64.692
1.00
75.59
A


ATOM
434
O2P
URI
A
21
1.146
25.116
65.209
1.00
76.07
A


ATOM
435
O5′
URI
A
21
1.388
22.660
64.745
1.00
72.90
A


ATOM
436
C5′
URI
A
21
2.021
21.390
64.850
1.00
69.19
A


ATOM
437
C4′
URI
A
21
1.095
20.303
64.371
1.00
67.68
A


ATOM
438
O4′
URI
A
21
0.085
20.078
65.387
1.00
67.43
A


ATOM
439
C1′
URI
A
21
−1.146
19.748
64.772
1.00
68.79
A


ATOM
440
N1
URI
A
21
−2.134
20.782
65.113
1.00
70.91
A


ATOM
441
C6
URI
A
21
−1.751
22.047
65.500
1.00
70.89
A


ATOM
442
C2
URI
A
21
−3.479
20.439
65.021
1.00
72.02
A


ATOM
443
O2
URI
A
21
−3.860
19.327
64.684
1.00
72.32
A


ATOM
444
N3
URI
A
21
−4.362
21.450
65.333
1.00
72.47
A


ATOM
445
C4
URI
A
21
−4.048
22.740
65.716
1.00
72.29
A


ATOM
446
O4
URI
A
21
−4.958
23.549
65.917
1.00
70.84
A


ATOM
447
C5
URI
A
21
−2.637
23.013
65.796
1.00
71.91
A


ATOM
448
C2′
URI
A
21
−0.888
19.673
63.267
1.00
68.38
A


ATOM
449
O2′
URI
A
21
−0.583
18.348
62.893
1.00
67.60
A


ATOM
450
C3′
URI
A
21
0.293
20.617
63.119
1.00
67.38
A


ATOM
451
O3′
URI
A
21
1.015
20.314
61.935
1.00
66.83
A


ATOM
452
P
GUA
A
22
0.452
20.816
60.513
1.00
69.29
A


ATOM
453
O1P
GUA
A
22
−0.119
22.178
60.708
1.00
67.61
A


ATOM
454
O2P
GUA
A
22
1.497
20.595
59.478
1.00
66.54
A


ATOM
455
O5′
GUA
A
22
−0.771
19.845
60.199
1.00
67.90
A


ATOM
456
C5′
GUA
A
22
−0.616
18.743
59.316
1.00
67.34
A


ATOM
457
C4′
GUA
A
22
−1.951
18.338
58.728
1.00
67.34
A


ATOM
458
O4′
GUA
A
22
−3.052
18.853
59.524
1.00
67.07
A


ATOM
459
C1′
GUA
A
22
−4.156
19.137
58.674
1.00
65.78
A


ATOM
460
N9
GUA
A
22
−4.409
20.570
58.714
1.00
63.69
A


ATOM
461
C4
GUA
A
22
−5.519
21.196
58.234
1.00
64.17
A


ATOM
462
N3
GUA
A
22
−6.578
20.590
57.669
1.00
66.48
A


ATOM
463
C2
GUA
A
22
−7.508
21.456
57.316
1.00
66.72
A


ATOM
464
N2
GUA
A
22
−8.640
21.019
56.741
1.00
67.37
A


ATOM
465
N1
GUA
A
22
−7.400
22.810
57.504
1.00
64.80
A


ATOM
466
C6
GUA
A
22
−6.319
23.449
58.092
1.00
62.77
A


ATOM
467
O6
GUA
A
22
−6.336
24.670
58.235
1.00
63.28
A


ATOM
468
C5
GUA
A
22
−5.317
22.535
58.467
1.00
63.01
A


ATOM
469
N7
GUA
A
22
−4.098
22.745
59.086
1.00
62.71
A


ATOM
470
C8
GUA
A
22
−3.594
21.551
59.213
1.00
62.98
A


ATOM
471
C2′
GUA
A
22
−3.750
18.723
57.262
1.00
67.09
A


ATOM
472
O2′
GUA
A
22
−4.164
17.403
56.976
1.00
66.74
A


ATOM
473
C3′
GUA
A
22
−2.242
18.887
57.346
1.00
67.87
A


ATOM
474
O3′
GUA
A
22
−1.577
18.129
56.355
1.00
68.73
A


ATOM
475
P
CYT
A
23
−0.934
18.878
55.097
1.00
69.00
A


ATOM
476
O1P
CYT
A
23
−0.475
20.227
55.551
1.00
66.88
A


ATOM
477
O2P
CYT
A
23
0.034
17.929
54.486
1.00
69.69
A


ATOM
478
O5′
CYT
A
23
−2.168
19.061
54.112
1.00
66.23
A


ATOM
479
C5′
CYT
A
23
−3.205
18.095
54.073
1.00
61.77
A


ATOM
480
C4′
CYT
A
23
−4.466
18.709
53.528
1.00
59.16
A


ATOM
481
O4′
CYT
A
23
−5.143
19.424
54.589
1.00
57.70
A


ATOM
482
C1′
CYT
A
23
−5.882
20.493
54.027
1.00
57.19
A


ATOM
483
N1
CYT
A
23
−5.376
21.740
54.583
1.00
55.24
A


ATOM
484
C6
CYT
A
23
−4.177
21.791
55.232
1.00
54.51
A


ATOM
485
C2
CYT
A
23
−6.128
22.881
54.404
1.00
55.15
A


ATOM
486
O2
CYT
A
23
−7.221
22.783
53.826
1.00
53.58
A


ATOM
487
N3
CYT
A
23
−5.652
24.063
54.851
1.00
55.42
A


ATOM
488
C4
CYT
A
23
−4.464
24.116
55.450
1.00
54.64
A


ATOM
489
N4
CYT
A
23
−4.011
25.308
55.831
1.00
55.93
A


ATOM
490
C5
CYT
A
23
−3.683
22.951
55.672
1.00
54.66
A


ATOM
491
C2′
CYT
A
23
−5.636
20.472
52.517
1.00
57.73
A


ATOM
492
O2′
CYT
A
23
−6.674
19.773
51.861
1.00
58.26
A


ATOM
493
C3′
CYT
A
23
−4.292
19.765
52.451
1.00
57.38
A


ATOM
494
O3′
CYT
A
23
−4.104
19.165
51.181
1.00
57.87
A


ATOM
495
P
ADE
A
24
−3.341
19.973
50.014
1.00
61.30
A


ATOM
496
O1P
ADE
A
24
−3.432
19.164
48.772
1.00
59.15
A


ATOM
497
O2P
ADE
A
24
−2.010
20.417
50.511
1.00
60.39
A


ATOM
498
O5′
ADE
A
24
−4.235
21.263
49.770
1.00
58.67
A


ATOM
499
C5′
ADE
A
24
−5.394
21.182
48.973
1.00
55.21
A


ATOM
500
C4′
ADE
A
24
−6.204
22.429
49.134
1.00
54.44
A


ATOM
501
O4′
ADE
A
24
−6.327
22.758
50.543
1.00
55.41
A


ATOM
502
C1′
ADE
A
24
−6.383
24.170
50.691
1.00
54.19
A


ATOM
503
N9
ADE
A
24
−5.209
24.575
51.446
1.00
54.73
A


ATOM
504
C4
ADE
A
24
−4.890
25.849
51.828
1.00
55.04
A


ATOM
505
N3
ADE
A
24
−5.585
26.968
51.577
1.00
55.11
A


ATOM
506
C2
ADE
A
24
−4.980
28.021
52.120
1.00
56.89
A


ATOM
507
N1
ADE
A
24
−3.843
28.074
52.836
1.00
56.19
A


ATOM
508
C6
ADE
A
24
−3.176
26.924
53.069
1.00
56.00
A


ATOM
509
N6
ADE
A
24
−2.056
26.967
53.791
1.00
57.98
A


ATOM
510
C5
ADE
A
24
−3.710
25.744
52.541
1.00
55.31
A


ATOM
511
N7
ADE
A
24
−3.287
24.425
52.596
1.00
55.37
A


ATOM
512
C8
ADE
A
24
−4.207
23.774
51.929
1.00
55.10
A


ATOM
513
C2′
ADE
A
24
−6.361
24.744
49.279
1.00
53.40
A


ATOM
514
O2′
ADE
A
24
−7.683
24.807
48.799
1.00
53.18
A


ATOM
515
C3′
ADE
A
24
−5.562
23.671
48.570
1.00
52.64
A


ATOM
516
O3′
ADE
A
24
−5.743
23.711
47.178
1.00
50.69
A


ATOM
517
P
GUA
A
25
−4.634
24.416
46.271
1.00
51.67
A


ATOM
518
O1P
GUA
A
25
−3.300
23.875
46.655
1.00
47.23
A


ATOM
519
O2P
GUA
A
25
−5.078
24.335
44.861
1.00
49.51
A


ATOM
520
O5′
GUA
A
25
−4.740
25.936
46.718
1.00
48.34
A


ATOM
521
C5′
GUA
A
25
−5.596
26.822
46.023
1.00
46.65
A


ATOM
522
C4′
GUA
A
25
−5.610
28.158
46.701
1.00
45.25
A


ATOM
523
O4′
GUA
A
25
−5.440
27.968
48.132
1.00
46.00
A


ATOM
524
C1′
GUA
A
25
−4.661
29.028
48.666
1.00
46.72
A


ATOM
525
N9
GUA
A
25
−3.430
28.456
49.219
1.00
49.02
A


ATOM
526
C4
GUA
A
25
−2.443
29.116
49.914
1.00
47.40
A


ATOM
527
N3
GUA
A
25
−2.422
30.427
50.202
1.00
47.74
A


ATOM
528
C2
GUA
A
25
−1.357
30.759
50.909
1.00
48.49
A


ATOM
529
N2
GUA
A
25
−1.178
32.029
51.298
1.00
48.42
A


ATOM
530
N1
GUA
A
25
−0.387
29.875
51.290
1.00
48.24
A


ATOM
531
C6
GUA
A
25
−0.384
28.520
50.998
1.00
49.17
A


ATOM
532
O6
GUA
A
25
0.547
27.806
51.392
1.00
51.70
A


ATOM
533
C5
GUA
A
25
−1.522
28.149
50.251
1.00
48.43
A


ATOM
534
N7
GUA
A
25
−1.910
26.908
49.770
1.00
48.09
A


ATOM
535
C8
GUA
A
25
−3.040
27.138
49.160
1.00
49.59
A


ATOM
536
C2′
GUA
A
25
−4.446
30.015
47.517
1.00
45.58
A


ATOM
537
O2′
GUA
A
25
−5.520
30.921
47.503
1.00
45.79
A


ATOM
538
C3′
GUA
A
25
−4.475
29.081
46.318
1.00
43.20
A


ATOM
539
O3′
GUA
A
25
−4.781
29.760
45.115
1.00
40.74
A


ATOM
540
P
URI
A
26
−3.717
29.749
43.908
1.00
43.39
A


ATOM
541
O1P
URI
A
26
−3.032
28.438
43.967
1.00
39.68
A


ATOM
542
O2P
URI
A
26
−4.351
30.177
42.633
1.00
40.27
A


ATOM
543
O5′
URI
A
26
−2.687
30.886
44.340
1.00
42.45
A


ATOM
544
C5′
URI
A
26
−3.136
32.211
44.602
1.00
42.90
A


ATOM
545
C4′
URI
A
26
−2.187
32.935
45.546
1.00
43.91
A


ATOM
546
O4′
URI
A
26
−2.250
32.368
46.882
1.00
43.17
A


ATOM
547
C1′
URI
A
26
−0.958
32.404
47.469
1.00
42.74
A


ATOM
548
N1
URI
A
26
−0.447
31.033
47.527
1.00
41.76
A


ATOM
549
C6
URI
A
26
−1.034
30.006
46.830
1.00
40.65
A


ATOM
550
C2
URI
A
26
0.645
30.820
48.319
1.00
38.14
A


ATOM
551
O2
URI
A
26
1.221
31.726
48.877
1.00
34.19
A


ATOM
552
N3
URI
A
26
1.050
29.517
48.409
1.00
36.80
A


ATOM
553
C4
URI
A
26
0.507
28.443
47.754
1.00
37.46
A


ATOM
554
O4
URI
A
26
0.959
27.329
47.962
1.00
38.00
A


ATOM
555
C5
URI
A
26
−0.597
28.753
46.905
1.00
39.39
A


ATOM
556
C2′
URI
A
26
−0.083
33.246
46.551
1.00
43.16
A


ATOM
557
O2′
URI
A
26
−0.193
34.611
46.897
1.00
43.72
A


ATOM
558
C3′
URI
A
26
−0.705
32.916
45.209
1.00
43.08
A


ATOM
559
O3′
URI
A
26
−0.386
33.922
44.284
1.00
42.91
A


ATOM
560
P
CYT
A
27
0.781
33.656
43.243
1.00
47.08
A


ATOM
561
O1P
CYT
A
27
0.666
32.223
42.869
1.00
43.13
A


ATOM
562
O2P
CYT
A
27
0.747
34.699
42.184
1.00
45.54
A


ATOM
563
O5′
CYT
A
27
2.092
33.854
44.129
1.00
49.14
A


ATOM
564
C5′
CYT
A
27
2.469
35.144
44.602
1.00
47.17
A


ATOM
565
C4′
CYT
A
27
3.765
35.055
45.362
1.00
46.81
A


ATOM
566
O4′
CYT
A
27
3.558
34.217
46.522
1.00
48.01
A


ATOM
567
C1′
CYT
A
27
4.764
33.560
46.856
1.00
46.91
A


ATOM
568
N1
CYT
A
27
4.514
32.118
46.875
1.00
46.48
A


ATOM
569
C6
CYT
A
27
3.504
31.568
46.147
1.00
45.80
A


ATOM
570
C2
CYT
A
27
5.331
31.320
47.646
1.00
47.12
A


ATOM
571
O2
CYT
A
27
6.233
31.854
48.289
1.00
49.30
A


ATOM
572
N3
CYT
A
27
5.127
29.990
47.676
1.00
46.54
A


ATOM
573
C4
CYT
A
27
4.144
29.458
46.961
1.00
44.47
A


ATOM
574
N4
CYT
A
27
3.979
28.144
47.013
1.00
44.09
A


ATOM
575
C5
CYT
A
27
3.287
30.251
46.159
1.00
45.18
A


ATOM
576
C2′
CYT
A
27
5.794
33.956
45.803
1.00
48.09
A


ATOM
577
O2′
CYT
A
27
6.562
35.031
46.282
1.00
49.01
A


ATOM
578
C3′
CYT
A
27
4.900
34.362
44.643
1.00
46.40
A


ATOM
579
O3′
CYT
A
27
5.589
35.277
43.816
1.00
46.57
A


ATOM
580
P
GUA
A
28
5.737
34.965
42.253
1.00
47.65
A


ATOM
581
O1P
GUA
A
28
4.565
34.146
41.873
1.00
48.71
A


ATOM
582
O2P
GUA
A
28
6.029
36.244
41.550
1.00
44.75
A


ATOM
583
O5′
GUA
A
28
6.988
33.995
42.133
1.00
48.15
A


ATOM
584
C5′
GUA
A
28
8.304
34.513
42.003
1.00
45.36
A


ATOM
585
C4′
GUA
A
28
9.135
34.087
43.181
1.00
42.58
A


ATOM
586
O4′
GUA
A
28
8.258
33.510
44.180
1.00
40.98
A


ATOM
587
C1′
GUA
A
28
8.963
32.528
44.906
1.00
40.82
A


ATOM
588
N9
GUA
A
28
8.238
31.274
44.785
1.00
41.22
A


ATOM
589
C4
GUA
A
28
8.577
30.088
45.376
1.00
42.88
A


ATOM
590
N3
GUA
A
28
9.650
29.876
46.163
1.00
42.86
A


ATOM
591
C2
GUA
A
28
9.701
28.629
46.600
1.00
44.96
A


ATOM
592
N2
GUA
A
28
10.691
28.242
47.405
1.00
44.64
A


ATOM
593
N1
GUA
A
28
8.780
27.666
46.283
1.00
45.93
A


ATOM
594
C6
GUA
A
28
7.674
27.859
45.470
1.00
43.79
A


ATOM
595
O6
GUA
A
28
6.918
26.919
45.245
1.00
44.25
A


ATOM
596
C5
GUA
A
28
7.599
29.197
44.999
1.00
43.04
A


ATOM
597
N7
GUA
A
28
6.667
29.812
44.180
1.00
42.58
A


ATOM
598
C8
GUA
A
28
7.091
31.044
44.078
1.00
40.68
A


ATOM
599
C2′
GUA
A
28
10.374
32.465
44.326
1.00
40.07
A


ATOM
600
O2′
GUA
A
28
11.213
33.316
45.079
1.00
37.21
A


ATOM
601
C3′
GUA
A
28
10.128
32.974
42.917
1.00
40.00
A


ATOM
602
O3′
GUA
A
28
11.306
33.508
42.343
1.00
38.81
A


ATOM
603
P
CYT
A
29
11.983
32.776
41.088
1.00
40.37
A


ATOM
604
O1P
CYT
A
29
10.945
32.136
40.247
1.00
43.72
A


ATOM
605
O2P
CYT
A
29
12.870
33.786
40.482
1.00
38.14
A


ATOM
606
O5′
CYT
A
29
12.817
31.590
41.759
1.00
38.45
A


ATOM
607
C5′
CYT
A
29
13.936
31.870
42.589
1.00
36.61
A


ATOM
608
C4′
CYT
A
29
14.295
30.674
43.441
1.00
36.86
A


ATOM
609
O4′
CYT
A
29
13.190
30.316
44.311
1.00
37.88
A


ATOM
610
C1′
CYT
A
29
13.239
28.917
44.576
1.00
40.99
A


ATOM
611
N1
CYT
A
29
12.051
28.285
43.971
1.00
44.33
A


ATOM
612
C6
CYT
A
29
11.208
28.999
43.167
1.00
46.13
A


ATOM
613
C2
CYT
A
29
11.796
26.930
44.233
1.00
47.42
A


ATOM
614
O2
CYT
A
29
12.582
26.302
44.964
1.00
48.50
A


ATOM
615
N3
CYT
A
29
10.698
26.342
43.682
1.00
48.76
A


ATOM
616
C4
CYT
A
29
9.877
27.059
42.908
1.00
47.66
A


ATOM
617
N4
CYT
A
29
8.802
26.457
42.403
1.00
47.18
A


ATOM
618
C5
CYT
A
29
10.121
28.431
42.622
1.00
47.63
A


ATOM
619
C2′
CYT
A
29
14.525
28.412
43.923
1.00
38.38
A


ATOM
620
O2′
CYT
A
29
15.633
28.573
44.781
1.00
36.10
A


ATOM
621
C3′
CYT
A
29
14.615
29.359
42.752
1.00
36.23
A


ATOM
622
O3′
CYT
A
29
15.919
29.304
42.233
1.00
34.41
A


ATOM
623
P
GUA
A
30
16.152
28.661
40.790
1.00
38.05
A


ATOM
624
O1P
GUA
A
30
14.826
28.589
40.130
1.00
39.90
A


ATOM
625
O2P
GUA
A
30
17.252
29.385
40.126
1.00
33.67
A


ATOM
626
O5′
GUA
A
30
16.582
27.160
41.107
1.00
38.02
A


ATOM
627
C5′
GUA
A
30
16.835
26.749
42.437
1.00
40.68
A


ATOM
628
C4′
GUA
A
30
16.851
25.248
42.523
1.00
43.03
A


ATOM
629
O4′
GUA
A
30
15.496
24.779
42.704
1.00
45.49
A


ATOM
630
C1′
GUA
A
30
15.149
23.912
41.646
1.00
46.19
A


ATOM
631
N9
GUA
A
30
13.761
24.171
41.287
1.00
46.68
A


ATOM
632
C4
GUA
A
30
12.741
23.263
41.260
1.00
46.15
A


ATOM
633
N3
GUA
A
30
12.830
21.966
41.595
1.00
46.81
A


ATOM
634
C2
GUA
A
30
11.677
21.337
41.433
1.00
47.98
A


ATOM
635
N2
GUA
A
30
11.573
20.030
41.724
1.00
47.46
A


ATOM
636
N1
GUA
A
30
10.537
21.940
40.974
1.00
48.25
A


ATOM
637
C6
GUA
A
30
10.430
23.278
40.624
1.00
48.04
A


ATOM
638
O6
GUA
A
30
9.359
23.723
40.214
1.00
48.66
A


ATOM
639
C5
GUA
A
30
11.648
23.958
40.801
1.00
47.58
A


ATOM
640
N7
GUA
A
30
11.967
25.283
40.575
1.00
48.54
A


ATOM
641
C8
GUA
A
30
13.230
25.365
40.881
1.00
47.36
A


ATOM
642
C2′
GUA
A
30
16.131
24.219
40.514
1.00
45.05
A


ATOM
643
O2′
GUA
A
30
16.324
23.065
39.711
1.00
42.26
A


ATOM
644
C3′
GUA
A
30
17.387
24.513
41.306
1.00
44.67
A


ATOM
645
O3′
GUA
A
30
17.875
23.241
41.698
1.00
47.60
A


ATOM
646
P
URI
A
31
19.368
23.092
42.242
1.00
46.90
A


ATOM
647
O1P
URI
A
31
19.788
21.707
41.922
1.00
43.72
A


ATOM
648
O2P
URI
A
31
20.164
24.243
41.749
1.00
42.41
A


ATOM
649
O5′
URI
A
31
19.165
23.178
43.810
1.00
44.16
A


ATOM
650
C5′
URI
A
31
18.437
22.169
44.475
1.00
47.25
A


ATOM
651
C4′
URI
A
31
19.073
21.875
45.800
1.00
50.83
A


ATOM
652
O4′
URI
A
31
19.933
20.714
45.670
1.00
51.79
A


ATOM
653
C1′
URI
A
31
21.260
21.063
46.011
1.00
53.42
A


ATOM
654
N1
URI
A
31
22.159
20.294
45.141
1.00
54.61
A


ATOM
655
C6
URI
A
31
22.280
20.580
43.797
1.00
55.01
A


ATOM
656
C2
URI
A
31
22.864
19.255
45.711
1.00
53.45
A


ATOM
657
O2
URI
A
31
22.796
18.992
46.901
1.00
54.06
A


ATOM
658
N3
URI
A
31
23.644
18.533
44.834
1.00
51.58
A


ATOM
659
C4
URI
A
31
23.787
18.749
43.473
1.00
51.47
A


ATOM
660
O4
URI
A
31
24.429
17.943
42.792
1.00
52.23
A


ATOM
661
C5
URI
A
31
23.050
19.861
42.969
1.00
52.57
A


ATOM
662
C2′
URI
A
31
21.341
22.579
45.844
1.00
53.16
A


ATOM
663
O2′
URI
A
31
22.354
23.115
46.667
1.00
55.10
A


ATOM
664
C3′
URI
A
31
19.958
22.995
46.323
1.00
51.91
A


ATOM
665
O3′
URI
A
31
19.921
22.992
47.737
1.00
51.68
A


ATOM
666
P
GUA
A
32
19.570
24.336
48.516
1.00
52.63
A


ATOM
667
O1P
GUA
A
32
20.544
24.456
49.629
1.00
52.90
A


ATOM
668
O2P
GUA
A
32
19.402
25.444
47.546
1.00
54.44
A


ATOM
669
O5′
GUA
A
32
18.151
24.043
49.147
1.00
52.92
A


ATOM
670
C5′
GUA
A
32
18.056
23.544
50.461
1.00
50.79
A


ATOM
671
C4′
GUA
A
32
16.887
22.616
50.572
1.00
49.82
A


ATOM
672
O4′
GUA
A
32
16.685
21.897
49.326
1.00
46.72
A


ATOM
673
C1′
GUA
A
32
16.347
20.554
49.606
1.00
48.10
A


ATOM
674
N9
GUA
A
32
17.438
19.710
49.133
1.00
49.09
A


ATOM
675
C4
GUA
A
32
17.638
19.232
47.851
1.00
49.10
A


ATOM
676
N3
GUA
A
32
16.845
19.452
46.782
1.00
49.00
A


ATOM
677
C2
GUA
A
32
17.325
18.878
45.688
1.00
48.99
A


ATOM
678
N2
GUA
A
32
16.690
19.006
44.518
1.00
48.27
A


ATOM
679
N1
GUA
A
32
18.473
18.136
45.653
1.00
50.19
A


ATOM
680
C6
GUA
A
32
19.297
17.892
46.740
1.00
48.64
A


ATOM
681
O6
GUA
A
32
20.311
17.205
46.595
1.00
49.28
A


ATOM
682
C5
GUA
A
32
18.808
18.510
47.913
1.00
48.50
A


ATOM
683
N7
GUA
A
32
19.324
18.518
49.197
1.00
50.10
A


ATOM
684
C8
GUA
A
32
18.481
19.238
49.884
1.00
49.69
A


ATOM
685
C2′
GUA
A
32
16.142
20.468
51.120
1.00
48.46
A


ATOM
686
O2′
GUA
A
32
14.815
20.805
51.432
1.00
50.02
A


ATOM
687
C3′
GUA
A
32
17.087
21.547
51.615
1.00
49.56
A


ATOM
688
O3′
GUA
A
32
16.674
22.088
52.855
1.00
51.72
A


ATOM
689
P
ADE
A
33
17.734
22.865
53.778
1.00
54.75
A


ATOM
690
O1P
ADE
A
33
17.193
22.727
55.153
1.00
53.71
A


ATOM
691
O2P
ADE
A
33
19.089
22.361
53.463
1.00
54.42
A


ATOM
692
O5′
ADE
A
33
17.655
24.403
53.346
1.00
54.90
A


ATOM
693
C5′
ADE
A
33
18.840
25.165
53.082
1.00
56.73
A


ATOM
694
C4′
ADE
A
33
18.598
26.656
53.296
1.00
58.69
A


ATOM
695
O4′
ADE
A
33
18.004
27.270
52.123
1.00
55.47
A


ATOM
696
C1′
ADE
A
33
16.732
27.800
52.448
1.00
57.59
A


ATOM
697
N9
ADE
A
33
15.796
27.377
51.407
1.00
55.80
A


ATOM
698
C4
ADE
A
33
15.851
27.674
50.066
1.00
54.67
A


ATOM
699
N3
ADE
A
33
16.754
28.443
49.434
1.00
54.07
A


ATOM
700
C2
ADE
A
33
16.509
28.473
48.126
1.00
53.39
A


ATOM
701
N1
ADE
A
33
15.532
27.875
47.435
1.00
54.37
A


ATOM
702
C6
ADE
A
33
14.636
27.117
48.107
1.00
53.78
A


ATOM
703
N6
ADE
A
33
13.654
26.522
47.427
1.00
52.21
A


ATOM
704
C5
ADE
A
33
14.790
26.999
49.490
1.00
53.97
A


ATOM
705
N7
ADE
A
33
14.066
26.310
50.450
1.00
54.45
A


ATOM
706
C8
ADE
A
33
14.693
26.573
51.567
1.00
54.16
A


ATOM
707
C2′
ADE
A
33
16.349
27.215
53.810
1.00
60.60
A


ATOM
708
O2′
ADE
A
33
15.509
28.085
54.546
1.00
61.50
A


ATOM
709
C3′
ADE
A
33
17.706
27.046
54.462
1.00
61.94
A


ATOM
710
O3′
ADE
A
33
18.122
28.286
55.015
1.00
68.98
A


ATOM
711
P
URI
A
34
19.075
28.289
56.309
1.00
74.21
A


ATOM
712
O1P
URI
A
34
18.592
27.226
57.235
1.00
71.88
A


ATOM
713
O2P
URI
A
34
20.478
28.258
55.795
1.00
72.15
A


ATOM
714
O5′
URI
A
34
18.811
29.688
57.024
1.00
73.89
A


ATOM
715
C5′
URI
A
34
17.508
30.253
57.099
1.00
74.78
A


ATOM
716
C4′
URI
A
34
17.553
31.691
56.640
1.00
76.05
A


ATOM
717
O4′
URI
A
34
18.494
32.435
57.460
1.00
78.89
A


ATOM
718
C1′
URI
A
34
19.610
32.847
56.688
1.00
81.15
A


ATOM
719
N1
URI
A
34
20.836
32.426
57.390
1.00
87.35
A


ATOM
720
C6
URI
A
34
20.975
31.133
57.855
1.00
89.21
A


ATOM
721
C2
URI
A
34
21.849
33.365
57.573
1.00
89.29
A


ATOM
722
O2
URI
A
34
21.775
34.523
57.169
1.00
89.92
A


ATOM
723
N3
URI
A
34
22.955
32.893
58.245
1.00
91.09
A


ATOM
724
C4
URI
A
34
23.152
31.608
58.734
1.00
92.28
A


ATOM
725
O4
URI
A
34
24.214
31.326
59.303
1.00
93.85
A


ATOM
726
C5
URI
A
34
22.064
30.705
58.500
1.00
91.36
A


ATOM
727
C2′
URI
A
34
19.489
32.244
55.289
1.00
76.83
A


ATOM
728
O2′
URI
A
34
20.020
33.134
54.327
1.00
73.41
A


ATOM
729
C3′
URI
A
34
17.996
31.874
55.196
1.00
75.09
A


ATOM
730
O3′
URI
A
34
17.057
32.711
54.511
1.00
68.53
A


ATOM
731
P
ADE
A
35
17.398
34.241
54.188
1.00
64.01
A


ATOM
732
O1P
ADE
A
35
16.110
34.964
54.265
1.00
63.53
A


ATOM
733
O2P
ADE
A
35
18.545
34.712
54.999
1.00
66.80
A


ATOM
734
O5′
ADE
A
35
17.868
34.190
52.667
1.00
59.77
A


ATOM
735
C5′
ADE
A
35
18.506
33.031
52.150
1.00
53.12
A


ATOM
736
C4′
ADE
A
35
18.690
33.158
50.666
1.00
50.24
A


ATOM
737
O4′
ADE
A
35
18.497
31.850
50.068
1.00
50.66
A


ATOM
738
C1′
ADE
A
35
17.427
31.904
49.149
1.00
48.04
A


ATOM
739
N9
ADE
A
35
16.228
31.385
49.815
1.00
47.05
A


ATOM
740
C4
ADE
A
35
15.054
30.994
49.220
1.00
46.40
A


ATOM
741
N3
ADE
A
35
14.750
31.027
47.914
1.00
47.60
A


ATOM
742
C2
ADE
A
35
13.540
30.532
47.707
1.00
44.79
A


ATOM
743
N1
ADE
A
35
12.664
30.052
48.586
1.00
43.36
A


ATOM
744
C6
ADE
A
35
12.993
30.042
49.887
1.00
43.86
A


ATOM
745
N6
ADE
A
35
12.105
29.577
50.766
1.00
42.72
A


ATOM
746
C5
ADE
A
35
14.251
30.529
50.241
1.00
45.10
A


ATOM
747
N7
ADE
A
35
14.892
30.643
51.461
1.00
45.15
A


ATOM
748
C8
ADE
A
35
16.055
31.161
51.154
1.00
47.04
A


ATOM
749
C2′
ADE
A
35
17.350
33.361
48.702
1.00
46.80
A


ATOM
750
O2′
ADE
A
35
18.306
33.616
47.701
1.00
41.13
A


ATOM
751
C3′
ADE
A
35
17.699
34.097
49.989
1.00
47.70
A


ATOM
752
O3′
ADE
A
35
18.352
35.324
49.695
1.00
46.15
A


ATOM
753
P
ADE
A
36
17.500
36.579
49.176
1.00
44.91
A


ATOM
754
O1P
ADE
A
36
18.409
37.475
48.418
1.00
45.54
A


ATOM
755
O2P
ADE
A
36
16.717
37.121
50.316
1.00
42.81
A


ATOM
756
O5′
ADE
A
36
16.511
35.947
48.103
1.00
44.04
A


ATOM
757
C5′
ADE
A
36
16.849
35.905
46.722
1.00
39.76
A


ATOM
758
C4′
ADE
A
36
15.618
35.594
45.904
1.00
40.10
A


ATOM
759
O4′
ADE
A
36
15.126
34.280
46.278
1.00
38.85
A


ATOM
760
C1′
ADE
A
36
13.731
34.317
46.453
1.00
38.26
A


ATOM
761
N9
ADE
A
36
13.432
34.093
47.861
1.00
39.33
A


ATOM
762
C4
ADE
A
36
12.309
33.474
48.356
1.00
41.34
A


ATOM
763
N3
ADE
A
36
11.279
32.972
47.655
1.00
41.49
A


ATOM
764
C2
ADE
A
36
10.382
32.433
48.467
1.00
40.53
A


ATOM
765
N1
ADE
A
36
10.390
32.345
49.796
1.00
39.89
A


ATOM
766
C6
ADE
A
36
11.432
32.860
50.471
1.00
40.76
A


ATOM
767
N6
ADE
A
36
11.428
32.775
51.804
1.00
41.52
A


ATOM
768
C5
ADE
A
36
12.459
33.458
49.724
1.00
40.32
A


ATOM
769
N7
ADE
A
36
13.650
34.057
50.086
1.00
41.48
A


ATOM
770
C8
ADE
A
36
14.183
34.421
48.944
1.00
39.27
A


ATOM
771
C2′
ADE
A
36
13.248
35.653
45.919
1.00
38.75
A


ATOM
772
O2′
ADE
A
36
13.033
35.501
44.544
1.00
42.97
A


ATOM
773
C3′
ADE
A
36
14.455
36.537
46.164
1.00
40.00
A


ATOM
774
O3′
ADE
A
36
14.470
37.597
45.220
1.00
37.24
A


ATOM
775
P
ADE
A
37
13.703
38.959
45.564
1.00
40.82
A


ATOM
776
O1P
ADE
A
37
14.010
39.984
44.531
1.00
36.22
A


ATOM
777
O2P
ADE
A
37
13.933
39.254
47.005
1.00
36.06
A


ATOM
778
O5′
ADE
A
37
12.162
38.587
45.420
1.00
42.41
A


ATOM
779
C5′
ADE
A
37
11.607
38.229
44.170
1.00
43.07
A


ATOM
780
C4′
ADE
A
37
10.234
37.659
44.380
1.00
45.84
A


ATOM
781
O4′
ADE
A
37
10.341
36.414
45.126
1.00
47.43
A


ATOM
782
C1′
ADE
A
37
9.225
36.284
45.991
1.00
47.98
A


ATOM
783
N9
ADE
A
37
9.703
36.337
47.369
1.00
48.10
A


ATOM
784
C4
ADE
A
37
9.166
35.679
48.446
1.00
48.11
A


ATOM
785
N3
ADE
A
37
8.126
34.837
48.446
1.00
47.34
A


ATOM
786
C2
ADE
A
37
7.867
34.417
49.683
1.00
48.62
A


ATOM
787
N1
ADE
A
37
8.485
34.719
50.832
1.00
47.87
A


ATOM
788
C6
ADE
A
37
9.528
35.569
50.794
1.00
48.60
A


ATOM
789
N6
ADE
A
37
10.138
35.876
51.934
1.00
48.53
A


ATOM
790
C5
ADE
A
37
9.904
36.084
49.544
1.00
48.72
A


ATOM
791
N7
ADE
A
37
10.904
36.961
49.163
1.00
49.65
A


ATOM
792
C8
ADE
A
37
10.748
37.071
47.865
1.00
50.20
A


ATOM
793
C2′
ADE
A
37
8.299
37.459
45.667
1.00
47.59
A


ATOM
794
O2′
ADE
A
37
7.452
37.118
44.584
1.00
51.37
A


ATOM
795
C3′
ADE
A
37
9.306
38.505
45.235
1.00
45.40
A


ATOM
796
O3′
ADE
A
37
8.660
39.477
44.430
1.00
42.84
A


ATOM
797
P
URI
A
38
7.845
40.673
45.122
1.00
42.60
A


ATOM
798
O1P
URI
A
38
8.528
41.081
46.379
1.00
42.82
A


ATOM
799
O2P
URI
A
38
7.641
41.675
44.052
1.00
36.14
A


ATOM
800
O5′
URI
A
38
6.462
39.999
45.548
1.00
42.36
A


ATOM
801
C5′
URI
A
38
5.891
40.240
46.841
1.00
44.35
A


ATOM
802
C4′
URI
A
38
4.952
39.115
47.235
1.00
46.75
A


ATOM
803
O4′
URI
A
38
5.725
37.988
47.741
1.00
47.80
A


ATOM
804
C1′
URI
A
38
4.998
37.325
48.765
1.00
48.04
A


ATOM
805
N1
URI
A
38
5.771
37.389
50.011
1.00
47.05
A


ATOM
806
C6
URI
A
38
6.835
38.239
50.144
1.00
46.72
A


ATOM
807
C2
URI
A
38
5.371
36.579
51.062
1.00
46.91
A


ATOM
808
O2
URI
A
38
4.473
35.766
50.969
1.00
46.67
A


ATOM
809
N3
URI
A
38
6.078
36.747
52.224
1.00
46.31
A


ATOM
810
C4
URI
A
38
7.142
37.594
52.429
1.00
46.35
A


ATOM
811
O4
URI
A
38
7.685
37.627
53.533
1.00
45.78
A


ATOM
812
C5
URI
A
38
7.518
38.365
51.285
1.00
47.05
A


ATOM
813
C2′
URI
A
38
3.660
38.050
48.911
1.00
48.80
A


ATOM
814
O2′
URI
A
38
2.661
37.414
48.141
1.00
52.16
A


ATOM
815
C3′
URI
A
38
4.004
39.434
48.383
1.00
48.58
A


ATOM
816
O3′
URI
A
38
2.825
40.090
47.936
1.00
48.56
A


ATOM
817
P
GUA
A
39
2.254
41.336
48.767
1.00
48.44
A


ATOM
818
O1P
GUA
A
39
3.327
42.356
48.824
1.00
43.94
A


ATOM
819
O2P
GUA
A
39
0.950
41.673
48.150
1.00
50.57
A


ATOM
820
O5′
GUA
A
39
2.001
40.763
50.237
1.00
49.08
A


ATOM
821
C5′
GUA
A
39
0.842
39.975
50.537
1.00
52.34
A


ATOM
822
C4′
GUA
A
39
0.884
39.493
51.974
1.00
52.64
A


ATOM
823
O4′
GUA
A
39
2.200
38.950
52.198
1.00
53.74
A


ATOM
824
C1′
GUA
A
39
2.677
39.322
53.472
1.00
55.12
A


ATOM
825
N9
GUA
A
39
4.040
39.832
53.331
1.00
53.40
A


ATOM
826
C4
GUA
A
39
5.030
39.793
54.280
1.00
53.51
A


ATOM
827
N3
GUA
A
39
4.921
39.272
55.521
1.00
55.12
A


ATOM
828
C2
GUA
A
39
6.055
39.368
56.203
1.00
56.07
A


ATOM
829
N2
GUA
A
39
6.133
38.880
57.444
1.00
55.26
A


ATOM
830
N1
GUA
A
39
7.198
39.945
55.713
1.00
57.90
A


ATOM
831
C6
GUA
A
39
7.329
40.498
54.442
1.00
57.91
A


ATOM
832
O6
GUA
A
39
8.405
41.009
54.100
1.00
61.79
A


ATOM
833
C5
GUA
A
39
6.122
40.385
53.693
1.00
55.10
A


ATOM
834
N7
GUA
A
39
5.827
40.789
52.403
1.00
53.11
A


ATOM
835
C8
GUA
A
39
4.584
40.441
52.233
1.00
52.96
A


ATOM
836
C2′
GUA
A
39
1.702
40.302
54.127
1.00
54.78
A


ATOM
837
O2′
GUA
A
39
1.187
39.738
55.314
1.00
54.03
A


ATOM
838
C3′
GUA
A
39
0.674
40.577
53.025
1.00
55.19
A


ATOM
839
O3′
GUA
A
39
−0.706
40.787
53.445
1.00
59.20
A


ATOM
840
P
URI
A
40
−1.599
39.602
54.126
1.00
56.47
A


ATOM
841
O1P
URI
A
40
−1.160
39.317
55.525
1.00
54.80
A


ATOM
842
O2P
URI
A
40
−3.004
39.999
53.874
1.00
58.19
A


ATOM
843
O5′
URI
A
40
−1.371
38.302
53.245
1.00
55.95
A


ATOM
844
C5′
URI
A
40
−1.812
37.034
53.718
1.00
55.43
A


ATOM
845
C4′
URI
A
40
−2.982
36.549
52.905
1.00
54.71
A


ATOM
846
O4′
URI
A
40
−2.742
35.169
52.519
1.00
54.93
A


ATOM
847
C1′
URI
A
40
−3.665
34.317
53.174
1.00
54.07
A


ATOM
848
N1
URI
A
40
−2.937
33.133
53.656
1.00
54.14
A


ATOM
849
C6
URI
A
40
−1.741
33.250
54.316
1.00
53.97
A


ATOM
850
C2
URI
A
40
−3.485
31.892
53.401
1.00
51.99
A


ATOM
851
O2
URI
A
40
−4.562
31.753
52.881
1.00
52.24
A


ATOM
852
N3
URI
A
40
−2.724
30.824
53.795
1.00
51.15
A


ATOM
853
C4
URI
A
40
−1.504
30.871
54.432
1.00
52.19
A


ATOM
854
O4
URI
A
40
−0.904
29.822
54.676
1.00
52.40
A


ATOM
855
C5
URI
A
40
−1.028
32.190
54.706
1.00
52.91
A


ATOM
856
C2′
URI
A
40
−4.307
35.144
54.280
1.00
53.49
A


ATOM
857
O2′
URI
A
40
−5.602
34.648
54.520
1.00
53.75
A


ATOM
858
C3′
URI
A
40
−4.307
36.529
53.647
1.00
54.99
A


ATOM
859
O3′
URI
A
40
−5.363
36.652
52.705
1.00
57.21
A


ATOM
860
P
ADE
A
41
−6.710
37.431
53.104
1.00
58.89
A


ATOM
861
O1P
ADE
A
41
−6.562
38.826
52.614
1.00
58.50
A


ATOM
862
O2P
ADE
A
41
−7.038
37.180
54.546
1.00
55.76
A


ATOM
863
O5′
ADE
A
41
−7.800
36.713
52.199
1.00
58.92
A


ATOM
864
C5′
ADE
A
41
−7.650
35.342
51.838
1.00
60.17
A


ATOM
865
C4′
ADE
A
41
−8.829
34.888
51.014
1.00
59.95
A


ATOM
866
O4′
ADE
A
41
−8.375
34.035
49.934
1.00
60.38
A


ATOM
867
C1′
ADE
A
41
−9.373
33.076
49.636
1.00
61.63
A


ATOM
868
N9
ADE
A
41
−8.821
31.756
49.905
1.00
62.90
A


ATOM
869
C4
ADE
A
41
−9.190
30.583
49.294
1.00
64.74
A


ATOM
870
N3
ADE
A
41
−10.063
30.430
48.284
1.00
65.58
A


ATOM
871
C2
ADE
A
41
−10.204
29.139
47.975
1.00
66.23
A


ATOM
872
N1
ADE
A
41
−9.627
28.066
48.531
1.00
66.78
A


ATOM
873
C6
ADE
A
41
−8.763
28.256
49.556
1.00
66.47
A


ATOM
874
N6
ADE
A
41
−8.218
27.183
50.141
1.00
66.76
A


ATOM
875
C5
ADE
A
41
−8.503
29.583
49.957
1.00
65.70
A


ATOM
876
N7
ADE
A
41
−7.669
30.123
50.926
1.00
65.96
A


ATOM
877
C8
ADE
A
41
−7.888
31.414
50.846
1.00
63.92
A


ATOM
878
C2′
ADE
A
41
−10.552
33.358
50.573
1.00
60.59
A


ATOM
879
O2′
ADE
A
41
−11.506
34.185
49.940
1.00
59.58
A


ATOM
880
C3′
ADE
A
41
−9.840
34.027
51.741
1.00
60.33
A


ATOM
881
O3′
ADE
A
41
−10.708
34.839
52.517
1.00
60.73
A


ATOM
882
P
GUA
A
42
−11.635
34.165
53.642
1.00
63.04
A


ATOM
883
O1P
GUA
A
42
−10.778
33.611
54.722
1.00
60.30
A


ATOM
884
O2P
GUA
A
42
−12.698
35.154
53.979
1.00
61.99
A


ATOM
885
O5′
GUA
A
42
−12.294
32.926
52.888
1.00
60.43
A


ATOM
886
C5′
GUA
A
42
−12.827
31.843
53.623
1.00
58.01
A


ATOM
887
C4′
GUA
A
42
−13.024
30.658
52.724
1.00
57.39
A


ATOM
888
O4′
GUA
A
42
−11.830
30.476
51.921
1.00
56.25
A


ATOM
889
C1′
GUA
A
42
−11.422
29.117
51.969
1.00
57.45
A


ATOM
890
N9
GUA
A
42
−10.237
29.022
52.821
1.00
55.08
A


ATOM
891
C4
GUA
A
42
−9.535
27.884
53.138
1.00
53.31
A


ATOM
892
N3
GUA
A
42
−9.812
26.635
52.714
1.00
53.57
A


ATOM
893
C2
GUA
A
42
−8.959
25.742
53.213
1.00
55.55
A


ATOM
894
N2
GUA
A
42
−9.082
24.441
52.911
1.00
56.87
A


ATOM
895
N1
GUA
A
42
−7.920
26.055
54.047
1.00
55.96
A


ATOM
896
C6
GUA
A
42
−7.606
27.335
54.486
1.00
55.98
A


ATOM
897
O6
GUA
A
42
−6.626
27.508
55.224
1.00
56.71
A


ATOM
898
C5
GUA
A
42
−8.520
28.301
53.973
1.00
54.30
A


ATOM
899
N7
GUA
A
42
−8.581
29.671
54.173
1.00
53.33
A


ATOM
900
C8
GUA
A
42
−9.610
30.056
53.472
1.00
53.69
A


ATOM
901
C2′
GUA
A
42
−12.616
28.332
52.510
1.00
58.44
A


ATOM
902
O2′
GUA
A
42
−13.472
27.964
51.450
1.00
58.26
A


ATOM
903
C3′
GUA
A
42
−13.221
29.349
53.470
1.00
58.81
A


ATOM
904
O3′
GUA
A
42
−14.605
29.138
53.722
1.00
61.50
A


ATOM
905
P
CYT
A
43
−15.070
28.243
54.977
1.00
64.98
A


ATOM
906
O1P
CYT
A
43
−14.485
28.761
56.250
1.00
59.74
A


ATOM
907
O2P
CYT
A
43
−16.546
28.116
54.851
1.00
64.87
A


ATOM
908
O5′
CYT
A
43
−14.458
26.811
54.652
1.00
64.07
A


ATOM
909
C5′
CYT
A
43
−14.898
26.095
53.506
1.00
65.62
A


ATOM
910
C4′
CYT
A
43
−14.456
24.660
53.584
1.00
65.98
A


ATOM
911
O4′
CYT
A
43
−13.029
24.599
53.330
1.00
65.81
A


ATOM
912
C1′
CYT
A
43
−12.432
23.669
54.211
1.00
65.26
A


ATOM
913
N1
CYT
A
43
−11.549
24.400
55.135
1.00
63.82
A


ATOM
914
C6
CYT
A
43
−11.704
25.739
55.352
1.00
62.45
A


ATOM
915
C2
CYT
A
43
−10.531
23.698
55.780
1.00
64.02
A


ATOM
916
O2
CYT
A
43
−10.427
22.480
55.576
1.00
65.38
A


ATOM
917
N3
CYT
A
43
−9.688
24.356
56.604
1.00
62.61
A


ATOM
918
C4
CYT
A
43
−9.831
25.666
56.793
1.00
62.22
A


ATOM
919
N4
CYT
A
43
−8.954
26.279
57.593
1.00
60.19
A


ATOM
920
C5
CYT
A
43
−10.874
26.407
56.164
1.00
62.02
A


ATOM
921
C2′
CYT
A
43
−13.573
22.913
54.890
1.00
65.89
A


ATOM
922
O2′
CYT
A
43
−13.956
21.825
54.071
1.00
66.59
A


ATOM
923
C3′
CYT
A
43
−14.649
23.987
54.935
1.00
66.04
A


ATOM
924
O3′
CYT
A
43
−15.946
23.395
55.000
1.00
66.73
A


ATOM
925
P
URI
A
44
−16.711
23.269
56.415
1.00
65.82
A


ATOM
926
O1P
URI
A
44
−16.592
24.556
57.157
1.00
63.68
A


ATOM
927
O2P
URI
A
44
−18.052
22.723
56.105
1.00
66.14
A


ATOM
928
O5′
URI
A
44
−15.917
22.137
57.199
1.00
63.62
A


ATOM
929
C5′
URI
A
44
−16.200
20.773
56.957
1.00
63.38
A


ATOM
930
C4′
URI
A
44
−15.136
19.904
57.572
1.00
65.62
A


ATOM
931
O4′
URI
A
44
−13.825
20.362
57.151
1.00
65.65
A


ATOM
932
C1′
URI
A
44
−12.880
20.075
58.172
1.00
65.84
A


ATOM
933
N1
URI
A
44
−12.292
21.338
58.638
1.00
66.30
A


ATOM
934
C6
URI
A
44
−12.758
22.562
58.215
1.00
65.36
A


ATOM
935
C2
URI
A
44
−11.233
21.246
59.514
1.00
65.77
A


ATOM
936
O2
URI
A
44
−10.826
20.185
59.927
1.00
67.70
A


ATOM
937
N3
URI
A
44
−10.678
22.438
59.891
1.00
64.76
A


ATOM
938
C4
URI
A
44
−11.075
23.692
59.494
1.00
66.40
A


ATOM
939
O4
URI
A
44
−10.453
24.674
59.898
1.00
67.76
A


ATOM
940
C5
URI
A
44
−12.201
23.713
58.602
1.00
65.92
A


ATOM
941
C2′
URI
A
44
−13.638
19.357
59.285
1.00
66.12
A


ATOM
942
O2′
URI
A
44
−13.566
17.958
59.087
1.00
66.69
A


ATOM
943
C3′
URI
A
44
−15.032
19.932
59.086
1.00
65.90
A


ATOM
944
O3′
URI
A
44
−16.017
19.111
59.690
1.00
67.53
A


ATOM
945
P
ADE
A
45
−16.217
19.151
61.284
1.00
68.53
A


ATOM
946
O1P
ADE
A
45
−16.924
17.900
61.656
1.00
68.32
A


ATOM
947
O2P
ADE
A
45
−16.789
20.469
61.673
1.00
67.51
A


ATOM
948
O5′
ADE
A
45
−14.740
19.052
61.865
1.00
69.08
A


ATOM
949
C5′
ADE
A
45
−14.502
18.673
63.214
1.00
68.01
A


ATOM
950
C4′
ADE
A
45
−13.284
17.797
63.283
1.00
68.82
A


ATOM
951
O4′
ADE
A
45
−12.273
18.326
62.385
1.00
70.13
A


ATOM
952
C1′
ADE
A
45
−10.995
18.206
62.981
1.00
71.44
A


ATOM
953
N9
ADE
A
45
−10.492
19.550
63.260
1.00
73.11
A


ATOM
954
C4
ADE
A
45
−9.264
19.852
63.792
1.00
73.86
A


ATOM
955
N3
ADE
A
45
−8.291
18.988
64.129
1.00
74.54
A


ATOM
956
C2
ADE
A
45
−7.241
19.638
64.619
1.00
75.77
A


ATOM
957
N1
ADE
A
45
−7.066
20.955
64.797
1.00
75.85
A


ATOM
958
C6
ADE
A
45
−8.063
21.795
64.441
1.00
74.73
A


ATOM
959
N6
ADE
A
45
−7.881
23.107
64.606
1.00
74.84
A


ATOM
960
C5
ADE
A
45
−9.231
21.230
63.910
1.00
73.92
A


ATOM
961
N7
ADE
A
45
−10.412
21.791
63.448
1.00
73.89
A


ATOM
962
C8
ADE
A
45
−11.124
20.756
63.070
1.00
73.73
A


ATOM
963
C2′
ADE
A
45
−11.175
17.369
64.249
1.00
71.14
A


ATOM
964
O2′
ADE
A
45
−11.023
16.000
63.944
1.00
71.70
A


ATOM
965
C3′
ADE
A
45
−12.606
17.709
64.638
1.00
69.95
A


ATOM
966
O3′
ADE
A
45
−13.179
16.632
65.359
1.00
71.13
A


ATOM
967
P
ADE
A
46
−13.171
16.646
66.961
1.00
72.38
A


ATOM
968
O1P
ADE
A
46
−13.939
15.447
67.395
1.00
70.63
A


ATOM
969
O2P
ADE
A
46
−13.583
17.997
67.434
1.00
71.11
A


ATOM
970
O5′
ADE
A
46
−11.638
16.438
67.330
1.00
71.76
A


ATOM
971
C5′
ADE
A
46
−10.956
15.253
66.964
1.00
72.17
A


ATOM
972
C4′
ADE
A
46
−9.555
15.292
67.496
1.00
73.44
A


ATOM
973
O4′
ADE
A
46
−8.795
16.246
66.714
1.00
73.28
A


ATOM
974
C1′
ADE
A
46
−7.798
16.844
67.532
1.00
73.77
A


ATOM
975
N9
ADE
A
46
−7.983
18.292
67.495
1.00
71.50
A


ATOM
976
C4
ADE
A
46
−7.068
19.231
67.896
1.00
70.59
A


ATOM
977
N3
ADE
A
46
−5.832
19.010
68.365
1.00
70.30
A


ATOM
978
C2
ADE
A
46
−5.240
20.156
68.673
1.00
70.11
A


ATOM
979
N1
ADE
A
46
−5.708
21.403
68.574
1.00
70.07
A


ATOM
980
C6
ADE
A
46
−6.954
21.589
68.100
1.00
69.89
A


ATOM
981
N6
ADE
A
46
−7.423
22.831
68.011
1.00
69.62
A


ATOM
982
C5
ADE
A
46
−7.685
20.455
67.732
1.00
70.34
A


ATOM
983
N7
ADE
A
46
−8.961
20.295
67.217
1.00
70.99
A


ATOM
984
C8
ADE
A
46
−9.087
18.996
67.092
1.00
71.76
A


ATOM
985
C2′
ADE
A
46
−7.983
16.299
68.952
1.00
75.60
A


ATOM
986
O2′
ADE
A
46
−7.045
15.278
69.248
1.00
76.78
A


ATOM
987
C3′
ADE
A
46
−9.434
15.830
68.910
1.00
75.50
A


ATOM
988
O3′
ADE
A
46
−9.700
14.831
69.883
1.00
77.29
A


ATOM
989
P
ADE
A
47
−10.668
15.174
71.117
1.00
79.69
A


ATOM
990
O1P
ADE
A
47
−10.647
14.026
72.061
1.00
79.57
A


ATOM
991
O2P
ADE
A
47
−11.959
15.634
70.546
1.00
78.48
A


ATOM
992
O5′
ADE
A
47
−9.939
16.386
71.851
1.00
79.12
A


ATOM
993
C5′
ADE
A
47
−8.813
16.148
72.694
1.00
79.56
A


ATOM
994
C4′
ADE
A
47
−7.789
17.251
72.536
1.00
79.57
A


ATOM
995
O4′
ADE
A
47
−8.054
17.996
71.320
1.00
78.89
A


ATOM
996
C1′
ADE
A
47
−7.612
19.336
71.482
1.00
76.86
A


ATOM
997
N9
ADE
A
47
−8.699
20.239
71.089
1.00
73.28
A


ATOM
998
C4
ADE
A
47
−8.651
21.616
71.042
1.00
70.83
A


ATOM
999
N3
ADE
A
47
−7.618
22.412
71.369
1.00
69.61
A


ATOM
1000
C2
ADE
A
47
−7.935
23.696
71.184
1.00
68.39
A


ATOM
1001
N1
ADE
A
47
−9.075
24.231
70.734
1.00
66.31
A


ATOM
1002
C6
ADE
A
47
−10.090
23.404
70.403
1.00
67.06
A


ATOM
1003
N6
ADE
A
47
−11.218
23.937
69.931
1.00
65.64
A


ATOM
1004
C5
ADE
A
47
−9.889
22.020
70.569
1.00
68.98
A


ATOM
1005
N7
ADE
A
47
−10.710
20.923
70.341
1.00
69.48
A


ATOM
1006
C8
ADE
A
47
−9.963
19.896
70.669
1.00
71.21
A


ATOM
1007
C2′
ADE
A
47
−7.133
19.498
72.928
1.00
79.08
A


ATOM
1008
O2′
ADE
A
47
−5.720
19.415
72.987
1.00
79.49
A


ATOM
1009
C3′
ADE
A
47
−7.810
18.318
73.619
1.00
79.92
A


ATOM
1010
O3′
ADE
A
47
−7.040
17.900
74.735
1.00
81.30
A


ATOM
1011
P
ADE
A
48
−7.584
18.174
76.218
1.00
82.37
A


ATOM
1012
O1P
ADE
A
48
−8.374
16.983
76.624
1.00
81.64
A


ATOM
1013
O2P
ADE
A
48
−8.214
19.516
76.241
1.00
81.56
A


ATOM
1014
O5′
ADE
A
48
−6.260
18.214
77.095
1.00
82.32
A


ATOM
1015
C5′
ADE
A
48
−5.365
17.113
77.094
1.00
83.46
A


ATOM
1016
C4′
ADE
A
48
−3.960
17.594
77.326
1.00
85.20
A


ATOM
1017
O4′
ADE
A
48
−3.499
18.305
76.143
1.00
84.90
A


ATOM
1018
C1′
ADE
A
48
−2.600
19.334
76.533
1.00
85.40
A


ATOM
1019
N9
ADE
A
48
−3.174
20.620
76.142
1.00
85.75
A


ATOM
1020
C4
ADE
A
48
−2.527
21.834
76.201
1.00
85.93
A


ATOM
1021
N3
ADE
A
48
−1.253
22.065
76.574
1.00
85.58
A


ATOM
1022
C2
ADE
A
48
−0.984
23.367
76.546
1.00
85.50
A


ATOM
1023
N1
ADE
A
48
−1.783
24.390
76.216
1.00
85.56
A


ATOM
1024
C6
ADE
A
48
−3.055
24.125
75.843
1.00
84.69
A


ATOM
1025
N6
ADE
A
48
−3.849
25.145
75.523
1.00
83.49
A


ATOM
1026
C5
ADE
A
48
−3.464
22.779
75.821
1.00
84.98
A


ATOM
1027
N7
ADE
A
48
−4.669
22.171
75.491
1.00
84.83
A


ATOM
1028
C8
ADE
A
48
−4.442
20.892
75.691
1.00
85.38
A


ATOM
1029
C2′
ADE
A
48
−2.463
19.256
78.059
1.00
85.92
A


ATOM
1030
O2′
ADE
A
48
−1.327
18.501
78.444
1.00
84.47
A


ATOM
1031
C3′
ADE
A
48
−3.796
18.622
78.435
1.00
85.80
A


ATOM
1032
O3′
ADE
A
48
−3.766
18.027
79.729
1.00
86.27
A


ATOM
1033
P
ADE
A
49
−4.373
18.832
80.986
1.00
88.05
A


ATOM
1034
O1P
ADE
A
49
−4.142
18.025
82.212
1.00
87.72
A


ATOM
1035
O2P
ADE
A
49
−5.755
19.264
80.647
1.00
88.03
A


ATOM
1036
O5′
ADE
A
49
−3.455
20.131
81.084
1.00
85.69
A


ATOM
1037
C5′
ADE
A
49
−2.071
20.026
81.397
1.00
82.44
A


ATOM
1038
C4′
ADE
A
49
−1.389
21.358
81.192
1.00
81.27
A


ATOM
1039
O4′
ADE
A
49
−1.679
21.845
79.853
1.00
80.07
A


ATOM
1040
C1′
ADE
A
49
−1.745
23.264
79.861
1.00
77.99
A


ATOM
1041
N9
ADE
A
49
−3.084
23.658
79.430
1.00
76.14
A


ATOM
1042
C4
ADE
A
49
−3.522
24.942
79.227
1.00
75.30
A


ATOM
1043
N3
ADE
A
49
−2.812
26.072
79.362
1.00
74.58
A


ATOM
1044
C2
ADE
A
49
−3.569
27.135
79.106
1.00
74.96
A


ATOM
1045
N1
ADE
A
49
−4.860
27.192
78.758
1.00
75.05
A


ATOM
1046
C6
ADE
A
49
−5.546
26.036
78.631
1.00
75.57
A


ATOM
1047
N6
ADE
A
49
−6.834
26.093
78.292
1.00
75.44
A


ATOM
1048
C5
ADE
A
49
−4.853
24.836
78.871
1.00
75.74
A


ATOM
1049
N7
ADE
A
49
−5.247
23.506
78.834
1.00
75.97
A


ATOM
1050
C8
ADE
A
49
−4.162
22.849
79.167
1.00
76.26
A


ATOM
1051
C2′
ADE
A
49
−1.442
23.720
81.289
1.00
79.04
A


ATOM
1052
O2′
ADE
A
49
−0.075
24.059
81.411
1.00
77.88
A


ATOM
1053
C3′
ADE
A
49
−1.862
22.490
82.087
1.00
80.35
A


ATOM
1054
O3′
ADE
A
49
−1.261
22.428
83.375
1.00
80.33
A


ATOM
1055
P
GUA
A
50
−2.185
22.582
84.679
1.00
81.00
A


ATOM
1056
O1P
GUA
A
50
−3.300
21.604
84.529
1.00
80.20
A


ATOM
1057
O2P
GUA
A
50
−1.341
22.560
85.906
1.00
79.72
A


ATOM
1058
O5′
GUA
A
50
−2.784
24.050
84.525
1.00
79.65
A


ATOM
1059
C5′
GUA
A
50
−1.921
25.173
84.372
1.00
77.16
A


ATOM
1060
C4′
GUA
A
50
−2.719
26.402
84.007
1.00
75.00
A


ATOM
1061
O4′
GUA
A
50
−3.208
26.286
82.638
1.00
73.43
A


ATOM
1062
C1′
GUA
A
50
−4.541
26.770
82.564
1.00
72.01
A


ATOM
1063
N9
GUA
A
50
−5.433
25.623
82.411
1.00
70.22
A


ATOM
1064
C4
GUA
A
50
−6.724
25.655
81.960
1.00
67.92
A


ATOM
1065
N3
GUA
A
50
−7.402
26.758
81.590
1.00
66.32
A


ATOM
1066
C2
GUA
A
50
−8.637
26.476
81.219
1.00
66.81
A


ATOM
1067
N2
GUA
A
50
−9.463
27.461
80.851
1.00
65.04
A


ATOM
1068
N1
GUA
A
50
−9.158
25.205
81.191
1.00
68.08
A


ATOM
1069
C6
GUA
A
50
−8.473
24.051
81.564
1.00
69.44
A


ATOM
1070
O6
GUA
A
50
−9.037
22.946
81.506
1.00
70.39
A


ATOM
1071
C5
GUA
A
50
−7.153
24.344
81.981
1.00
68.58
A


ATOM
1072
N7
GUA
A
50
−6.150
23.503
82.441
1.00
68.42
A


ATOM
1073
C8
GUA
A
50
−5.149
24.303
82.685
1.00
69.29
A


ATOM
1074
C2′
GUA
A
50
−4.770
27.520
83.872
1.00
72.81
A


ATOM
1075
O2′
GUA
A
50
−4.222
28.817
83.756
1.00
71.66
A


ATOM
1076
C3′
GUA
A
50
−3.977
26.639
84.822
1.00
73.60
A


ATOM
1077
O3′
GUA
A
50
−3.684
27.280
86.054
1.00
73.95
A


ATOM
1078
P
GUA
A
51
−4.694
27.112
87.294
1.00
74.38
A


ATOM
1079
O1P
GUA
A
51
−5.138
25.695
87.343
1.00
73.33
A


ATOM
1080
O2P
GUA
A
51
−4.067
27.727
88.487
1.00
72.68
A


ATOM
1081
O5′
GUA
A
51
−5.952
27.991
86.870
1.00
74.71
A


ATOM
1082
C5′
GUA
A
51
−5.783
29.325
86.397
1.00
73.94
A


ATOM
1083
C4′
GUA
A
51
−7.125
29.948
86.118
1.00
73.27
A


ATOM
1084
O4′
GUA
A
51
−7.656
29.393
84.888
1.00
72.61
A


ATOM
1085
C1′
GUA
A
51
−9.060
29.227
85.005
1.00
72.51
A


ATOM
1086
N9
GUA
A
51
−9.354
27.805
84.898
1.00
71.49
A


ATOM
1087
C4
GUA
A
51
−10.535
27.252
84.485
1.00
69.81
A


ATOM
1088
N3
GUA
A
51
−11.648
27.931
84.147
1.00
68.51
A


ATOM
1089
C2
GUA
A
51
−12.622
27.123
83.780
1.00
68.74
A


ATOM
1090
N2
GUA
A
51
−13.810
27.628
83.424
1.00
68.49
A


ATOM
1091
N1
GUA
A
51
−12.505
25.757
83.737
1.00
69.64
A


ATOM
1092
C6
GUA
A
51
−11.365
25.039
84.076
1.00
70.00
A


ATOM
1093
O6
GUA
A
51
−11.362
23.804
83.990
1.00
71.28
A


ATOM
1094
C5
GUA
A
51
−10.322
25.892
84.486
1.00
69.35
A


ATOM
1095
N7
GUA
A
51
−9.040
25.595
84.918
1.00
70.02
A


ATOM
1096
C8
GUA
A
51
−8.505
26.759
85.160
1.00
70.88
A


ATOM
1097
C2′
GUA
A
51
−9.475
29.821
86.347
1.00
73.56
A


ATOM
1098
O2′
GUA
A
51
−9.867
31.166
86.164
1.00
74.00
A


ATOM
1099
C3′
GUA
A
51
−8.194
29.643
87.150
1.00
73.77
A


ATOM
1100
O3′
GUA
A
51
−8.114
30.545
88.238
1.00
74.52
A


ATOM
1101
P
ADE
A
52
−8.773
30.142
89.642
1.00
76.30
A


ATOM
1102
O1P
ADE
A
52
−8.331
28.768
90.007
1.00
73.86
A


ATOM
1103
O2P
ADE
A
52
−8.551
31.261
90.586
1.00
76.17
A


ATOM
1104
O5′
ADE
A
52
−10.323
30.090
89.311
1.00
78.15
A


ATOM
1105
PC
ADE
A
52
−13.399
30.333
93.693
1.00
89.30
A


ATOM
1106
O1C
ADE
A
52
−12.966
29.470
94.833
1.00
88.46
A


ATOM
1107
O2C
ADE
A
52
−13.966
31.592
94.237
1.00
89.76
A


ATOM
1108
O3′
ADE
A
52
−12.135
30.667
92.749
1.00
88.47
A


ATOM
1109
C5′
ADE
A
52
−11.120
29.037
89.802
1.00
82.75
A


ATOM
1110
C4′
ADE
A
52
−12.297
29.587
90.555
1.00
85.33
A


ATOM
1111
O4′
ADE
A
52
−13.454
28.844
90.104
1.00
86.70
A


ATOM
1112
C1′
ADE
A
52
−13.899
28.008
91.146
1.00
88.21
A


ATOM
1113
N9
ADE
A
52
−13.256
26.699
91.016
1.00
87.28
A


ATOM
1114
C4
ADE
A
52
−13.874
25.553
90.585
1.00
85.99
A


ATOM
1115
N3
ADE
A
52
−15.152
25.418
90.189
1.00
84.73
A


ATOM
1116
C2
ADE
A
52
−15.402
24.160
89.845
1.00
84.82
A


ATOM
1117
N1
ADE
A
52
−14.580
23.101
89.854
1.00
85.66
A


ATOM
1118
C6
ADE
A
52
−13.299
23.276
90.261
1.00
86.47
A


ATOM
1119
N6
ADE
A
52
−12.472
22.225
90.275
1.00
87.46
A


ATOM
1120
C5
ADE
A
52
−12.910
24.561
90.648
1.00
86.01
A


ATOM
1121
N7
ADE
A
52
−11.702
25.071
91.102
1.00
85.88
A


ATOM
1122
C8
ADE
A
52
−11.956
26.339
91.305
1.00
87.01
A


ATOM
1123
C2′
ADE
A
52
−13.529
28.719
92.445
1.00
88.72
A


ATOM
1124
O2′
ADE
A
52
−14.557
29.604
92.858
1.00
89.03
A


ATOM
1125
C3′
ADE
A
52
−12.218
29.415
92.075
1.00
86.83
A


TER


ATOM
1126
O6P
GUA
B
201
0.475
29.070
36.643
1.00
78.07
B


ATOM
1127
O3P
GUA
B
201
2.504
29.382
35.176
1.00
72.28
B


ATOM
1128
O4P
GUA
B
201
1.151
27.209
35.096
1.00
78.40
B


ATOM
1129
O5P
GUA
B
201
0.153
29.309
34.172
1.00
77.17
B


ATOM
1130
P2
GUA
B
201
1.035
28.724
35.273
1.00
78.53
B


ATOM
1131
P
GUA
B
201
3.207
29.078
33.730
1.00
67.30
B


ATOM
1132
O1P
GUA
B
201
2.397
29.678
32.604
1.00
68.58
B


ATOM
1133
O2P
GUA
B
201
3.397
27.584
33.493
1.00
65.14
B


ATOM
1134
O5′
GUA
B
201
4.661
29.812
33.757
1.00
65.23
B


ATOM
1135
C5′
GUA
B
201
4.779
31.168
34.260
1.00
59.17
B


ATOM
1136
C4′
GUA
B
201
6.020
31.321
35.109
1.00
54.52
B


ATOM
1137
O4′
GUA
B
201
5.753
30.983
36.494
1.00
52.68
B


ATOM
1138
C1′
GUA
B
201
6.913
30.394
37.065
1.00
52.45
B


ATOM
1139
N9
GUA
B
201
6.599
29.022
37.436
1.00
51.23
B


ATOM
1140
C4
GUA
B
201
7.438
28.136
38.073
1.00
50.83
B


ATOM
1141
N3
GUA
B
201
8.698
28.388
38.480
1.00
50.53
B


ATOM
1142
C2
GUA
B
201
9.253
27.328
39.046
1.00
50.31
B


ATOM
1143
N2
GUA
B
201
10.512
27.380
39.486
1.00
48.27
B


ATOM
1144
N1
GUA
B
201
8.615
26.133
39.216
1.00
51.41
B


ATOM
1145
C6
GUA
B
201
7.317
25.855
38.814
1.00
51.48
B


ATOM
1146
O6
GUA
B
201
6.835
24.742
39.029
1.00
53.50
B


ATOM
1147
C5
GUA
B
201
6.717
26.970
38.189
1.00
51.05
B


ATOM
1148
N7
GUA
B
201
5.452
27.117
37.639
1.00
51.16
B


ATOM
1149
C8
GUA
B
201
5.426
28.351
37.209
1.00
50.70
B


ATOM
1150
C2′
GUA
B
201
7.999
30.409
35.993
1.00
52.40
B


ATOM
1151
O2′
GUA
B
201
8.806
31.555
36.121
1.00
52.70
B


ATOM
1152
C3′
GUA
B
201
7.161
30.406
34.729
1.00
52.42
B


ATOM
1153
O3′
GUA
B
201
7.874
30.965
33.658
1.00
50.70
B


ATOM
1154
P
CYT
B
202
8.761
30.015
32.732
1.00
54.04
B


ATOM
1155
O1P
CYT
B
202
7.936
28.821
32.381
1.00
53.07
B


ATOM
1156
O2P
CYT
B
202
9.316
30.881
31.657
1.00
49.44
B


ATOM
1157
O5′
CYT
B
202
9.943
29.532
33.689
1.00
51.35
B


ATOM
1158
C5′
CYT
B
202
10.766
30.485
34.352
1.00
47.88
B


ATOM
1159
C4′
CYT
B
202
11.962
29.817
34.972
1.00
44.57
B


ATOM
1160
O4′
CYT
B
202
11.589
29.271
36.260
1.00
42.31
B


ATOM
1161
C1′
CYT
B
202
12.237
28.030
36.451
1.00
41.89
B


ATOM
1162
N1
CYT
B
202
11.233
26.976
36.380
1.00
41.10
B


ATOM
1163
C6
CYT
B
202
9.994
27.211
35.848
1.00
43.60
B


ATOM
1164
C2
CYT
B
202
11.570
25.720
36.840
1.00
40.20
B


ATOM
1165
O2
CYT
B
202
12.674
25.559
37.350
1.00
38.30
B


ATOM
1166
N3
CYT
B
202
10.680
24.708
36.725
1.00
43.53
B


ATOM
1167
C4
CYT
B
202
9.477
24.934
36.194
1.00
43.15
B


ATOM
1168
N4
CYT
B
202
8.637
23.907
36.097
1.00
43.58
B


ATOM
1169
C5
CYT
B
202
9.090
26.225
35.740
1.00
43.56
B


ATOM
1170
C2′
CYT
B
202
13.247
27.874
35.317
1.00
42.94
B


ATOM
1171
O2′
CYT
B
202
14.469
28.448
35.705
1.00
43.96
B


ATOM
1172
C3′
CYT
B
202
12.565
28.653
34.202
1.00
43.70
B


ATOM
1173
O3′
CYT
B
202
13.531
29.144
33.290
1.00
43.33
B


ATOM
1174
P
GUA
B
203
13.858
28.332
31.949
1.00
46.72
B


ATOM
1175
O1P
GUA
B
203
12.593
27.844
31.370
1.00
48.52
B


ATOM
1176
O2P
GUA
B
203
14.725
29.223
31.147
1.00
46.78
B


ATOM
1177
O5′
GUA
B
203
14.709
27.082
32.448
1.00
46.96
B


ATOM
1178
C5′
GUA
B
203
15.833
27.282
33.296
1.00
46.67
B


ATOM
1179
C4′
GUA
B
203
16.366
25.968
33.800
1.00
46.87
B


ATOM
1180
O4′
GUA
B
203
15.544
25.479
34.885
1.00
46.06
B


ATOM
1181
C1′
GUA
B
203
15.525
24.059
34.853
1.00
49.05
B


ATOM
1182
N9
GUA
B
203
14.176
23.616
34.536
1.00
50.83
B


ATOM
1183
C4
GUA
B
203
13.697
22.350
34.693
1.00
51.60
B


ATOM
1184
N3
GUA
B
203
14.391
21.306
35.180
1.00
52.97
B


ATOM
1185
C2
GUA
B
203
13.677
20.193
35.173
1.00
55.12
B


ATOM
1186
N2
GUA
B
203
14.227
19.044
35.596
1.00
55.46
B


ATOM
1187
N1
GUA
B
203
12.373
20.120
34.741
1.00
55.24
B


ATOM
1188
C6
GUA
B
203
11.638
21.187
34.236
1.00
54.21
B


ATOM
1189
O6
GUA
B
203
10.471
21.008
33.857
1.00
55.53
B


ATOM
1190
C5
GUA
B
203
12.400
22.385
34.228
1.00
52.79
B


ATOM
1191
N7
GUA
B
203
12.065
23.661
33.803
1.00
52.05
B


ATOM
1192
C8
GUA
B
203
13.147
24.360
34.008
1.00
52.06
B


ATOM
1193
C2′
GUA
B
203
16.491
23.627
33.754
1.00
49.39
B


ATOM
1194
O2′
GUA
B
203
17.774
23.426
34.320
1.00
50.70
B


ATOM
1195
C3′
GUA
B
203
16.394
24.818
32.813
1.00
48.50
B


ATOM
1196
O3′
GUA
B
203
17.540
24.916
31.986
1.00
51.54
B


ATOM
1197
P
CYT
B
204
17.445
24.511
30.436
1.00
53.75
B


ATOM
1198
O1P
CYT
B
204
16.121
24.953
29.937
1.00
55.60
B


ATOM
1199
O2P
CYT
B
204
18.682
25.001
29.770
1.00
53.17
B


ATOM
1200
O5′
CYT
B
204
17.457
22.922
30.460
1.00
51.80
B


ATOM
1201
C5′
CYT
B
204
18.473
22.229
31.158
1.00
51.55
B


ATOM
1202
C4′
CYT
B
204
18.146
20.765
31.227
1.00
52.80
B


ATOM
1203
O4′
CYT
B
204
17.050
20.563
32.153
1.00
53.65
B


ATOM
1204
C1′
CYT
B
204
16.323
19.404
31.769
1.00
51.69
B


ATOM
1205
N1
CYT
B
204
14.946
19.803
31.490
1.00
50.29
B


ATOM
1206
C6
CYT
B
204
14.635
21.098
31.189
1.00
51.07
B


ATOM
1207
C2
CYT
B
204
13.956
18.837
31.544
1.00
51.03
B


ATOM
1208
O2
CYT
B
204
14.279
17.677
31.819
1.00
50.84
B


ATOM
1209
N3
CYT
B
204
12.671
19.187
31.302
1.00
51.56
B


ATOM
1210
C4
CYT
B
204
12.370
20.456
31.026
1.00
51.67
B


ATOM
1211
N4
CYT
B
204
11.091
20.764
30.824
1.00
51.58
B


ATOM
1212
C5
CYT
B
204
13.369
21.467
30.953
1.00
51.72
B


ATOM
1213
C2′
CYT
B
204
17.028
18.840
30.538
1.00
52.66
B


ATOM
1214
O2′
CYT
B
204
18.028
17.937
30.975
1.00
50.99
B


ATOM
1215
C3′
CYT
B
204
17.615
20.117
29.960
1.00
54.04
B


ATOM
1216
O3′
CYT
B
204
18.650
19.862
29.017
1.00
57.06
B


ATOM
1217
P
GUA
B
205
18.527
20.459
27.539
1.00
57.66
B


ATOM
1218
O1P
GUA
B
205
17.497
21.519
27.638
1.00
59.12
B


ATOM
1219
O2P
GUA
B
205
19.878
20.793
27.025
1.00
55.89
B


ATOM
1220
O5′
GUA
B
205
17.899
19.260
26.700
1.00
58.91
B


ATOM
1221
C5′
GUA
B
205
18.625
18.050
26.478
1.00
58.65
B


ATOM
1222
C4′
GUA
B
205
17.775
16.846
26.835
1.00
57.77
B


ATOM
1223
O4′
GUA
B
205
17.003
17.156
28.024
1.00
58.08
B


ATOM
1224
C1′
GUA
B
205
15.757
16.478
27.976
1.00
58.15
B


ATOM
1225
N9
GUA
B
205
14.689
17.469
27.941
1.00
57.22
B


ATOM
1226
C4
GUA
B
205
13.342
17.211
27.974
1.00
55.21
B


ATOM
1227
N3
GUA
B
205
12.771
15.997
28.063
1.00
54.66
B


ATOM
1228
C2
GUA
B
205
11.452
16.071
28.036
1.00
54.04
B


ATOM
1229
N2
GUA
B
205
10.719
14.963
28.091
1.00
53.92
B


ATOM
1230
N1
GUA
B
205
10.756
17.238
27.942
1.00
54.33
B


ATOM
1231
C6
GUA
B
205
11.323
18.497
27.838
1.00
55.11
B


ATOM
1232
O6
GUA
B
205
10.599
19.484
27.714
1.00
57.19
B


ATOM
1233
C5
GUA
B
205
12.733
18.437
27.872
1.00
55.05
B


ATOM
1234
N7
GUA
B
205
13.677
19.450
27.805
1.00
57.05
B


ATOM
1235
C8
GUA
B
205
14.823
18.830
27.850
1.00
56.48
B


ATOM
1236
C2′
GUA
B
205
15.775
15.615
26.718
1.00
57.78
B


ATOM
1237
O2′
GUA
B
205
16.279
14.348
27.071
1.00
60.51
B


ATOM
1238
C3′
GUA
B
205
16.720
16.411
25.828
1.00
57.96
B


ATOM
1239
O3′
GUA
B
205
17.269
15.591
24.793
1.00
59.77
B


ATOM
1240
P
GUA
B
206
16.445
15.362
23.419
1.00
61.50
B


ATOM
1241
O1P
GUA
B
206
15.949
16.687
22.956
1.00
59.32
B


ATOM
1242
O2P
GUA
B
206
17.276
14.536
22.510
1.00
60.35
B


ATOM
1243
O5′
GUA
B
206
15.191
14.472
23.844
1.00
60.21
B


ATOM
1244
C5′
GUA
B
206
15.360
13.112
24.241
1.00
60.08
B


ATOM
1245
C4′
GUA
B
206
14.035
12.378
24.209
1.00
60.45
B


ATOM
1246
O4′
GUA
B
206
13.174
12.848
25.287
1.00
61.47
B


ATOM
1247
C1′
GUA
B
206
11.829
12.928
24.835
1.00
61.03
B


ATOM
1248
N9
GUA
B
206
11.441
14.339
24.794
1.00
59.51
B


ATOM
1249
C4
GUA
B
206
10.167
14.845
24.683
1.00
57.68
B


ATOM
1250
N3
GUA
B
206
9.038
14.124
24.594
1.00
57.86
B


ATOM
1251
C2
GUA
B
206
7.973
14.892
24.488
1.00
57.96
B


ATOM
1252
N2
GUA
B
206
6.762
14.332
24.390
1.00
60.81
B


ATOM
1253
N1
GUA
B
206
8.010
16.265
24.470
1.00
57.03
B


ATOM
1254
C6
GUA
B
206
9.161
17.035
24.555
1.00
55.93
B


ATOM
1255
O6
GUA
B
206
9.083
18.275
24.518
1.00
49.77
B


ATOM
1256
C5
GUA
B
206
10.316
16.219
24.673
1.00
57.07
B


ATOM
1257
N7
GUA
B
206
11.651
16.568
24.781
1.00
58.68
B


ATOM
1258
C8
GUA
B
206
12.280
15.425
24.851
1.00
60.02
B


ATOM
1259
C2′
GUA
B
206
11.807
12.242
23.467
1.00
61.82
B


ATOM
1260
O2′
GUA
B
206
11.614
10.848
23.619
1.00
63.71
B


ATOM
1261
C3′
GUA
B
206
13.201
12.569
22.956
1.00
61.23
B


ATOM
1262
O3′
GUA
B
206
13.593
11.654
21.946
1.00
60.82
B


ATOM
1263
P
CYT
B
207
13.254
11.977
20.411
1.00
62.09
B


ATOM
1264
O1P
CYT
B
207
13.802
13.316
20.065
1.00
59.83
B


ATOM
1265
O2P
CYT
B
207
13.687
10.794
19.646
1.00
62.58
B


ATOM
1266
O5′
CYT
B
207
11.666
12.035
20.365
1.00
60.49
B


ATOM
1267
C5′
CYT
B
207
10.910
10.862
20.580
1.00
61.91
B


ATOM
1268
C4′
CYT
B
207
9.470
11.104
20.236
1.00
63.97
B


ATOM
1269
O4′
CYT
B
207
8.838
11.868
21.297
1.00
64.87
B


ATOM
1270
C1′
CYT
B
207
7.926
12.791
20.734
1.00
63.80
B


ATOM
1271
N1
CYT
B
207
8.496
14.125
20.900
1.00
63.17
B


ATOM
1272
C6
CYT
B
207
9.847
14.323
20.840
1.00
62.47
B


ATOM
1273
C2
CYT
B
207
7.640
15.188
21.116
1.00
62.29
B


ATOM
1274
O2
CYT
B
207
6.419
14.973
21.138
1.00
62.58
B


ATOM
1275
N3
CYT
B
207
8.153
16.423
21.288
1.00
62.17
B


ATOM
1276
C4
CYT
B
207
9.472
16.610
21.235
1.00
61.91
B


ATOM
1277
N4
CYT
B
207
9.936
17.844
21.422
1.00
62.98
B


ATOM
1278
C5
CYT
B
207
10.372
15.539
20.994
1.00
61.76
B


ATOM
1279
C2′
CYT
B
207
7.802
12.407
19.263
1.00
64.14
B


ATOM
1280
O2′
CYT
B
207
6.858
11.364
19.158
1.00
64.99
B


ATOM
1281
C3′
CYT
B
207
9.217
11.932
18.996
1.00
64.31
B


ATOM
1282
O3′
CYT
B
207
9.304
11.120
17.845
1.00
68.01
B


ATOM
1283
P
GUA
B
208
10.039
11.681
16.530
1.00
71.50
B


ATOM
1284
O1P
GUA
B
208
10.903
12.834
16.895
1.00
71.03
B


ATOM
1285
O2P
GUA
B
208
10.630
10.512
15.838
1.00
70.19
B


ATOM
1286
O5′
GUA
B
208
8.831
12.216
15.654
1.00
71.24
B


ATOM
1287
C5′
GUA
B
208
7.619
11.488
15.626
1.00
75.00
B


ATOM
1288
C4′
GUA
B
208
6.593
12.222
14.819
1.00
77.63
B


ATOM
1289
O4′
GUA
B
208
6.258
13.454
15.502
1.00
78.81
B


ATOM
1290
C1′
GUA
B
208
5.958
14.454
14.546
1.00
77.89
B


ATOM
1291
N9
GUA
B
208
6.908
15.543
14.725
1.00
76.63
B


ATOM
1292
C4
GUA
B
208
6.596
16.873
14.757
1.00
76.06
B


ATOM
1293
N3
GUA
B
208
5.363
17.394
14.605
1.00
75.43
B


ATOM
1294
C2
GUA
B
208
5.371
18.710
14.688
1.00
75.88
B


ATOM
1295
N2
GUA
B
208
4.225
19.386
14.555
1.00
76.45
B


ATOM
1296
N1
GUA
B
208
6.503
19.462
14.907
1.00
75.46
B


ATOM
1297
C6
GUA
B
208
7.786
18.948
15.071
1.00
76.04
B


ATOM
1298
O6
GUA
B
208
8.739
19.716
15.276
1.00
75.23
B


ATOM
1299
C5
GUA
B
208
7.792
17.526
14.976
1.00
76.48
B


ATOM
1300
N7
GUA
B
208
8.839
16.616
15.068
1.00
75.92
B


ATOM
1301
C8
GUA
B
208
8.268
15.453
14.909
1.00
75.95
B


ATOM
1302
C2′
GUA
B
208
6.023
13.790
13.170
1.00
79.19
B


ATOM
1303
O2′
GUA
B
208
4.734
13.291
12.840
1.00
80.56
B


ATOM
1304
C3′
GUA
B
208
7.025
12.675
13.434
1.00
78.39
B


ATOM
1305
O3′
GUA
B
208
6.853
11.614
12.505
1.00
78.55
B


ATOM
1306
P
ADE
B
209
7.557
11.694
11.066
1.00
79.91
B


ATOM
1307
O1P
ADE
B
209
7.729
10.295
10.601
1.00
79.05
B


ATOM
1308
O2P
ADE
B
209
8.743
12.592
11.172
1.00
79.16
B


ATOM
1309
O5′
ADE
B
209
6.461
12.386
10.137
1.00
78.24
B


ATOM
1310
C5′
ADE
B
209
6.714
13.641
9.507
1.00
75.75
B


ATOM
1311
C4′
ADE
B
209
5.411
14.354
9.221
1.00
73.21
B


ATOM
1312
O4′
ADE
B
209
4.873
14.899
10.460
1.00
73.62
B


ATOM
1313
C1′
ADE
B
209
4.502
16.256
10.270
1.00
72.82
B


ATOM
1314
N9
ADE
B
209
5.575
17.095
10.804
1.00
72.74
B


ATOM
1315
C4
ADE
B
209
5.493
18.434
11.097
1.00
71.79
B


ATOM
1316
N3
ADE
B
209
4.414
19.226
10.987
1.00
70.98
B


ATOM
1317
C2
ADE
B
209
4.715
20.472
11.336
1.00
71.75
B


ATOM
1318
N1
ADE
B
209
5.885
20.981
11.746
1.00
72.10
B


ATOM
1319
C6
ADE
B
209
6.952
20.154
11.837
1.00
72.26
B


ATOM
1320
N6
ADE
B
209
8.129
20.658
12.223
1.00
71.78
B


ATOM
1321
C5
ADE
B
209
6.760
18.807
11.508
1.00
71.85
B


ATOM
1322
N7
ADE
B
209
7.621
17.720
11.501
1.00
72.48
B


ATOM
1323
C8
ADE
B
209
6.872
16.730
11.085
1.00
72.58
B


ATOM
1324
C2′
ADE
B
209
4.371
16.428
8.758
1.00
72.33
B


ATOM
1325
O2′
ADE
B
209
3.104
16.003
8.293
1.00
72.90
B


ATOM
1326
C3′
ADE
B
209
5.512
15.544
8.279
1.00
71.38
B


ATOM
1327
O3′
ADE
B
209
5.308
15.134
6.943
1.00
69.22
B


ATOM
1328
P
URI
B
210
5.948
15.987
5.751
1.00
68.62
B


ATOM
1329
O1P
URI
B
210
7.386
16.234
6.026
1.00
66.35
B


ATOM
1330
O2P
URI
B
210
5.552
15.310
4.493
1.00
70.59
B


ATOM
1331
O5′
URI
B
210
5.184
17.379
5.847
1.00
67.97
B


ATOM
1332
C5′
URI
B
210
3.784
17.451
5.619
1.00
65.59
B


ATOM
1333
C4′
URI
B
210
3.285
18.867
5.806
1.00
64.54
B


ATOM
1334
O4′
URI
B
210
3.438
19.289
7.190
1.00
63.95
B


ATOM
1335
C1′
URI
B
210
3.513
20.706
7.236
1.00
63.40
B


ATOM
1336
N1
URI
B
210
4.820
21.090
7.786
1.00
62.33
B


ATOM
1337
C6
URI
B
210
5.885
20.236
7.750
1.00
60.71
B


ATOM
1338
C2
URI
B
210
4.952
22.366
8.301
1.00
61.50
B


ATOM
1339
O2
URI
B
210
4.010
23.134
8.428
1.00
62.05
B


ATOM
1340
N3
URI
B
210
6.224
22.709
8.673
1.00
59.69
B


ATOM
1341
C4
URI
B
210
7.342
21.919
8.613
1.00
59.43
B


ATOM
1342
O4
URI
B
210
8.440
22.411
8.868
1.00
60.44
B


ATOM
1343
C5
URI
B
210
7.109
20.596
8.138
1.00
60.21
B


ATOM
1344
C2′
URI
B
210
3.400
21.181
5.782
1.00
63.67
B


ATOM
1345
O2′
URI
B
210
2.047
21.387
5.433
1.00
64.63
B


ATOM
1346
C3′
URI
B
210
3.980
19.986
5.050
1.00
63.00
B


ATOM
1347
O3′
URI
B
210
3.613
20.025
3.674
1.00
61.87
B


ATOM
1348
P
URI
B
211
4.552
20.791
2.619
1.00
62.14
B


ATOM
1349
O1P
URI
B
211
5.953
20.288
2.709
1.00
62.97
B


ATOM
1350
O2P
URI
B
211
3.861
20.762
1.316
1.00
64.45
B


ATOM
1351
O5′
URI
B
211
4.552
22.292
3.144
1.00
64.09
B


ATOM
1352
C5′
URI
B
211
3.352
23.055
3.188
1.00
63.77
B


ATOM
1353
C4′
URI
B
211
3.648
24.477
3.606
1.00
64.74
B


ATOM
1354
O4′
URI
B
211
4.134
24.496
4.975
1.00
64.83
B


ATOM
1355
C1′
URI
B
211
5.030
25.586
5.145
1.00
66.00
B


ATOM
1356
N1
URI
B
211
6.350
25.066
5.527
1.00
64.36
B


ATOM
1357
C6
URI
B
211
6.708
23.768
5.295
1.00
63.97
B


ATOM
1358
C2
URI
B
211
7.224
25.947
6.111
1.00
63.57
B


ATOM
1359
O2
URI
B
211
6.921
27.098
6.359
1.00
65.32
B


ATOM
1360
N3
URI
B
211
8.463
25.434
6.399
1.00
62.40
B


ATOM
1361
C4
URI
B
211
8.896
24.151
6.173
1.00
62.58
B


ATOM
1362
O4
URI
B
211
10.061
23.851
6.424
1.00
61.65
B


ATOM
1363
C5
URI
B
211
7.920
23.291
5.591
1.00
64.22
B


ATOM
1364
C2′
URI
B
211
5.096
26.322
3.806
1.00
66.91
B


ATOM
1365
O2′
URI
B
211
4.175
27.396
3.821
1.00
67.58
B


ATOM
1366
C3′
URI
B
211
4.746
25.196
2.836
1.00
66.05
B


ATOM
1367
O3′
URI
B
211
4.266
25.680
1.582
1.00
67.10
B


ATOM
1368
P
URI
B
212
5.296
25.943
0.371
1.00
68.24
B


ATOM
1369
O1P
URI
B
212
6.124
24.732
0.127
1.00
66.86
B


ATOM
1370
O2P
URI
B
212
4.515
26.535
−0.748
1.00
67.34
B


ATOM
1371
O5′
URI
B
212
6.262
27.074
0.935
1.00
66.78
B


ATOM
1372
C5′
URI
B
212
5.753
28.356
1.279
1.00
63.87
B


ATOM
1373
C4′
URI
B
212
6.880
29.264
1.683
1.00
61.99
B


ATOM
1374
O4′
URI
B
212
7.431
28.817
2.944
1.00
61.09
B


ATOM
1375
C1′
URI
B
212
8.789
29.201
3.012
1.00
60.91
B


ATOM
1376
N1
URI
B
212
9.596
28.017
3.306
1.00
62.64
B


ATOM
1377
C6
URI
B
212
9.116
26.742
3.141
1.00
63.07
B


ATOM
1378
C2
URI
B
212
10.872
28.244
3.744
1.00
64.10
B


ATOM
1379
O2
URI
B
212
11.315
29.368
3.896
1.00
65.97
B


ATOM
1380
N3
URI
B
212
11.613
27.116
3.992
1.00
64.01
B


ATOM
1381
C4
URI
B
212
11.204
25.814
3.841
1.00
62.96
B


ATOM
1382
O4
URI
B
212
11.991
24.909
4.086
1.00
62.78
B


ATOM
1383
C5
URI
B
212
9.858
25.659
3.384
1.00
62.88
B


ATOM
1384
C2′
URI
B
212
9.179
29.779
1.655
1.00
60.05
B


ATOM
1385
O2′
URI
B
212
9.195
31.180
1.725
1.00
60.00
B


ATOM
1386
C3′
URI
B
212
8.079
29.232
0.760
1.00
60.82
B


ATOM
1387
O3′
URI
B
212
7.861
30.082
−0.345
1.00
62.32
B


ATOM
1388
P
ADE
B
213
8.786
29.945
−1.642
1.00
64.19
B


ATOM
1389
O1P
ADE
B
213
8.514
31.129
−2.486
1.00
62.11
B


ATOM
1390
O2P
ADE
B
213
8.592
28.580
−2.199
1.00
64.56
B


ATOM
1391
O5′
ADE
B
213
10.270
30.084
−1.086
1.00
64.30
B


ATOM
1392
C5′
ADE
B
213
10.903
31.352
−1.037
1.00
66.56
B


ATOM
1393
C4′
ADE
B
213
11.967
31.424
−2.091
1.00
68.08
B


ATOM
1394
O4′
ADE
B
213
12.985
30.491
−1.693
1.00
67.73
B


ATOM
1395
C1′
ADE
B
213
13.593
29.941
−2.834
1.00
69.20
B


ATOM
1396
N9
ADE
B
213
13.824
28.534
−2.557
1.00
68.20
B


ATOM
1397
C4
ADE
B
213
15.013
28.009
−2.132
1.00
68.22
B


ATOM
1398
N3
ADE
B
213
16.161
28.672
−1.919
1.00
67.53
B


ATOM
1399
C2
ADE
B
213
17.102
27.846
−1.484
1.00
67.81
B


ATOM
1400
N1
ADE
B
213
17.034
26.532
−1.260
1.00
67.62
B


ATOM
1401
C6
ADE
B
213
15.868
25.897
−1.495
1.00
67.62
B


ATOM
1402
N6
ADE
B
213
15.808
24.586
−1.284
1.00
68.78
B


ATOM
1403
C5
ADE
B
213
14.788
26.663
−1.952
1.00
67.89
B


ATOM
1404
N7
ADE
B
213
13.478
26.340
−2.274
1.00
68.10
B


ATOM
1405
C8
ADE
B
213
12.952
27.485
−2.631
1.00
68.29
B


ATOM
1406
C2′
ADE
B
213
12.708
30.196
−4.054
1.00
70.12
B


ATOM
1407
O2′
ADE
B
213
13.432
30.890
−5.056
1.00
72.73
B


ATOM
1408
C3′
ADE
B
213
11.508
30.945
−3.462
1.00
69.63
B


ATOM
1409
O3′
ADE
B
213
10.942
31.982
−4.285
1.00
70.47
B


ATOM
1410
P
ADE
B
214
11.773
33.329
−4.649
1.00
69.36
B


ATOM
1411
O1P
ADE
B
214
13.241
33.164
−4.465
1.00
68.13
B


ATOM
1412
O2P
ADE
B
214
11.068
34.439
−3.965
1.00
67.30
B


ATOM
1413
O5′
ADE
B
214
11.486
33.476
−6.204
1.00
67.59
B


ATOM
1414
C5′
ADE
B
214
10.417
32.740
−6.774
1.00
69.16
B


ATOM
1415
C4′
ADE
B
214
10.411
32.875
−8.268
1.00
70.01
B


ATOM
1416
O4′
ADE
B
214
10.089
34.245
−8.615
1.00
69.71
B


ATOM
1417
C1′
ADE
B
214
10.711
34.566
−9.849
1.00
69.81
B


ATOM
1418
N9
ADE
B
214
11.758
35.547
−9.587
1.00
67.72
B


ATOM
1419
C4
ADE
B
214
11.965
36.718
−10.265
1.00
66.16
B


ATOM
1420
N3
ADE
B
214
11.225
37.218
−11.267
1.00
63.36
B


ATOM
1421
C2
ADE
B
214
11.738
38.363
−11.693
1.00
64.58
B


ATOM
1422
N1
ADE
B
214
12.832
39.016
−11.266
1.00
66.51
B


ATOM
1423
C6
ADE
B
214
13.554
38.478
−10.257
1.00
66.22
B


ATOM
1424
N6
ADE
B
214
14.648
39.116
−9.833
1.00
65.04
B


ATOM
1425
C5
ADE
B
214
13.107
37.272
−9.715
1.00
66.42
B


ATOM
1426
N7
ADE
B
214
13.594
36.479
−8.691
1.00
67.11
B


ATOM
1427
C8
ADE
B
214
12.756
35.475
−8.649
1.00
67.96
B


ATOM
1428
C2′
ADE
B
214
11.324
33.259
−10.351
1.00
70.77
B


ATOM
1429
O2′
ADE
B
214
10.339
32.494
−11.025
1.00
70.42
B


ATOM
1430
C3′
ADE
B
214
11.708
32.637
−9.024
1.00
71.72
B


ATOM
1431
O3′
ADE
B
214
12.024
31.255
−9.166
1.00
76.39
B


ATOM
1432
P
CYT
B
215
13.418
30.800
−9.864
1.00
79.37
B


ATOM
1433
O1P
CYT
B
215
14.341
30.359
−8.769
1.00
77.34
B


ATOM
1434
O2P
CYT
B
215
13.884
31.829
−10.846
1.00
79.33
B


ATOM
1435
O5′
CYT
B
215
12.976
29.515
−10.704
1.00
76.94
B


ATOM
1436
C5′
CYT
B
215
11.607
29.327
−11.086
1.00
71.33
B


ATOM
1437
C4′
CYT
B
215
11.448
28.061
−11.897
1.00
67.39
B


ATOM
1438
O4′
CYT
B
215
12.392
28.049
−13.007
1.00
65.08
B


ATOM
1439
C1′
CYT
B
215
13.043
26.801
−13.057
1.00
61.70
B


ATOM
1440
N1
CYT
B
215
14.359
26.971
−12.449
1.00
59.95
B


ATOM
1441
C6
CYT
B
215
14.792
28.206
−12.062
1.00
58.65
B


ATOM
1442
C2
CYT
B
215
15.160
25.851
−12.258
1.00
60.14
B


ATOM
1443
O2
CYT
B
215
14.750
24.747
−12.652
1.00
60.89
B


ATOM
1444
N3
CYT
B
215
16.362
25.995
−11.656
1.00
58.69
B


ATOM
1445
C4
CYT
B
215
16.768
27.205
−11.264
1.00
57.84
B


ATOM
1446
N4
CYT
B
215
17.953
27.302
−10.663
1.00
57.51
B


ATOM
1447
C5
CYT
B
215
15.975
28.367
−11.469
1.00
57.82
B


ATOM
1448
C2′
CYT
B
215
12.156
25.844
−12.265
1.00
63.48
B


ATOM
1449
O2′
CYT
B
215
11.095
25.406
−13.089
1.00
64.98
B


ATOM
1450
C3′
CYT
B
215
11.667
26.754
−11.151
1.00
64.05
B


ATOM
1451
O3′
CYT
B
215
10.410
26.296
−10.690
1.00
63.08
B


ATOM
1452
P
CYT
B
216
10.197
25.977
−9.135
1.00
64.12
B


ATOM
1453
O1P
CYT
B
216
11.047
26.891
−8.322
1.00
63.64
B


ATOM
1454
O2P
CYT
B
216
8.729
25.920
−8.889
1.00
62.19
B


ATOM
1455
O5′
CYT
B
216
10.802
24.517
−8.988
1.00
61.93
B


ATOM
1456
C5′
CYT
B
216
10.525
23.517
−9.957
1.00
58.67
B


ATOM
1457
C4′
CYT
B
216
11.344
22.282
−9.675
1.00
56.94
B


ATOM
1458
O4′
CYT
B
216
12.646
22.445
−10.283
1.00
58.42
B


ATOM
1459
C1′
CYT
B
216
13.623
21.798
−9.496
1.00
55.98
B


ATOM
1460
N1
CYT
B
216
14.576
22.800
−9.063
1.00
56.15
B


ATOM
1461
C6
CYT
B
216
14.295
24.130
−9.178
1.00
56.50
B


ATOM
1462
C2
CYT
B
216
15.772
22.374
−8.527
1.00
57.23
B


ATOM
1463
O2
CYT
B
216
15.970
21.157
−8.420
1.00
56.87
B


ATOM
1464
N3
CYT
B
216
16.682
23.290
−8.130
1.00
57.99
B


ATOM
1465
C4
CYT
B
216
16.406
24.591
−8.247
1.00
58.03
B


ATOM
1466
N4
CYT
B
216
17.326
25.466
−7.844
1.00
58.87
B


ATOM
1467
C5
CYT
B
216
15.172
25.051
−8.784
1.00
58.58
B


ATOM
1468
C2′
CYT
B
216
12.920
21.181
−8.296
1.00
55.14
B


ATOM
1469
O2′
CYT
B
216
12.635
19.837
−8.575
1.00
58.96
B


ATOM
1470
C3′
CYT
B
216
11.653
22.012
−8.212
1.00
54.62
B


ATOM
1471
O3′
CYT
B
216
10.641
21.211
−7.651
1.00
51.22
B


ATOM
1472
P
GUA
B
217
10.195
21.454
−6.141
1.00
51.46
B


ATOM
1473
O1P
GUA
B
217
9.903
22.898
−6.028
1.00
51.75
B


ATOM
1474
O2P
GUA
B
217
9.140
20.468
−5.804
1.00
52.33
B


ATOM
1475
O5′
GUA
B
217
11.506
21.148
−5.295
1.00
50.74
B


ATOM
1476
C5′
GUA
B
217
12.249
19.952
−5.488
1.00
53.55
B


ATOM
1477
C4′
GUA
B
217
13.474
19.959
−4.605
1.00
56.25
B


ATOM
1478
O4′
GUA
B
217
14.391
20.990
−5.056
1.00
59.75
B


ATOM
1479
C1′
GUA
B
217
14.472
22.021
−4.090
1.00
61.77
B


ATOM
1480
N9
GUA
B
217
14.188
23.291
−4.738
1.00
66.26
B


ATOM
1481
C4
GUA
B
217
15.045
24.339
−4.873
1.00
68.16
B


ATOM
1482
N3
GUA
B
217
16.327
24.364
−4.461
1.00
69.17
B


ATOM
1483
C2
GUA
B
217
16.896
25.533
−4.714
1.00
73.15
B


ATOM
1484
N2
GUA
B
217
18.191
25.746
−4.372
1.00
73.91
B


ATOM
1485
N1
GUA
B
217
16.242
26.585
−5.323
1.00
73.30
B


ATOM
1486
C6
GUA
B
217
14.916
26.566
−5.752
1.00
72.06
B


ATOM
1487
O6
GUA
B
217
14.419
27.562
−6.288
1.00
74.99
B


ATOM
1488
C5
GUA
B
217
14.310
25.335
−5.491
1.00
69.90
B


ATOM
1489
N7
GUA
B
217
13.019
24.908
−5.754
1.00
68.66
B


ATOM
1490
C8
GUA
B
217
12.993
23.687
−5.297
1.00
68.05
B


ATOM
1491
C2′
GUA
B
217
13.388
21.772
−3.047
1.00
59.42
B


ATOM
1492
O2′
GUA
B
217
13.837
22.202
−1.779
1.00
59.88
B


ATOM
1493
C3′
GUA
B
217
13.179
20.270
−3.147
1.00
56.41
B


ATOM
1494
O3′
GUA
B
217
14.074
19.609
−2.290
1.00
50.70
B


ATOM
1495
P
URI
B
218
13.502
18.644
−1.157
1.00
49.79
B


ATOM
1496
O1P
URI
B
218
13.606
19.315
0.155
1.00
46.50
B


ATOM
1497
O2P
URI
B
218
12.181
18.143
−1.602
1.00
49.67
B


ATOM
1498
O5′
URI
B
218
14.553
17.455
−1.218
1.00
50.09
B


ATOM
1499
C5′
URI
B
218
15.031
16.855
−0.037
1.00
54.12
B


ATOM
1500
C4′
URI
B
218
16.493
16.552
−0.168
1.00
57.01
B


ATOM
1501
O4′
URI
B
218
17.078
17.324
−1.248
1.00
58.97
B


ATOM
1502
C1′
URI
B
218
18.380
17.762
−0.867
1.00
60.00
B


ATOM
1503
N1
URI
B
218
18.354
19.226
−0.735
1.00
60.71
B


ATOM
1504
C6
URI
B
218
17.184
19.929
−0.865
1.00
60.31
B


ATOM
1505
C2
URI
B
218
19.547
19.876
−0.483
1.00
60.85
B


ATOM
1506
O2
URI
B
218
20.601
19.291
−0.346
1.00
62.32
B


ATOM
1507
N3
URI
B
218
19.457
21.241
−0.392
1.00
60.77
B


ATOM
1508
C4
URI
B
218
18.322
22.006
−0.522
1.00
60.53
B


ATOM
1509
O4
URI
B
218
18.402
23.232
−0.437
1.00
58.93
B


ATOM
1510
C5
URI
B
218
17.128
21.260
−0.769
1.00
61.10
B


ATOM
1511
C2′
URI
B
218
18.693
17.057
0.450
1.00
59.40
B


ATOM
1512
O2′
URI
B
218
19.214
15.781
0.165
1.00
61.50
B


ATOM
1513
C3′
URI
B
218
17.301
16.966
1.040
1.00
59.18
B


ATOM
1514
O3′
URI
B
218
17.185
15.965
2.016
1.00
60.42
B


ATOM
1515
P
ADE
B
219
16.564
16.333
3.438
1.00
64.24
B


ATOM
1516
O1P
ADE
B
219
15.728
15.179
3.852
1.00
62.72
B


ATOM
1517
O2P
ADE
B
219
15.965
17.690
3.380
1.00
62.59
B


ATOM
1518
O5′
ADE
B
219
17.862
16.379
4.350
1.00
66.08
B


ATOM
1519
C5′
ADE
B
219
19.022
15.656
3.956
1.00
68.19
B


ATOM
1520
C4′
ADE
B
219
20.261
16.406
4.352
1.00
69.24
B


ATOM
1521
O4′
ADE
B
219
20.575
17.422
3.373
1.00
70.00
B


ATOM
1522
C1′
ADE
B
219
21.308
18.458
4.006
1.00
71.78
B


ATOM
1523
N9
ADE
B
219
20.667
19.735
3.704
1.00
74.23
B


ATOM
1524
C4
ADE
B
219
21.235
20.970
3.866
1.00
74.89
B


ATOM
1525
N3
ADE
B
219
22.460
21.238
4.335
1.00
75.81
B


ATOM
1526
C2
ADE
B
219
22.677
22.547
4.342
1.00
76.38
B


ATOM
1527
N1
ADE
B
219
21.871
23.542
3.959
1.00
76.67
B


ATOM
1528
C6
ADE
B
219
20.643
23.237
3.491
1.00
76.42
B


ATOM
1529
N6
ADE
B
219
19.839
24.234
3.103
1.00
77.15
B


ATOM
1530
C5
ADE
B
219
20.288
21.882
3.439
1.00
75.79
B


ATOM
1531
N7
ADE
B
219
19.135
21.235
3.022
1.00
75.71
B


ATOM
1532
C8
ADE
B
219
19.408
19.965
3.201
1.00
76.30
B


ATOM
1533
C2′
ADE
B
219
21.328
18.143
5.503
1.00
70.95
B


ATOM
1534
O2′
ADE
B
219
22.542
17.496
5.822
1.00
71.79
B


ATOM
1535
C3′
ADE
B
219
20.135
17.209
5.625
1.00
69.63
B


ATOM
1536
O3′
ADE
B
219
20.258
16.343
6.735
1.00
69.76
B


ATOM
1537
P
URI
B
220
19.453
16.666
8.079
1.00
70.71
B


ATOM
1538
O1P
URI
B
220
18.008
16.748
7.750
1.00
69.47
B


ATOM
1539
O2P
URI
B
220
19.918
15.701
9.099
1.00
70.74
B


ATOM
1540
O5′
URI
B
220
19.976
18.115
8.483
1.00
70.85
B


ATOM
1541
C5′
URI
B
220
21.273
18.291
9.050
1.00
71.86
B


ATOM
1542
C4′
URI
B
220
21.498
19.742
9.400
1.00
73.26
B


ATOM
1543
O4′
URI
B
220
21.577
20.510
8.172
1.00
73.76
B


ATOM
1544
C1′
URI
B
220
20.934
21.761
8.345
1.00
74.30
B


ATOM
1545
N1
URI
B
220
19.789
21.822
7.429
1.00
73.87
B


ATOM
1546
C6
URI
B
220
19.072
20.700
7.101
1.00
73.82
B


ATOM
1547
C2
URI
B
220
19.456
23.051
6.921
1.00
74.08
B


ATOM
1548
O2
URI
B
220
20.068
24.066
7.200
1.00
74.27
B


ATOM
1549
N3
URI
B
220
18.372
23.056
6.083
1.00
74.62
B


ATOM
1550
C4
URI
B
220
17.597
21.978
5.723
1.00
74.41
B


ATOM
1551
O4
URI
B
220
16.595
22.158
5.027
1.00
74.63
B


ATOM
1552
C5
URI
B
220
18.014
20.734
6.290
1.00
74.26
B


ATOM
1553
C2′
URI
B
220
20.503
21.863
9.808
1.00
74.65
B


ATOM
1554
O2′
URI
B
220
21.466
22.564
10.564
1.00
74.96
B


ATOM
1555
C3′
URI
B
220
20.375
20.394
10.192
1.00
74.77
B


ATOM
1556
O3′
URI
B
220
20.548
20.202
11.590
1.00
75.28
B


ATOM
1557
P
URI
B
221
19.260
20.164
12.547
1.00
76.37
B


ATOM
1558
O1P
URI
B
221
19.697
19.545
13.817
1.00
76.58
B


ATOM
1559
O2P
URI
B
221
18.112
19.576
11.804
1.00
76.32
B


ATOM
1560
O5′
URI
B
221
18.939
21.702
12.808
1.00
75.73
B


ATOM
1561
C5′
URI
B
221
19.977
22.607
13.156
1.00
75.43
B


ATOM
1562
C4′
URI
B
221
19.425
24.000
13.335
1.00
76.00
B


ATOM
1563
O4′
URI
B
221
19.468
24.701
12.064
1.00
75.92
B


ATOM
1564
C1′
URI
B
221
18.376
25.602
11.983
1.00
77.20
B


ATOM
1565
N1
URI
B
221
17.537
25.194
10.850
1.00
78.74
B


ATOM
1566
C6
URI
B
221
17.445
23.872
10.481
1.00
80.55
B


ATOM
1567
C2
URI
B
221
16.831
26.171
10.178
1.00
78.55
B


ATOM
1568
O2
URI
B
221
16.907
27.352
10.459
1.00
78.21
B


ATOM
1569
N3
URI
B
221
16.032
25.709
9.161
1.00
78.98
B


ATOM
1570
C4
URI
B
221
15.880
24.395
8.754
1.00
79.57
B


ATOM
1571
O4
URI
B
221
15.102
24.127
7.839
1.00
79.33
B


ATOM
1572
C5
URI
B
221
16.661
23.451
9.486
1.00
80.16
B


ATOM
1573
C2′
URI
B
221
17.616
25.510
13.311
1.00
76.85
B


ATOM
1574
O2′
URI
B
221
18.051
26.492
14.233
1.00
76.78
B


ATOM
1575
C3′
URI
B
221
17.972
24.104
13.770
1.00
76.38
B


ATOM
1576
O3′
URI
B
221
17.846
24.017
15.185
1.00
76.55
B


ATOM
1577
P
GUA
B
222
16.386
23.883
15.847
1.00
76.67
B


ATOM
1578
O1P
GUA
B
222
15.693
22.756
15.175
1.00
74.54
B


ATOM
1579
O2P
GUA
B
222
16.530
23.877
17.321
1.00
76.48
B


ATOM
1580
O5′
GUA
B
222
15.650
25.238
15.450
1.00
76.37
B


ATOM
1581
C5′
GUA
B
222
15.906
26.441
16.164
1.00
75.09
B


ATOM
1582
C4′
GUA
B
222
14.740
27.398
16.029
1.00
75.06
B


ATOM
1583
O4′
GUA
B
222
14.095
27.260
14.733
1.00
74.11
B


ATOM
1584
C1′
GUA
B
222
12.733
27.669
14.841
1.00
73.06
B


ATOM
1585
N9
GUA
B
222
11.874
26.564
14.434
1.00
71.60
B


ATOM
1586
C4
GUA
B
222
10.550
26.653
14.082
1.00
70.04
B


ATOM
1587
N3
GUA
B
222
9.820
27.782
14.028
1.00
68.98
B


ATOM
1588
C2
GUA
B
222
8.580
27.545
13.656
1.00
68.24
B


ATOM
1589
N2
GUA
B
222
7.710
28.556
13.555
1.00
69.22
B


ATOM
1590
N1
GUA
B
222
8.099
26.302
13.355
1.00
67.50
B


ATOM
1591
C6
GUA
B
222
8.833
25.129
13.400
1.00
67.30
B


ATOM
1592
O6
GUA
B
222
8.303
24.061
13.100
1.00
66.59
B


ATOM
1593
C5
GUA
B
222
10.160
25.365
13.804
1.00
69.14
B


ATOM
1594
N7
GUA
B
222
11.216
24.482
13.974
1.00
70.34
B


ATOM
1595
C8
GUA
B
222
12.211
25.238
14.346
1.00
70.99
B


ATOM
1596
C2′
GUA
B
222
12.499
28.021
16.306
1.00
74.21
B


ATOM
1597
O2′
GUA
B
222
12.671
29.412
16.469
1.00
74.59
B


ATOM
1598
C3′
GUA
B
222
13.578
27.179
16.975
1.00
75.13
B


ATOM
1599
O3′
GUA
B
222
13.873
27.625
18.287
1.00
76.50
B


ATOM
1600
P
CYT
B
223
13.005
27.071
19.515
1.00
78.32
B


ATOM
1601
O1P
CYT
B
223
12.973
25.587
19.411
1.00
77.82
B


ATOM
1602
O2P
CYT
B
223
13.492
27.714
20.761
1.00
77.45
B


ATOM
1603
O5′
CYT
B
223
11.543
27.615
19.213
1.00
76.19
B


ATOM
1604
C5′
CYT
B
223
11.321
29.006
19.055
1.00
75.87
B


ATOM
1605
C4′
CYT
B
223
9.864
29.272
18.814
1.00
74.71
B


ATOM
1606
O4′
CYT
B
223
9.508
28.903
17.458
1.00
75.35
B


ATOM
1607
C1′
CYT
B
223
8.192
28.376
17.444
1.00
73.35
B


ATOM
1608
N1
CYT
B
223
8.273
26.965
17.054
1.00
71.88
B


ATOM
1609
C6
CYT
B
223
9.418
26.242
17.238
1.00
70.84
B


ATOM
1610
C2
CYT
B
223
7.148
26.371
16.507
1.00
71.26
B


ATOM
1611
O2
CYT
B
223
6.145
27.071
16.321
1.00
71.83
B


ATOM
1612
N3
CYT
B
223
7.178
25.056
16.189
1.00
70.51
B


ATOM
1613
C4
CYT
B
223
8.292
24.350
16.390
1.00
70.31
B


ATOM
1614
N4
CYT
B
223
8.276
23.054
16.075
1.00
69.46
B


ATOM
1615
C5
CYT
B
223
9.471
24.943
16.924
1.00
70.47
B


ATOM
1616
C2′
CYT
B
223
7.638
28.551
18.859
1.00
72.90
B


ATOM
1617
O2′
CYT
B
223
7.013
29.811
18.962
1.00
71.35
B


ATOM
1618
C3′
CYT
B
223
8.919
28.459
19.674
1.00
73.63
B


ATOM
1619
O3′
CYT
B
223
8.828
29.085
20.942
1.00
73.42
B


ATOM
1620
P
ADE
B
224
7.950
28.421
22.107
1.00
72.93
B


ATOM
1621
O1P
ADE
B
224
8.161
29.304
23.283
1.00
72.84
B


ATOM
1622
O2P
ADE
B
224
8.213
26.961
22.222
1.00
71.45
B


ATOM
1623
O5′
ADE
B
224
6.463
28.609
21.589
1.00
71.28
B


ATOM
1624
C5′
ADE
B
224
5.421
27.807
22.102
1.00
70.45
B


ATOM
1625
C4′
ADE
B
224
4.399
27.548
21.033
1.00
69.38
B


ATOM
1626
O4′
ADE
B
224
5.056
27.306
19.759
1.00
69.07
B


ATOM
1627
C1′
ADE
B
224
4.415
26.231
19.092
1.00
68.77
B


ATOM
1628
N9
ADE
B
224
5.324
25.083
19.084
1.00
68.39
B


ATOM
1629
C4
ADE
B
224
4.975
23.793
18.763
1.00
67.71
B


ATOM
1630
N3
ADE
B
224
3.757
23.343
18.403
1.00
66.60
B


ATOM
1631
C2
ADE
B
224
3.797
22.038
18.169
1.00
66.24
B


ATOM
1632
N1
ADE
B
224
4.837
21.193
18.249
1.00
65.92
B


ATOM
1633
C6
ADE
B
224
6.042
21.680
18.615
1.00
65.51
B


ATOM
1634
N6
ADE
B
224
7.072
20.842
18.698
1.00
66.29
B


ATOM
1635
C5
ADE
B
224
6.135
23.047
18.887
1.00
66.23
B


ATOM
1636
N7
ADE
B
224
7.198
23.848
19.278
1.00
65.86
B


ATOM
1637
C8
ADE
B
224
6.667
25.043
19.383
1.00
67.75
B


ATOM
1638
C2′
ADE
B
224
3.134
25.942
19.871
1.00
69.52
B


ATOM
1639
O2′
ADE
B
224
2.086
26.764
19.407
1.00
71.88
B


ATOM
1640
C3′
ADE
B
224
3.571
26.305
21.278
1.00
69.39
B


ATOM
1641
O3′
ADE
B
224
2.483
26.645
22.114
1.00
68.87
B


ATOM
1642
P
GUA
B
225
2.437
26.080
23.611
1.00
67.84
B


ATOM
1643
O1P
GUA
B
225
3.847
25.967
24.070
1.00
65.04
B


ATOM
1644
O2P
GUA
B
225
1.460
26.894
24.385
1.00
66.71
B


ATOM
1645
O5′
GUA
B
225
1.822
24.626
23.424
1.00
66.33
B


ATOM
1646
C5′
GUA
B
225
0.601
24.455
22.717
1.00
65.13
B


ATOM
1647
C4′
GUA
B
225
0.505
23.057
22.173
1.00
63.34
B


ATOM
1648
O4′
GUA
B
225
1.584
22.835
21.228
1.00
63.06
B


ATOM
1649
C1′
GUA
B
225
1.949
21.463
21.246
1.00
62.23
B


ATOM
1650
N9
GUA
B
225
3.374
21.380
21.544
1.00
61.82
B


ATOM
1651
C4
GUA
B
225
4.182
20.265
21.447
1.00
61.57
B


ATOM
1652
N3
GUA
B
225
3.794
19.022
21.072
1.00
60.26
B


ATOM
1653
C2
GUA
B
225
4.812
18.170
21.062
1.00
60.24
B


ATOM
1654
N2
GUA
B
225
4.624
16.893
20.707
1.00
59.34
B


ATOM
1655
N1
GUA
B
225
6.097
18.509
21.402
1.00
61.02
B


ATOM
1656
C6
GUA
B
225
6.512
19.773
21.806
1.00
61.71
B


ATOM
1657
O6
GUA
B
225
7.694
19.962
22.120
1.00
65.20
B


ATOM
1658
C5
GUA
B
225
5.441
20.699
21.806
1.00
61.15
B


ATOM
1659
N7
GUA
B
225
5.423
22.045
22.135
1.00
61.04
B


ATOM
1660
C8
GUA
B
225
4.181
22.406
21.967
1.00
61.37
B


ATOM
1661
C2′
GUA
B
225
1.058
20.787
22.291
1.00
62.66
B


ATOM
1662
O2′
GUA
B
225
−0.092
20.267
21.662
1.00
63.62
B


ATOM
1663
C3′
GUA
B
225
0.733
21.964
23.192
1.00
62.60
B


ATOM
1664
O3′
GUA
B
225
−0.413
21.752
23.998
1.00
61.67
B


ATOM
1665
P
URI
B
226
−0.221
21.412
25.560
1.00
64.35
B


ATOM
1666
O1P
URI
B
226
0.847
22.297
26.105
1.00
62.52
B


ATOM
1667
O2P
URI
B
226
−1.550
21.373
26.227
1.00
62.13
B


ATOM
1668
O5′
URI
B
226
0.377
19.940
25.549
1.00
61.29
B


ATOM
1669
C5′
URI
B
226
−0.341
18.874
24.963
1.00
59.62
B


ATOM
1670
C4′
URI
B
226
0.582
17.718
24.726
1.00
59.37
B


ATOM
1671
O4′
URI
B
226
1.675
18.167
23.892
1.00
60.60
B


ATOM
1672
C1′
URI
B
226
2.834
17.419
24.200
1.00
59.54
B


ATOM
1673
N1
URI
B
226
3.915
18.354
24.521
1.00
59.11
B


ATOM
1674
C6
URI
B
226
3.694
19.697
24.700
1.00
59.62
B


ATOM
1675
C2
URI
B
226
5.168
17.823
24.616
1.00
59.24
B


ATOM
1676
O2
URI
B
226
5.371
16.632
24.511
1.00
59.59
B


ATOM
1677
N3
URI
B
226
6.175
18.728
24.844
1.00
60.64
B


ATOM
1678
C4
URI
B
226
6.044
20.091
25.000
1.00
60.95
B


ATOM
1679
O4
URI
B
226
7.060
20.794
25.038
1.00
61.49
B


ATOM
1680
C5
URI
B
226
4.689
20.565
24.935
1.00
61.22
B


ATOM
1681
C2′
URI
B
226
2.488
16.492
25.363
1.00
59.58
B


ATOM
1682
O2′
URI
B
226
2.192
15.200
24.876
1.00
58.65
B


ATOM
1683
C3′
URI
B
226
1.290
17.209
25.964
1.00
57.85
B


ATOM
1684
O3′
URI
B
226
0.465
16.313
26.675
1.00
56.69
B


ATOM
1685
P
CYT
B
227
0.658
16.159
28.251
1.00
57.65
B


ATOM
1686
O1P
CYT
B
227
0.953
17.503
28.816
1.00
56.13
B


ATOM
1687
O2P
CYT
B
227
−0.457
15.353
28.811
1.00
56.22
B


ATOM
1688
O5′
CYT
B
227
1.971
15.279
28.349
1.00
57.28
B


ATOM
1689
C5′
CYT
B
227
1.877
13.870
28.337
1.00
55.41
B


ATOM
1690
C4′
CYT
B
227
3.244
13.264
28.279
1.00
53.68
B


ATOM
1691
O4′
CYT
B
227
4.029
13.948
27.268
1.00
52.41
B


ATOM
1692
C1′
CYT
B
227
5.398
13.840
27.599
1.00
50.88
B


ATOM
1693
N1
CYT
B
227
5.955
15.185
27.709
1.00
50.59
B


ATOM
1694
C6
CYT
B
227
5.158
16.293
27.758
1.00
51.57
B


ATOM
1695
C2
CYT
B
227
7.318
15.307
27.771
1.00
51.15
B


ATOM
1696
O2
CYT
B
227
7.992
14.281
27.735
1.00
54.89
B


ATOM
1697
N3
CYT
B
227
7.881
16.526
27.873
1.00
50.46
B


ATOM
1698
C4
CYT
B
227
7.113
17.605
27.915
1.00
49.35
B


ATOM
1699
N4
CYT
B
227
7.714
18.782
28.001
1.00
48.12
B


ATOM
1700
C5
CYT
B
227
5.692
17.518
27.865
1.00
51.06
B


ATOM
1701
C2′
CYT
B
227
5.469
13.096
28.934
1.00
52.88
B


ATOM
1702
O2′
CYT
B
227
5.667
11.713
28.694
1.00
50.84
B


ATOM
1703
C3′
CYT
B
227
4.101
13.428
29.516
1.00
52.37
B


ATOM
1704
O3′
CYT
B
227
3.707
12.532
30.547
1.00
53.39
B


ATOM
1705
P
GUA
B
228
2.977
13.107
31.856
1.00
58.66
B


ATOM
1706
O1P
GUA
B
228
2.593
14.499
31.527
1.00
58.56
B


ATOM
1707
O2P
GUA
B
228
1.946
12.152
32.350
1.00
57.37
B


ATOM
1708
O5′
GUA
B
228
4.121
13.179
32.958
1.00
57.02
B


ATOM
1709
C5′
GUA
B
228
4.727
11.996
33.453
1.00
55.04
B


ATOM
1710
C4′
GUA
B
228
6.155
11.907
32.973
1.00
53.26
B


ATOM
1711
O4′
GUA
B
228
6.327
12.734
31.799
1.00
53.28
B


ATOM
1712
C1′
GUA
B
228
7.670
13.187
31.733
1.00
53.19
B


ATOM
1713
N9
GUA
B
228
7.665
14.646
31.617
1.00
53.81
B


ATOM
1714
C4
GUA
B
228
8.769
15.465
31.480
1.00
53.76
B


ATOM
1715
N3
GUA
B
228
10.056
15.062
31.408
1.00
53.36
B


ATOM
1716
C2
GUA
B
228
10.888
16.083
31.303
1.00
51.84
B


ATOM
1717
N2
GUA
B
228
12.197
15.867
31.210
1.00
48.75
B


ATOM
1718
N1
GUA
B
228
10.494
17.391
31.283
1.00
52.85
B


ATOM
1719
C6
GUA
B
228
9.181
17.832
31.371
1.00
53.04
B


ATOM
1720
O6
GUA
B
228
8.941
19.044
31.379
1.00
54.64
B


ATOM
1721
C5
GUA
B
228
8.270
16.748
31.461
1.00
53.49
B


ATOM
1722
N7
GUA
B
228
6.884
16.741
31.554
1.00
54.44
B


ATOM
1723
C8
GUA
B
228
6.571
15.475
31.643
1.00
53.87
B


ATOM
1724
C2′
GUA
B
228
8.376
12.685
32.995
1.00
51.78
B


ATOM
1725
O2′
GUA
B
228
9.059
11.488
32.715
1.00
50.97
B


ATOM
1726
C3′
GUA
B
228
7.203
12.443
33.928
1.00
51.60
B


ATOM
1727
O3′
GUA
B
228
7.537
11.436
34.862
1.00
49.14
B


ATOM
1728
P
CYT
B
229
7.620
11.796
36.417
1.00
50.14
B


ATOM
1729
O1P
CYT
B
229
6.710
12.935
36.705
1.00
47.87
B


ATOM
1730
O2P
CYT
B
229
7.440
10.515
37.145
1.00
46.49
B


ATOM
1731
O5′
CYT
B
229
9.129
12.286
36.571
1.00
49.59
B


ATOM
1732
C5′
CYT
B
229
10.191
11.415
36.193
1.00
49.36
B


ATOM
1733
C4′
CYT
B
229
11.493
12.164
36.075
1.00
48.50
B


ATOM
1734
O4′
CYT
B
229
11.513
12.942
34.849
1.00
49.47
B


ATOM
1735
C1′
CYT
B
229
12.233
14.144
35.061
1.00
48.55
B


ATOM
1736
N1
CYT
B
229
11.286
15.263
34.997
1.00
49.12
B


ATOM
1737
C6
CYT
B
229
9.957
15.064
35.225
1.00
49.46
B


ATOM
1738
C2
CYT
B
229
11.767
16.539
34.704
1.00
48.95
B


ATOM
1739
O2
CYT
B
229
12.978
16.692
34.508
1.00
49.05
B


ATOM
1740
N3
CYT
B
229
10.904
17.571
34.639
1.00
48.91
B


ATOM
1741
C4
CYT
B
229
9.607
17.366
34.849
1.00
49.64
B


ATOM
1742
N4
CYT
B
229
8.782
18.413
34.749
1.00
50.11
B


ATOM
1743
C5
CYT
B
229
9.091
16.078
35.164
1.00
50.66
B


ATOM
1744
C2′
CYT
B
229
12.851
14.011
36.449
1.00
48.95
B


ATOM
1745
O2′
CYT
B
229
14.059
13.294
36.360
1.00
50.48
B


ATOM
1746
C3′
CYT
B
229
11.785
13.190
37.145
1.00
48.46
B


ATOM
1747
O3′
CYT
B
229
12.322
12.584
38.306
1.00
48.74
B


ATOM
1748
P
GUA
B
230
12.075
13.265
39.739
1.00
49.49
B


ATOM
1749
O1P
GUA
B
230
10.667
13.756
39.761
1.00
50.64
B


ATOM
1750
O2P
GUA
B
230
12.531
12.304
40.772
1.00
50.34
B


ATOM
1751
O5′
GUA
B
230
13.046
14.531
39.748
1.00
49.69
B


ATOM
1752
C5′
GUA
B
230
14.427
14.394
39.426
1.00
49.57
B


ATOM
1753
C4′
GUA
B
230
15.145
15.706
39.621
1.00
51.51
B


ATOM
1754
O4′
GUA
B
230
14.571
16.710
38.741
1.00
50.73
B


ATOM
1755
C1′
GUA
B
230
14.206
17.841
39.496
1.00
51.22
B


ATOM
1756
N9
GUA
B
230
12.995
18.399
38.911
1.00
52.23
B


ATOM
1757
C4
GUA
B
230
12.803
19.701
38.511
1.00
52.74
B


ATOM
1758
N3
GUA
B
230
13.715
20.692
38.570
1.00
52.74
B


ATOM
1759
C2
GUA
B
230
13.224
21.838
38.141
1.00
52.25
B


ATOM
1760
N2
GUA
B
230
13.984
22.930
38.134
1.00
52.25
B


ATOM
1761
N1
GUA
B
230
11.947
22.000
37.689
1.00
54.49
B


ATOM
1762
C6
GUA
B
230
10.988
21.001
37.622
1.00
53.15
B


ATOM
1763
O6
GUA
B
230
9.858
21.269
37.217
1.00
54.25
B


ATOM
1764
C5
GUA
B
230
11.498
19.759
38.071
1.00
53.53
B


ATOM
1765
N7
GUA
B
230
10.889
18.515
38.169
1.00
54.01
B


ATOM
1766
C8
GUA
B
230
11.816
17.740
38.669
1.00
53.29
B


ATOM
1767
C2′
GUA
B
230
13.988
17.331
40.921
1.00
52.69
B


ATOM
1768
O2′
GUA
B
230
14.157
18.372
41.864
1.00
50.69
B


ATOM
1769
C3′
GUA
B
230
15.087
16.285
41.031
1.00
52.14
B


ATOM
1770
O3′
GUA
B
230
16.296
16.965
41.337
1.00
54.91
B


ATOM
1771
P
URI
B
231
17.564
16.146
41.868
1.00
55.02
B


ATOM
1772
O1P
URI
B
231
18.266
17.052
42.816
1.00
52.02
B


ATOM
1773
O2P
URI
B
231
17.113
14.812
42.330
1.00
53.85
B


ATOM
1774
O5′
URI
B
231
18.437
15.930
40.553
1.00
55.40
B


ATOM
1775
C5′
URI
B
231
18.892
17.033
39.779
1.00
58.23
B


ATOM
1776
C4′
URI
B
231
20.114
16.640
38.978
1.00
62.66
B


ATOM
1777
O4′
URI
B
231
21.297
16.816
39.804
1.00
62.63
B


ATOM
1778
C1′
URI
B
231
21.910
15.562
40.032
1.00
62.26
B


ATOM
1779
N1
URI
B
231
22.357
15.523
41.428
1.00
61.38
B


ATOM
1780
C6
URI
B
231
21.550
15.957
42.452
1.00
60.83
B


ATOM
1781
C2
URI
B
231
23.620
15.042
41.669
1.00
61.54
B


ATOM
1782
O2
URI
B
231
24.344
14.639
40.770
1.00
62.29
B


ATOM
1783
N3
URI
B
231
24.004
15.046
42.994
1.00
61.42
B


ATOM
1784
C4
URI
B
231
23.245
15.466
44.082
1.00
62.36
B


ATOM
1785
O4
URI
B
231
23.705
15.380
45.230
1.00
61.50
B


ATOM
1786
C5
URI
B
231
21.938
15.944
43.737
1.00
62.52
B


ATOM
1787
C2′
URI
B
231
20.865
14.510
39.681
1.00
63.79
B


ATOM
1788
O2′
URI
B
231
21.499
13.302
39.319
1.00
63.87
B


ATOM
1789
C3′
URI
B
231
20.174
15.189
38.510
1.00
65.22
B


ATOM
1790
O3′
URI
B
231
21.013
15.093
37.361
1.00
70.38
B


ATOM
1791
P
GUA
B
232
20.580
14.153
36.129
1.00
74.73
B


ATOM
1792
O1P
GUA
B
232
21.816
13.664
35.458
1.00
74.60
B


ATOM
1793
O2P
GUA
B
232
19.583
13.168
36.633
1.00
74.73
B


ATOM
1794
O5′
GUA
B
232
19.843
15.167
35.143
1.00
74.06
B


ATOM
1795
C5′
GUA
B
232
20.363
15.429
33.850
1.00
72.97
B


ATOM
1796
C4′
GUA
B
232
20.387
16.911
33.587
1.00
72.59
B


ATOM
1797
O4′
GUA
B
232
20.097
17.653
34.800
1.00
71.37
B


ATOM
1798
C1′
GUA
B
232
20.742
18.918
34.738
1.00
72.27
B


ATOM
1799
N9
GUA
B
232
21.585
19.057
35.920
1.00
74.07
B


ATOM
1800
C4
GUA
B
232
21.247
19.648
37.115
1.00
74.59
B


ATOM
1801
N3
GUA
B
232
20.058
20.216
37.415
1.00
74.20
B


ATOM
1802
C2
GUA
B
232
20.036
20.686
38.651
1.00
73.75
B


ATOM
1803
N2
GUA
B
232
18.936
21.287
39.118
1.00
74.62
B


ATOM
1804
N1
GUA
B
232
21.093
20.604
39.522
1.00
74.18
B


ATOM
1805
C6
GUA
B
232
22.326
20.027
39.236
1.00
73.75
B


ATOM
1806
O6
GUA
B
232
23.213
20.004
40.097
1.00
72.28
B


ATOM
1807
C5
GUA
B
232
22.366
19.522
37.914
1.00
74.36
B


ATOM
1808
N7
GUA
B
232
23.388
18.877
37.231
1.00
74.62
B


ATOM
1809
C8
GUA
B
232
22.880
18.621
36.057
1.00
74.00
B


ATOM
1810
C2′
GUA
B
232
21.583
18.938
33.459
1.00
71.92
B


ATOM
1811
O2′
GUA
B
232
20.918
19.654
32.445
1.00
69.55
B


ATOM
1812
C3′
GUA
B
232
21.741
17.448
33.177
1.00
72.97
B


ATOM
1813
O3′
GUA
B
232
21.999
17.156
31.808
1.00
75.27
B


ATOM
1814
P
ADE
B
233
23.030
15.978
31.426
1.00
76.87
B


ATOM
1815
O1P
ADE
B
233
23.450
16.242
30.030
1.00
74.87
B


ATOM
1816
O2P
ADE
B
233
24.054
15.871
32.501
1.00
75.85
B


ATOM
1817
O5′
ADE
B
233
22.153
14.648
31.448
1.00
76.78
B


ATOM
1818
C5′
ADE
B
233
22.695
13.427
31.937
1.00
79.21
B


ATOM
1819
C4′
ADE
B
233
21.916
12.252
31.394
1.00
81.95
B


ATOM
1820
O4′
ADE
B
233
20.571
12.264
31.942
1.00
82.72
B


ATOM
1821
C1′
ADE
B
233
19.624
12.348
30.893
1.00
83.95
B


ATOM
1822
N9
ADE
B
233
18.556
13.252
31.322
1.00
84.20
B


ATOM
1823
C4
ADE
B
233
17.675
13.035
32.354
1.00
84.30
B


ATOM
1824
N3
ADE
B
233
17.600
11.956
33.152
1.00
84.48
B


ATOM
1825
C2
ADE
B
233
16.645
12.111
34.060
1.00
82.93
B


ATOM
1826
N1
ADE
B
233
15.824
13.142
34.252
1.00
82.81
B


ATOM
1827
C6
ADE
B
233
15.928
14.213
33.439
1.00
83.48
B


ATOM
1828
N6
ADE
B
233
15.124
15.256
33.649
1.00
83.96
B


ATOM
1829
C5
ADE
B
233
16.891
14.169
32.424
1.00
83.94
B


ATOM
1830
N7
ADE
B
233
17.246
15.074
31.434
1.00
84.28
B


ATOM
1831
C8
ADE
B
233
18.234
14.484
30.809
1.00
84.16
B


ATOM
1832
C2′
ADE
B
233
20.386
12.855
29.669
1.00
84.22
B


ATOM
1833
O2′
ADE
B
233
19.747
12.438
28.476
1.00
85.53
B


ATOM
1834
C3′
ADE
B
233
21.752
12.215
29.881
1.00
83.72
B


ATOM
1835
O3′
ADE
B
233
21.764
10.871
29.415
1.00
84.83
B


ATOM
1836
P
URI
B
234
22.914
10.397
28.401
1.00
86.34
B


ATOM
1837
O1P
URI
B
234
23.017
11.423
27.324
1.00
84.26
B


ATOM
1838
O2P
URI
B
234
24.114
10.047
29.213
1.00
85.14
B


ATOM
1839
O5′
URI
B
234
22.334
9.072
27.744
1.00
85.10
B


ATOM
1840
C5′
URI
B
234
21.216
9.128
26.873
1.00
86.55
B


ATOM
1841
C4′
URI
B
234
20.265
8.015
27.203
1.00
87.02
B


ATOM
1842
O4′
URI
B
234
20.923
6.767
26.879
1.00
88.52
B


ATOM
1843
C1′
URI
B
234
21.153
6.018
28.050
1.00
89.34
B


ATOM
1844
N1
URI
B
234
22.532
5.514
28.019
1.00
90.55
B


ATOM
1845
C6
URI
B
234
23.609
6.374
28.072
1.00
91.32
B


ATOM
1846
C2
URI
B
234
22.717
4.140
27.963
1.00
91.37
B


ATOM
1847
O2
URI
B
234
21.793
3.343
27.862
1.00
91.49
B


ATOM
1848
N3
URI
B
234
24.027
3.732
28.025
1.00
91.61
B


ATOM
1849
C4
URI
B
234
25.146
4.536
28.125
1.00
91.41
B


ATOM
1850
O4
URI
B
234
26.232
4.014
28.352
1.00
89.82
B


ATOM
1851
C5
URI
B
234
24.876
5.944
28.124
1.00
91.21
B


ATOM
1852
C2′
URI
B
234
20.862
6.909
29.257
1.00
89.26
B


ATOM
1853
O2′
URI
B
234
20.314
6.159
30.326
1.00
90.70
B


ATOM
1854
C3′
URI
B
234
19.908
7.950
28.677
1.00
87.78
B


ATOM
1855
O3′
URI
B
234
18.518
7.722
28.903
1.00
86.95
B


ATOM
1856
P
ADE
B
235
17.817
6.342
28.445
1.00
85.44
B


ATOM
1857
O1P
ADE
B
235
16.896
6.684
27.332
1.00
85.69
B


ATOM
1858
O2P
ADE
B
235
18.801
5.257
28.260
1.00
85.00
B


ATOM
1859
O5′
ADE
B
235
16.940
5.955
29.723
1.00
83.93
B


ATOM
1860
C5′
ADE
B
235
17.569
5.536
30.939
1.00
78.89
B


ATOM
1861
C4′
ADE
B
235
17.097
6.374
32.112
1.00
75.23
B


ATOM
1862
O4′
ADE
B
235
17.610
7.722
32.010
1.00
73.86
B


ATOM
1863
C1′
ADE
B
235
16.680
8.625
32.585
1.00
72.80
B


ATOM
1864
N9
ADE
B
235
16.308
9.611
31.570
1.00
72.57
B


ATOM
1865
C4
ADE
B
235
15.277
10.511
31.650
1.00
70.87
B


ATOM
1866
N3
ADE
B
235
14.391
10.645
32.650
1.00
70.49
B


ATOM
1867
C2
ADE
B
235
13.561
11.645
32.402
1.00
69.46
B


ATOM
1868
N1
ADE
B
235
13.518
12.466
31.347
1.00
69.42
B


ATOM
1869
C6
ADE
B
235
14.423
12.301
30.360
1.00
70.02
B


ATOM
1870
N6
ADE
B
235
14.388
13.125
29.309
1.00
69.14
B


ATOM
1871
C5
ADE
B
235
15.351
11.271
30.500
1.00
70.73
B


ATOM
1872
N7
ADE
B
235
16.388
10.837
29.687
1.00
72.05
B


ATOM
1873
C8
ADE
B
235
16.920
9.851
30.362
1.00
73.00
B


ATOM
1874
C2′
ADE
B
235
15.490
7.812
33.092
1.00
72.76
B


ATOM
1875
O2′
ADE
B
235
15.621
7.556
34.472
1.00
72.46
B


ATOM
1876
C3′
ADE
B
235
15.598
6.553
32.249
1.00
73.17
B


ATOM
1877
O3′
ADE
B
235
15.059
5.455
32.949
1.00
72.86
B


ATOM
1878
P
ADE
B
236
13.960
4.541
32.236
1.00
74.90
B


ATOM
1879
O1P
ADE
B
236
13.971
3.192
32.860
1.00
74.45
B


ATOM
1880
O2P
ADE
B
236
14.181
4.677
30.771
1.00
75.24
B


ATOM
1881
O5′
ADE
B
236
12.590
5.251
32.625
1.00
72.45
B


ATOM
1882
C5′
ADE
B
236
12.365
5.699
33.953
1.00
68.86
B


ATOM
1883
C4′
ADE
B
236
11.428
6.869
33.942
1.00
66.95
B


ATOM
1884
O4′
ADE
B
236
12.138
8.049
33.482
1.00
66.04
B


ATOM
1885
C1′
ADE
B
236
11.263
8.863
32.724
1.00
64.52
B


ATOM
1886
N9
ADE
B
236
11.860
9.062
31.406
1.00
63.45
B


ATOM
1887
C4
ADE
B
236
11.669
10.123
30.554
1.00
62.72
B


ATOM
1888
N3
ADE
B
236
10.874
11.186
30.739
1.00
62.70
B


ATOM
1889
C2
ADE
B
236
10.977
12.031
29.717
1.00
62.13
B


ATOM
1890
N1
ADE
B
236
11.730
11.942
28.615
1.00
61.58
B


ATOM
1891
C6
ADE
B
236
12.519
10.860
28.464
1.00
62.43
B


ATOM
1892
N6
ADE
B
236
13.283
10.775
27.376
1.00
62.70
B


ATOM
1893
C5
ADE
B
236
12.494
9.890
29.472
1.00
62.23
B


ATOM
1894
N7
ADE
B
236
13.169
8.695
29.623
1.00
64.68
B


ATOM
1895
C8
ADE
B
236
12.754
8.242
30.781
1.00
64.90
B


ATOM
1896
C2′
ADE
B
236
9.897
8.178
32.720
1.00
65.12
B


ATOM
1897
O2′
ADE
B
236
9.114
8.717
33.769
1.00
64.29
B


ATOM
1898
C3′
ADE
B
236
10.287
6.724
32.959
1.00
66.25
B


ATOM
1899
O3′
ADE
B
236
9.240
5.963
33.556
1.00
67.09
B


ATOM
1900
P
ADE
B
237
8.247
5.102
32.626
1.00
67.47
B


ATOM
1901
O1P
ADE
B
237
7.456
4.214
33.517
1.00
66.06
B


ATOM
1902
O2P
ADE
B
237
9.027
4.525
31.498
1.00
66.74
B


ATOM
1903
O5′
ADE
B
237
7.246
6.171
32.000
1.00
68.64
B


ATOM
1904
C5′
ADE
B
237
6.265
6.819
32.800
1.00
67.38
B


ATOM
1905
C4′
ADE
B
237
5.743
8.032
32.078
1.00
68.03
B


ATOM
1906
O4′
ADE
B
237
6.855
8.925
31.800
1.00
66.67
B


ATOM
1907
C1′
ADE
B
237
6.721
9.468
30.501
1.00
66.14
B


ATOM
1908
N9
ADE
B
237
7.805
8.942
29.684
1.00
63.47
B


ATOM
1909
C4
ADE
B
237
8.462
9.597
28.671
1.00
63.64
B


ATOM
1910
N3
ADE
B
237
8.243
10.847
28.229
1.00
62.98
B


ATOM
1911
C2
ADE
B
237
9.062
11.139
27.214
1.00
63.10
B


ATOM
1912
N1
ADE
B
237
10.009
10.380
26.642
1.00
63.59
B


ATOM
1913
C6
ADE
B
237
10.208
9.129
27.121
1.00
64.56
B


ATOM
1914
N6
ADE
B
237
11.163
8.372
26.566
1.00
65.06
B


ATOM
1915
C5
ADE
B
237
9.395
8.698
28.187
1.00
64.20
B


ATOM
1916
N7
ADE
B
237
9.328
7.501
28.884
1.00
64.99
B


ATOM
1917
C8
ADE
B
237
8.373
7.700
29.759
1.00
63.91
B


ATOM
1918
C2′
ADE
B
237
5.343
9.059
29.982
1.00
67.57
B


ATOM
1919
O2′
ADE
B
237
4.385
10.037
30.334
1.00
67.19
B


ATOM
1920
C3′
ADE
B
237
5.121
7.745
30.719
1.00
68.79
B


ATOM
1921
O3′
ADE
B
237
3.729
7.493
30.869
1.00
71.20
B


ATOM
1922
P
URI
B
238
2.956
6.603
29.778
1.00
74.04
B


ATOM
1923
O1P
URI
B
238
3.699
5.327
29.602
1.00
71.72
B


ATOM
1924
O2P
URI
B
238
1.516
6.576
30.161
1.00
73.12
B


ATOM
1925
O5′
URI
B
238
3.110
7.429
28.426
1.00
74.17
B


ATOM
1926
C5′
URI
B
238
2.071
8.280
27.968
1.00
75.65
B


ATOM
1927
C4′
URI
B
238
2.636
9.338
27.061
1.00
77.79
B


ATOM
1928
O4′
URI
B
238
4.078
9.354
27.176
1.00
78.47
B


ATOM
1929
C1′
URI
B
238
4.599
10.049
26.060
1.00
78.56
B


ATOM
1930
N1
URI
B
238
5.849
9.413
25.623
1.00
77.53
B


ATOM
1931
C6
URI
B
238
6.286
8.214
26.139
1.00
77.02
B


ATOM
1932
C2
URI
B
238
6.582
10.081
24.656
1.00
77.77
B


ATOM
1933
O2
URI
B
238
6.228
11.146
24.181
1.00
77.80
B


ATOM
1934
N3
URI
B
238
7.743
9.461
24.267
1.00
77.99
B


ATOM
1935
C4
URI
B
238
8.242
8.267
24.736
1.00
78.47
B


ATOM
1936
O4
URI
B
238
9.287
7.818
24.248
1.00
79.15
B


ATOM
1937
C5
URI
B
238
7.430
7.632
25.744
1.00
77.52
B


ATOM
1938
C2′
URI
B
238
3.504
10.061
24.988
1.00
79.64
B


ATOM
1939
O2′
URI
B
238
2.993
11.371
24.840
1.00
79.89
B


ATOM
1940
C3′
URI
B
238
2.483
9.088
25.574
1.00
80.64
B


ATOM
1941
O3′
URI
B
238
1.159
9.356
25.120
1.00
83.61
B


ATOM
1942
P
GUA
B
239
0.479
8.386
24.021
1.00
85.15
B


ATOM
1943
O1P
GUA
B
239
0.691
6.974
24.448
1.00
83.25
B


ATOM
1944
O2P
GUA
B
239
−0.903
8.895
23.802
1.00
83.34
B


ATOM
1945
O5′
GUA
B
239
1.346
8.601
22.697
1.00
84.02
B


ATOM
1946
C5′
GUA
B
239
0.951
9.532
21.690
1.00
83.77
B


ATOM
1947
C4′
GUA
B
239
2.166
10.049
20.965
1.00
84.35
B


ATOM
1948
O4′
GUA
B
239
3.330
9.793
21.785
1.00
84.90
B


ATOM
1949
C1′
GUA
B
239
4.285
9.050
21.062
1.00
85.92
B


ATOM
1950
N9
GUA
B
239
4.778
7.985
21.933
1.00
87.13
B


ATOM
1951
C4
GUA
B
239
6.051
7.456
21.941
1.00
87.25
B


ATOM
1952
N3
GUA
B
239
7.077
7.839
21.144
1.00
87.13
B


ATOM
1953
C2
GUA
B
239
8.180
7.132
21.381
1.00
88.19
B


ATOM
1954
N2
GUA
B
239
9.298
7.367
20.668
1.00
88.31
B


ATOM
1955
N1
GUA
B
239
8.272
6.139
22.331
1.00
87.85
B


ATOM
1956
C6
GUA
B
239
7.235
5.731
23.168
1.00
87.29
B


ATOM
1957
O6
GUA
B
239
7.434
4.834
24.001
1.00
86.46
B


ATOM
1958
C5
GUA
B
239
6.033
6.473
22.918
1.00
87.33
B


ATOM
1959
N7
GUA
B
239
4.775
6.391
23.514
1.00
85.92
B


ATOM
1960
C8
GUA
B
239
4.067
7.304
22.903
1.00
86.41
B


ATOM
1961
C2′
GUA
B
239
3.623
8.504
19.797
1.00
85.49
B


ATOM
1962
O2′
GUA
B
239
4.541
8.533
18.723
1.00
84.99
B


ATOM
1963
C3′
GUA
B
239
2.427
9.436
19.596
1.00
85.70
B


ATOM
1964
O3′
GUA
B
239
2.688
10.452
18.636
1.00
87.60
B


ATOM
1965
P
URI
B
240
1.613
10.740
17.474
1.00
88.74
B


ATOM
1966
O1P
URI
B
240
2.153
10.101
16.246
1.00
88.37
B


ATOM
1967
O2P
URI
B
240
0.261
10.358
17.977
1.00
87.64
B


ATOM
1968
O5′
URI
B
240
1.646
12.324
17.273
1.00
87.55
B


ATOM
1969
C5′
URI
B
240
0.919
13.196
18.146
1.00
86.34
B


ATOM
1970
C4′
URI
B
240
0.733
14.555
17.503
1.00
84.94
B


ATOM
1971
O4′
URI
B
240
1.698
15.501
18.037
1.00
82.31
B


ATOM
1972
C1′
URI
B
240
2.250
16.239
16.974
1.00
80.29
B


ATOM
1973
N1
URI
B
240
3.592
16.675
17.364
1.00
77.74
B


ATOM
1974
C6
URI
B
240
4.588
15.774
17.632
1.00
76.62
B


ATOM
1975
C2
URI
B
240
3.815
18.027
17.440
1.00
76.37
B


ATOM
1976
O2
URI
B
240
2.945
18.846
17.226
1.00
75.50
B


ATOM
1977
N3
URI
B
240
5.092
18.384
17.778
1.00
75.78
B


ATOM
1978
C4
URI
B
240
6.145
17.536
18.044
1.00
76.60
B


ATOM
1979
O4
URI
B
240
7.260
18.008
18.270
1.00
76.78
B


ATOM
1980
C5
URI
B
240
5.824
16.146
17.961
1.00
76.69
B


ATOM
1981
C2′
URI
B
240
2.248
15.272
15.797
1.00
82.64
B


ATOM
1982
O2′
URI
B
240
2.361
15.966
14.569
1.00
80.34
B


ATOM
1983
C3′
URI
B
240
0.893
14.605
15.985
1.00
85.43
B


ATOM
1984
O3′
URI
B
240
−0.116
15.438
15.448
1.00
90.12
B


ATOM
1985
P
ADE
B
241
−1.384
14.778
14.732
1.00
93.02
B


ATOM
1986
O1P
ADE
B
241
−1.786
13.583
15.518
1.00
92.58
B


ATOM
1987
O2P
ADE
B
241
−1.052
14.636
13.293
1.00
93.42
B


ATOM
1988
O5′
ADE
B
241
−2.504
15.892
14.882
1.00
94.43
B


ATOM
1989
C5′
ADE
B
241
−2.321
17.164
14.290
1.00
98.62
B


ATOM
1990
C4′
ADE
B
241
−3.623
17.918
14.270
1.00
101.48
B


ATOM
1991
O4′
ADE
B
241
−4.073
18.103
15.643
1.00
104.39
B


ATOM
1992
C1′
ADE
B
241
−4.272
19.481
15.893
1.00
106.54
B


ATOM
1993
N9
ADE
B
241
−3.081
19.989
16.588
1.00
110.86
B


ATOM
1994
C4
ADE
B
241
−3.062
20.942
17.584
1.00
113.37
B


ATOM
1995
N3
ADE
B
241
−4.118
21.576
18.131
1.00
113.96
B


ATOM
1996
C2
ADE
B
241
−3.717
22.446
19.062
1.00
114.64
B


ATOM
1997
N1
ADE
B
241
−2.472
22.739
19.474
1.00
115.18
B


ATOM
1998
C6
ADE
B
241
−1.430
22.093
18.899
1.00
115.28
B


ATOM
1999
N6
ADE
B
241
−0.191
22.407
19.290
1.00
115.87
B


ATOM
2000
C5
ADE
B
241
−1.722
21.128
17.905
1.00
114.44
B


ATOM
2001
N7
ADE
B
241
−0.912
20.294
17.142
1.00
113.34
B


ATOM
2002
C8
ADE
B
241
−1.760
19.639
16.383
1.00
111.93
B


ATOM
2003
C2′
ADE
B
241
−4.500
20.115
14.516
1.00
103.51
B


ATOM
2004
O2′
ADE
B
241
−5.835
19.954
14.076
1.00
102.72
B


ATOM
2005
C3′
ADE
B
241
−3.522
19.316
13.673
1.00
101.05
B


ATOM
2006
O3′
ADE
B
241
−3.853
19.293
12.295
1.00
96.50
B


ATOM
2007
P
GUA
B
242
−2.673
19.182
11.212
1.00
94.24
B


ATOM
2008
O1P
GUA
B
242
−1.663
18.220
11.733
1.00
93.59
B


ATOM
2009
O2P
GUA
B
242
−3.265
18.957
9.870
1.00
95.12
B


ATOM
2010
O5′
GUA
B
242
−2.028
20.638
11.239
1.00
91.69
B


ATOM
2011
C5′
GUA
B
242
−1.297
21.089
12.377
1.00
86.38
B


ATOM
2012
C4′
GUA
B
242
−1.773
22.460
12.811
1.00
81.63
B


ATOM
2013
O4′
GUA
B
242
−1.631
22.555
14.259
1.00
80.15
B


ATOM
2014
C1′
GUA
B
242
−0.711
23.581
14.575
1.00
78.46
B


ATOM
2015
N9
GUA
B
242
0.627
22.994
14.628
1.00
77.67
B


ATOM
2016
C4
GUA
B
242
1.808
23.664
14.862
1.00
77.32
B


ATOM
2017
N3
GUA
B
242
1.936
24.983
15.111
1.00
77.22
B


ATOM
2018
C2
GUA
B
242
3.201
25.332
15.287
1.00
76.26
B


ATOM
2019
N2
GUA
B
242
3.508
26.613
15.545
1.00
76.47
B


ATOM
2020
N1
GUA
B
242
4.255
24.455
15.223
1.00
74.74
B


ATOM
2021
C6
GUA
B
242
4.147
23.096
14.967
1.00
74.67
B


ATOM
2022
O6
GUA
B
242
5.159
22.401
14.926
1.00
73.56
B


ATOM
2023
C5
GUA
B
242
2.795
22.705
14.778
1.00
76.45
B


ATOM
2024
N7
GUA
B
242
2.248
21.457
14.511
1.00
76.62
B


ATOM
2025
C8
GUA
B
242
0.963
21.675
14.437
1.00
77.01
B


ATOM
2026
C2′
GUA
B
242
−0.855
24.575
13.428
1.00
78.62
B


ATOM
2027
O2′
GUA
B
242
−2.017
25.361
13.596
1.00
78.37
B


ATOM
2028
C3′
GUA
B
242
−0.963
23.625
12.241
1.00
78.98
B


ATOM
2029
O3′
GUA
B
242
−1.642
24.238
11.153
1.00
75.65
B


ATOM
2030
P
CYT
B
243
−0.826
25.160
10.121
1.00
73.97
B


ATOM
2031
O1P
CYT
B
243
0.183
24.313
9.425
1.00
71.15
B


ATOM
2032
O2P
CYT
B
243
−1.840
25.894
9.323
1.00
73.99
B


ATOM
2033
O5′
CYT
B
243
−0.071
26.213
11.050
1.00
70.50
B


ATOM
2034
C5′
CYT
B
243
−0.772
27.305
11.636
1.00
67.12
B


ATOM
2035
C4′
CYT
B
243
0.185
28.422
11.972
1.00
65.60
B


ATOM
2036
O4′
CYT
B
243
1.082
27.971
13.020
1.00
65.34
B


ATOM
2037
C1′
CYT
B
243
2.391
28.452
12.778
1.00
62.94
B


ATOM
2038
N1
CYT
B
243
3.265
27.302
12.537
1.00
59.80
B


ATOM
2039
C6
CYT
B
243
2.747
26.090
12.183
1.00
58.51
B


ATOM
2040
C2
CYT
B
243
4.637
27.466
12.679
1.00
58.89
B


ATOM
2041
O2
CYT
B
243
5.072
28.582
12.996
1.00
59.23
B


ATOM
2042
N3
CYT
B
243
5.454
26.410
12.471
1.00
57.13
B


ATOM
2043
C4
CYT
B
243
4.937
25.226
12.144
1.00
56.84
B


ATOM
2044
N4
CYT
B
243
5.771
24.202
11.982
1.00
55.44
B


ATOM
2045
C5
CYT
B
243
3.539
25.036
11.978
1.00
57.53
B


ATOM
2046
C2′
CYT
B
243
2.319
29.390
11.577
1.00
65.14
B


ATOM
2047
O2′
CYT
B
243
2.176
30.720
12.026
1.00
67.49
B


ATOM
2048
C3′
CYT
B
243
1.096
28.858
10.838
1.00
65.51
B


ATOM
2049
O3′
CYT
B
243
0.485
29.886
10.070
1.00
66.47
B


ATOM
2050
P
URI
B
244
1.011
30.180
8.578
1.00
67.88
B


ATOM
2051
O1P
URI
B
244
1.033
28.866
7.888
1.00
68.52
B


ATOM
2052
O2P
URI
B
244
0.249
31.306
7.986
1.00
67.85
B


ATOM
2053
O5′
URI
B
244
2.512
30.663
8.781
1.00
65.45
B


ATOM
2054
C5′
URI
B
244
2.797
32.001
9.150
1.00
64.15
B


ATOM
2055
C4′
URI
B
244
4.286
32.210
9.234
1.00
63.22
B


ATOM
2056
O4′
URI
B
244
4.831
31.277
10.202
1.00
63.70
B


ATOM
2057
C1′
URI
B
244
6.142
30.901
9.812
1.00
64.16
B


ATOM
2058
N1
URI
B
244
6.167
29.445
9.642
1.00
65.13
B


ATOM
2059
C6
URI
B
244
5.021
28.735
9.364
1.00
65.67
B


ATOM
2060
C2
URI
B
244
7.386
28.811
9.762
1.00
65.43
B


ATOM
2061
O2
URI
B
244
8.413
29.407
10.018
1.00
64.90
B


ATOM
2062
N3
URI
B
244
7.357
27.452
9.571
1.00
65.48
B


ATOM
2063
C4
URI
B
244
6.254
26.680
9.283
1.00
66.10
B


ATOM
2064
O4
URI
B
244
6.395
25.473
9.111
1.00
66.74
B


ATOM
2065
C5
URI
B
244
5.022
27.408
9.184
1.00
66.64
B


ATOM
2066
C2′
URI
B
244
6.460
31.632
8.507
1.00
63.91
B


ATOM
2067
O2′
URI
B
244
7.219
32.795
8.762
1.00
63.56
B


ATOM
2068
C3′
URI
B
244
5.058
31.895
7.965
1.00
63.41
B


ATOM
2069
O3′
URI
B
244
5.008
32.959
7.018
1.00
61.34
B


ATOM
2070
P
ADE
B
245
5.762
32.802
5.605
1.00
60.75
B


ATOM
2071
O1P
ADE
B
245
5.276
33.892
4.731
1.00
60.89
B


ATOM
2072
O2P
ADE
B
245
5.658
31.404
5.142
1.00
61.86
B


ATOM
2073
O5′
ADE
B
245
7.284
33.065
5.989
1.00
61.11
B


ATOM
2074
C5′
ADE
B
245
8.355
32.596
5.182
1.00
61.47
B


ATOM
2075
C4′
ADE
B
245
9.642
32.754
5.941
1.00
63.53
B


ATOM
2076
O4′
ADE
B
245
9.548
31.926
7.129
1.00
64.13
B


ATOM
2077
C1′
ADE
B
245
10.835
31.458
7.482
1.00
64.97
B


ATOM
2078
N9
ADE
B
245
10.828
30.001
7.449
1.00
65.17
B


ATOM
2079
C4
ADE
B
245
11.902
29.220
7.783
1.00
66.29
B


ATOM
2080
N3
ADE
B
245
13.100
29.638
8.220
1.00
67.68
B


ATOM
2081
C2
ADE
B
245
13.910
28.603
8.430
1.00
68.28
B


ATOM
2082
N1
ADE
B
245
13.678
27.298
8.259
1.00
67.73
B


ATOM
2083
C6
ADE
B
245
12.463
26.911
7.812
1.00
67.75
B


ATOM
2084
N6
ADE
B
245
12.240
25.606
7.633
1.00
68.72
B


ATOM
2085
C5
ADE
B
245
11.506
27.918
7.561
1.00
66.45
B


ATOM
2086
N7
ADE
B
245
10.191
27.876
7.118
1.00
64.62
B


ATOM
2087
C8
ADE
B
245
9.835
29.136
7.073
1.00
64.32
B


ATOM
2088
C2′
ADE
B
245
11.829
32.017
6.462
1.00
65.52
B


ATOM
2089
O2′
ADE
B
245
12.446
33.165
6.996
1.00
66.76
B


ATOM
2090
C3′
ADE
B
245
10.929
32.305
5.262
1.00
65.07
B


ATOM
2091
O3′
ADE
B
245
11.483
33.339
4.441
1.00
65.59
B


ATOM
2092
P
ADE
B
246
12.649
32.985
3.381
1.00
68.47
B


ATOM
2093
O1P
ADE
B
246
13.185
34.225
2.771
1.00
66.95
B


ATOM
2094
O2P
ADE
B
246
12.164
31.892
2.496
1.00
68.82
B


ATOM
2095
O5′
ADE
B
246
13.818
32.421
4.292
1.00
66.81
B


ATOM
2096
C5′
ADE
B
246
14.494
33.274
5.189
1.00
66.99
B


ATOM
2097
C4′
ADE
B
246
15.813
32.676
5.539
1.00
68.35
B


ATOM
2098
O4′
ADE
B
246
15.615
31.599
6.489
1.00
68.88
B


ATOM
2099
C1′
ADE
B
246
16.508
30.539
6.198
1.00
69.64
B


ATOM
2100
N9
ADE
B
246
15.709
29.386
5.804
1.00
70.53
B


ATOM
2101
C4
ADE
B
246
16.123
28.081
5.802
1.00
70.88
B


ATOM
2102
N3
ADE
B
246
17.327
27.613
6.165
1.00
70.57
B


ATOM
2103
C2
ADE
B
246
17.369
26.292
6.037
1.00
72.08
B


ATOM
2104
N1
ADE
B
246
16.417
25.452
5.616
1.00
73.37
B


ATOM
2105
C6
ADE
B
246
15.219
25.966
5.250
1.00
73.57
B


ATOM
2106
N6
ADE
B
246
14.269
25.139
4.810
1.00
75.70
B


ATOM
2107
C5
ADE
B
246
15.047
27.345
5.348
1.00
71.37
B


ATOM
2108
N7
ADE
B
246
13.969
28.168
5.071
1.00
70.32
B


ATOM
2109
C8
ADE
B
246
14.412
29.368
5.356
1.00
70.83
B


ATOM
2110
C2′
ADE
B
246
17.394
31.015
5.046
1.00
69.74
B


ATOM
2111
O2′
ADE
B
246
18.583
31.628
5.501
1.00
68.86
B


ATOM
2112
C3′
ADE
B
246
16.463
31.993
4.360
1.00
69.45
B


ATOM
2113
O3′
ADE
B
246
17.170
32.940
3.595
1.00
71.42
B


ATOM
2114
P
ADE
B
247
17.302
32.725
2.018
1.00
74.08
B


ATOM
2115
O1P
ADE
B
247
18.211
33.790
1.522
1.00
72.22
B


ATOM
2116
O2P
ADE
B
247
15.927
32.594
1.449
1.00
71.77
B


ATOM
2117
O5′
ADE
B
247
18.077
31.338
1.916
1.00
73.67
B


ATOM
2118
C5′
ADE
B
247
19.313
31.159
2.597
1.00
73.69
B


ATOM
2119
C4′
ADE
B
247
19.699
29.702
2.626
1.00
74.19
B


ATOM
2120
O4′
ADE
B
247
18.730
28.929
3.380
1.00
74.62
B


ATOM
2121
C1′
ADE
B
247
18.643
27.623
2.836
1.00
72.69
B


ATOM
2122
N9
ADE
B
247
17.276
27.432
2.363
1.00
70.73
B


ATOM
2123
C4
ADE
B
247
16.635
26.234
2.170
1.00
69.33
B


ATOM
2124
N3
ADE
B
247
17.137
25.003
2.361
1.00
68.40
B


ATOM
2125
C2
ADE
B
247
16.219
24.079
2.093
1.00
67.91
B


ATOM
2126
N1
ADE
B
247
14.950
24.236
1.690
1.00
67.46
B


ATOM
2127
C6
ADE
B
247
14.478
25.487
1.511
1.00
67.48
B


ATOM
2128
N6
ADE
B
247
13.212
25.643
1.122
1.00
66.56
B


ATOM
2129
C5
ADE
B
247
15.356
26.554
1.753
1.00
68.54
B


ATOM
2130
N7
ADE
B
247
15.199
27.929
1.665
1.00
69.46
B


ATOM
2131
C8
ADE
B
247
16.363
28.402
2.033
1.00
69.88
B


ATOM
2132
C2′
ADE
B
247
19.687
27.545
1.721
1.00
74.57
B


ATOM
2133
O2′
ADE
B
247
20.918
27.104
2.257
1.00
75.29
B


ATOM
2134
C3′
ADE
B
247
19.759
29.000
1.285
1.00
74.55
B


ATOM
2135
O3′
ADE
B
247
21.008
29.282
0.681
1.00
76.68
B


ATOM
2136
P
ADE
B
248
21.113
29.431
−0.913
1.00
78.64
B


ATOM
2137
O1P
ADE
B
248
22.305
30.276
−1.169
1.00
79.02
B


ATOM
2138
O2P
ADE
B
248
19.800
29.822
−1.487
1.00
77.28
B


ATOM
2139
O5′
ADE
B
248
21.459
27.953
−1.387
1.00
80.68
B


ATOM
2140
C5′
ADE
B
248
22.772
27.608
−1.819
1.00
81.26
B


ATOM
2141
C4′
ADE
B
248
23.671
27.365
−0.630
1.00
81.73
B


ATOM
2142
O4′
ADE
B
248
22.939
26.704
0.436
1.00
81.21
B


ATOM
2143
C1′
ADE
B
248
23.827
25.861
1.159
1.00
82.59
B


ATOM
2144
N9
ADE
B
248
23.358
24.484
1.048
1.00
82.41
B


ATOM
2145
C4
ADE
B
248
24.067
23.360
1.389
1.00
82.27
B


ATOM
2146
N3
ADE
B
248
25.319
23.302
1.863
1.00
82.48
B


ATOM
2147
C2
ADE
B
248
25.670
22.041
2.111
1.00
82.79
B


ATOM
2148
N1
ADE
B
248
24.964
20.917
1.954
1.00
83.05
B


ATOM
2149
C6
ADE
B
248
23.706
21.011
1.475
1.00
83.89
B


ATOM
2150
N6
ADE
B
248
22.992
19.890
1.329
1.00
83.78
B


ATOM
2151
C5
ADE
B
248
23.219
22.295
1.164
1.00
83.22
B


ATOM
2152
N7
ADE
B
248
22.003
22.737
0.668
1.00
83.80
B


ATOM
2153
C8
ADE
B
248
22.140
24.039
0.613
1.00
83.41
B


ATOM
2154
C2′
ADE
B
248
25.209
26.036
0.536
1.00
83.45
B


ATOM
2155
O2′
ADE
B
248
25.901
27.065
1.212
1.00
85.26
B


ATOM
2156
C3′
ADE
B
248
24.827
26.415
−0.882
1.00
83.04
B


ATOM
2157
O3′
ADE
B
248
25.890
27.072
−1.550
1.00
84.14
B


ATOM
2158
P
ADE
B
249
26.230
26.683
−3.069
1.00
85.50
B


ATOM
2159
O1P
ADE
B
249
27.452
27.452
−3.406
1.00
84.72
B


ATOM
2160
O2P
ADE
B
249
25.009
26.835
−3.911
1.00
84.17
B


ATOM
2161
O5′
ADE
B
249
26.583
25.132
−2.986
1.00
85.53
B


ATOM
2162
C5′
ADE
B
249
27.427
24.630
−1.956
1.00
87.01
B


ATOM
2163
C4′
ADE
B
249
27.413
23.117
−1.958
1.00
89.05
B


ATOM
2164
O4′
ADE
B
249
26.309
22.642
−1.135
1.00
89.34
B


ATOM
2165
C1′
ADE
B
249
25.689
21.529
−1.761
1.00
87.86
B


ATOM
2166
N9
ADE
B
249
24.405
21.978
−2.284
1.00
86.17
B


ATOM
2167
C4
ADE
B
249
23.339
21.182
−2.615
1.00
85.23
B


ATOM
2168
N3
ADE
B
249
23.254
19.847
−2.499
1.00
84.97
B


ATOM
2169
C2
ADE
B
249
22.076
19.418
−2.932
1.00
84.39
B


ATOM
2170
N1
ADE
B
249
21.049
20.117
−3.427
1.00
83.82
B


ATOM
2171
C6
ADE
B
249
21.166
21.455
−3.527
1.00
83.86
B


ATOM
2172
N6
ADE
B
249
20.139
22.150
−4.016
1.00
83.30
B


ATOM
2173
C5
ADE
B
249
22.371
22.035
−3.105
1.00
84.70
B


ATOM
2174
N7
ADE
B
249
22.815
23.349
−3.073
1.00
85.43
B


ATOM
2175
C8
ADE
B
249
24.020
23.261
−2.572
1.00
85.15
B


ATOM
2176
C2′
ADE
B
249
26.616
21.102
−2.899
1.00
88.41
B


ATOM
2177
O2′
ADE
B
249
27.588
20.176
−2.454
1.00
87.62
B


ATOM
2178
C3′
ADE
B
249
27.192
22.450
−3.309
1.00
89.31
B


ATOM
2179
O3′
ADE
B
249
28.405
22.304
−4.033
1.00
91.31
B


ATOM
2180
P
GUA
B
250
28.374
22.328
−5.640
1.00
92.94
B


ATOM
2181
O1P
GUA
B
250
27.440
23.404
−6.075
1.00
91.54
B


ATOM
2182
O2P
GUA
B
250
29.774
22.320
−6.136
1.00
93.37
B


ATOM
2183
O5′
GUA
B
250
27.712
20.935
−6.024
1.00
91.73
B


ATOM
2184
C5′
GUA
B
250
26.822
20.839
−7.121
1.00
89.58
B


ATOM
2185
C4′
GUA
B
250
25.917
19.655
−6.941
1.00
88.31
B


ATOM
2186
O4′
GUA
B
250
25.089
19.860
−5.762
1.00
87.08
B


ATOM
2187
C1′
GUA
B
250
23.726
19.682
−6.102
1.00
86.14
B


ATOM
2188
N9
GUA
B
250
23.146
21.005
−6.315
1.00
84.76
B


ATOM
2189
C4
GUA
B
250
21.856
21.278
−6.690
1.00
83.37
B


ATOM
2190
N3
GUA
B
250
20.888
20.366
−6.902
1.00
82.60
B


ATOM
2191
C2
GUA
B
250
19.756
20.929
−7.278
1.00
81.86
B


ATOM
2192
N2
GUA
B
250
18.689
20.160
−7.531
1.00
81.52
B


ATOM
2193
N1
GUA
B
250
19.588
22.286
−7.433
1.00
81.35
B


ATOM
2194
C6
GUA
B
250
20.574
23.244
−7.219
1.00
81.91
B


ATOM
2195
O6
GUA
B
250
20.322
24.442
−7.397
1.00
81.19
B


ATOM
2196
C5
GUA
B
250
21.791
22.651
−6.811
1.00
82.53
B


ATOM
2197
N7
GUA
B
250
23.010
23.231
−6.498
1.00
82.75
B


ATOM
2198
C8
GUA
B
250
23.781
22.219
−6.205
1.00
84.50
B


ATOM
2199
C2′
GUA
B
250
23.740
18.841
−7.380
1.00
87.17
B


ATOM
2200
O2′
GUA
B
250
23.898
17.468
−7.079
1.00
86.01
B


ATOM
2201
C3′
GUA
B
250
24.948
19.437
−8.089
1.00
88.35
B


ATOM
2202
O3′
GUA
B
250
25.535
18.561
−9.039
1.00
89.61
B


ATOM
2203
P
GUA
B
251
25.721
19.050
−10.558
1.00
90.34
B


ATOM
2204
O1P
GUA
B
251
25.813
20.535
−10.570
1.00
88.07
B


ATOM
2205
O2P
GUA
B
251
26.809
18.240
−11.162
1.00
88.48
B


ATOM
2206
O5′
GUA
B
251
24.340
18.632
−11.230
1.00
89.75
B


ATOM
2207
C5′
GUA
B
251
23.603
17.524
−10.724
1.00
88.88
B


ATOM
2208
C4′
GUA
B
251
22.141
17.681
−11.048
1.00
88.40
B


ATOM
2209
O4′
GUA
B
251
21.513
18.539
−10.062
1.00
87.77
B


ATOM
2210
C1′
GUA
B
251
20.486
19.303
−10.681
1.00
86.45
B


ATOM
2211
N9
GUA
B
251
20.798
20.717
−10.503
1.00
83.86
B


ATOM
2212
C4
GUA
B
251
19.947
21.778
−10.691
1.00
81.12
B


ATOM
2213
N3
GUA
B
251
18.662
21.702
−11.096
1.00
78.40
B


ATOM
2214
C2
GUA
B
251
18.095
22.898
−11.166
1.00
78.93
B


ATOM
2215
N2
GUA
B
251
16.813
23.013
−11.541
1.00
76.86
B


ATOM
2216
N1
GUA
B
251
18.742
24.075
−10.867
1.00
79.94
B


ATOM
2217
C6
GUA
B
251
20.067
24.177
−10.441
1.00
81.36
B


ATOM
2218
O6
GUA
B
251
20.556
25.296
−10.172
1.00
80.76
B


ATOM
2219
C5
GUA
B
251
20.685
22.900
−10.367
1.00
81.39
B


ATOM
2220
N7
GUA
B
251
21.976
22.551
−9.999
1.00
82.18
B


ATOM
2221
C8
GUA
B
251
22.000
21.250
−10.098
1.00
83.36
B


ATOM
2222
C2′
GUA
B
251
20.428
18.880
−12.149
1.00
87.55
B


ATOM
2223
O2′
GUA
B
251
19.444
17.881
−12.316
1.00
87.74
B


ATOM
2224
C3′
GUA
B
251
21.848
18.371
−12.367
1.00
88.81
B


ATOM
2225
O3′
GUA
B
251
21.920
17.441
−13.436
1.00
90.30
B


ATOM
2226
P
ADE
B
252
22.780
17.800
−14.739
1.00
91.05
B


ATOM
2227
O1P
ADE
B
252
23.910
18.660
−14.296
1.00
90.39
B


ATOM
2228
O2P
ADE
B
252
23.054
16.533
−15.459
1.00
89.96
B


ATOM
2229
O5′
ADE
B
252
21.781
18.671
−15.620
1.00
91.95
B


ATOM
2230
PC
ADE
B
252
20.987
18.578
−20.533
1.00
104.90
B


ATOM
2231
O1C
ADE
B
252
22.147
19.251
−21.189
1.00
103.28
B


ATOM
2232
O2C
ADE
B
252
20.449
17.555
−21.467
1.00
104.27
B


ATOM
2233
O3′
ADE
B
252
21.484
17.850
−19.180
1.00
101.71
B


ATOM
2234
C5′
ADE
B
252
20.538
18.128
−16.046
1.00
94.48
B


ATOM
2235
C4′
ADE
B
252
20.126
18.735
−17.362
1.00
96.88
B


ATOM
2236
O4′
ADE
B
252
19.568
20.051
−17.110
1.00
97.25
B


ATOM
2237
C1′
ADE
B
252
19.932
20.933
−18.158
1.00
97.83
B


ATOM
2238
N9
ADE
B
252
20.812
21.964
−17.615
1.00
96.09
B


ATOM
2239
C4
ADE
B
252
20.556
23.312
−17.556
1.00
94.96
B


ATOM
2240
N3
ADE
B
252
19.437
23.947
−17.947
1.00
94.36
B


ATOM
2241
C2
ADE
B
252
19.555
25.259
−17.758
1.00
93.41
B


ATOM
2242
N1
ADE
B
252
20.587
25.953
−17.262
1.00
93.74
B


ATOM
2243
C6
ADE
B
252
21.697
25.278
−16.878
1.00
94.05
B


ATOM
2244
N6
ADE
B
252
22.733
25.964
−16.384
1.00
93.71
B


ATOM
2245
C5
ADE
B
252
21.696
23.887
−17.025
1.00
94.40
B


ATOM
2246
N7
ADE
B
252
22.647
22.920
−16.734
1.00
95.22
B


ATOM
2247
C8
ADE
B
252
22.074
21.799
−17.094
1.00
95.90
B


ATOM
2248
C2′
ADE
B
252
20.677
20.106
−19.204
1.00
99.30
B


ATOM
2249
O2′
ADE
B
252
19.816
19.648
−20.230
1.00
101.99
B


ATOM
2250
C3′
ADE
B
252
21.251
18.984
−18.355
1.00
98.41
B


TER


ATOM
2251
O6P
GUA
C
401
19.129
13.958
103.041
1.00
82.82
C


ATOM
2252
O3P
GUA
C
401
19.403
15.512
101.028
1.00
79.10
C


ATOM
2253
O4P
GUA
C
401
21.349
15.070
102.651
1.00
84.74
C


ATOM
2254
O5P
GUA
C
401
20.623
13.217
101.168
1.00
81.84
C


ATOM
2255
P2
GUA
C
401
20.137
14.411
101.990
1.00
84.24
C


ATOM
2256
P
GUA
C
401
20.421
16.053
99.862
1.00
74.41
C


ATOM
2257
O1P
GUA
C
401
20.862
14.926
98.946
1.00
74.15
C


ATOM
2258
O2P
GUA
C
401
21.628
16.722
100.495
1.00
73.92
C


ATOM
2259
O5′
GUA
C
401
19.661
17.160
98.943
1.00
70.87
C


ATOM
2260
C5′
GUA
C
401
18.262
17.037
98.648
1.00
65.12
C


ATOM
2261
C4′
GUA
C
401
17.543
18.329
98.955
1.00
61.77
C


ATOM
2262
O4′
GUA
C
401
17.378
18.484
100.385
1.00
61.70
C


ATOM
2263
C1′
GUA
C
401
17.296
19.867
100.708
1.00
61.13
C


ATOM
2264
N9
GUA
C
401
18.352
20.172
101.671
1.00
61.89
C


ATOM
2265
C4
GUA
C
401
18.674
21.411
102.173
1.00
62.05
C


ATOM
2266
N3
GUA
C
401
18.048
22.569
101.884
1.00
63.41
C


ATOM
2267
C2
GUA
C
401
18.613
23.598
102.490
1.00
63.99
C


ATOM
2268
N2
GUA
C
401
18.118
24.834
102.308
1.00
65.06
C


ATOM
2269
N1
GUA
C
401
19.703
23.495
103.315
1.00
62.94
C


ATOM
2270
C6
GUA
C
401
20.363
22.313
103.626
1.00
62.01
C


ATOM
2271
O6
GUA
C
401
21.352
22.334
104.371
1.00
61.22
C


ATOM
2272
C5
GUA
C
401
19.766
21.203
102.988
1.00
61.68
C


ATOM
2273
N7
GUA
C
401
20.106
19.860
103.023
1.00
60.80
C


ATOM
2274
C8
GUA
C
401
19.241
19.287
102.233
1.00
61.30
C


ATOM
2275
C2′
GUA
C
401
17.485
20.633
99.396
1.00
61.41
C


ATOM
2276
O2′
GUA
C
401
16.246
20.987
98.818
1.00
60.56
C


ATOM
2277
C3′
GUA
C
401
18.242
19.614
98.560
1.00
60.57
C


ATOM
2278
O3′
GUA
C
401
18.078
19.901
97.186
1.00
60.34
C


ATOM
2279
P
CYT
C
402
19.241
20.679
96.403
1.00
61.86
C


ATOM
2280
O1P
CYT
C
402
20.524
20.130
96.912
1.00
59.62
C


ATOM
2281
O2P
CYT
C
402
18.953
20.634
94.946
1.00
59.04
C


ATOM
2282
O5′
CYT
C
402
19.105
22.187
96.914
1.00
60.52
C


ATOM
2283
C5′
CYT
C
402
17.883
22.915
96.767
1.00
58.50
C


ATOM
2284
C4′
CYT
C
402
18.073
24.367
97.163
1.00
57.08
C


ATOM
2285
O4′
CYT
C
402
18.105
24.471
98.613
1.00
56.35
C


ATOM
2286
C1′
CYT
C
402
19.046
25.456
99.004
1.00
56.26
C


ATOM
2287
N1
CYT
C
402
20.152
24.804
99.712
1.00
54.77
C


ATOM
2288
C6
CYT
C
402
20.387
23.472
99.565
1.00
55.24
C


ATOM
2289
C2
CYT
C
402
20.968
25.572
100.529
1.00
55.02
C


ATOM
2290
O2
CYT
C
402
20.734
26.778
100.644
1.00
55.36
C


ATOM
2291
N3
CYT
C
402
21.999
24.986
101.173
1.00
56.15
C


ATOM
2292
C4
CYT
C
402
22.227
23.685
101.017
1.00
54.69
C


ATOM
2293
N4
CYT
C
402
23.260
23.146
101.663
1.00
53.49
C


ATOM
2294
C5
CYT
C
402
21.407
22.879
100.191
1.00
55.59
C


ATOM
2295
C2′
CYT
C
402
19.544
26.136
97.733
1.00
57.33
C


ATOM
2296
O2′
CYT
C
402
18.766
27.279
97.489
1.00
58.09
C


ATOM
2297
C3′
CYT
C
402
19.362
25.031
96.697
1.00
57.73
C


ATOM
2298
O3′
CYT
C
402
19.225
25.584
95.387
1.00
58.74
C


ATOM
2299
P
GUA
C
403
20.522
25.744
94.435
1.00
61.06
C


ATOM
2300
O1P
GUA
C
403
21.422
24.578
94.631
1.00
58.35
C


ATOM
2301
O2P
GUA
C
403
20.042
26.077
93.069
1.00
59.89
C


ATOM
2302
O5′
GUA
C
403
21.291
27.014
95.018
1.00
60.71
C


ATOM
2303
C5′
GUA
C
403
20.609
28.245
95.250
1.00
59.30
C


ATOM
2304
C4′
GUA
C
403
21.497
29.205
96.019
1.00
58.89
C


ATOM
2305
O4′
GUA
C
403
21.602
28.788
97.407
1.00
56.96
C


ATOM
2306
C1′
GUA
C
403
22.882
29.133
97.907
1.00
57.03
C


ATOM
2307
N9
GUA
C
403
23.580
27.909
98.280
1.00
56.30
C


ATOM
2308
C4
GUA
C
403
24.724
27.815
99.036
1.00
56.42
C


ATOM
2309
N3
GUA
C
403
25.397
28.845
99.594
1.00
57.34
C


ATOM
2310
C2
GUA
C
403
26.467
28.435
100.254
1.00
57.44
C


ATOM
2311
N2
GUA
C
403
27.242
29.308
100.887
1.00
57.79
C


ATOM
2312
N1
GUA
C
403
26.852
27.129
100.346
1.00
58.64
C


ATOM
2313
C6
GUA
C
403
26.177
26.054
99.782
1.00
58.04
C


ATOM
2314
O6
GUA
C
403
26.616
24.907
99.929
1.00
59.05
C


ATOM
2315
C5
GUA
C
403
25.020
26.474
99.083
1.00
56.53
C


ATOM
2316
N7
GUA
C
403
24.074
25.736
98.390
1.00
56.87
C


ATOM
2317
C8
GUA
C
403
23.240
26.628
97.934
1.00
56.90
C


ATOM
2318
C2′
GUA
C
403
23.602
29.888
96.793
1.00
57.48
C


ATOM
2319
O2′
GUA
C
403
23.309
31.256
96.911
1.00
58.00
C


ATOM
2320
C3′
GUA
C
403
22.943
29.297
95.563
1.00
58.20
C


ATOM
2321
O3′
GUA
C
403
23.064
30.206
94.483
1.00
59.54
C


ATOM
2322
P
CYT
C
404
24.252
30.020
93.414
1.00
62.17
C


ATOM
2323
O1P
CYT
C
404
24.328
28.585
93.021
1.00
60.43
C


ATOM
2324
O2P
CYT
C
404
24.071
31.055
92.367
1.00
60.24
C


ATOM
2325
O5′
CYT
C
404
25.561
30.375
94.245
1.00
59.69
C


ATOM
2326
C5′
CYT
C
404
25.812
31.702
94.657
1.00
58.57
C


ATOM
2327
C4′
CYT
C
404
27.087
31.757
95.437
1.00
58.59
C


ATOM
2328
O4′
CYT
C
404
26.953
30.922
96.612
1.00
58.87
C


ATOM
2329
C1′
CYT
C
404
28.217
30.366
96.943
1.00
60.79
C


ATOM
2330
N1
CYT
C
404
28.099
28.897
96.917
1.00
63.43
C


ATOM
2331
C6
CYT
C
404
26.989
28.297
96.391
1.00
64.17
C


ATOM
2332
C2
CYT
C
404
29.140
28.113
97.449
1.00
64.26
C


ATOM
2333
O2
CYT
C
404
30.148
28.671
97.898
1.00
65.75
C


ATOM
2334
N3
CYT
C
404
29.017
26.768
97.454
1.00
63.85
C


ATOM
2335
C4
CYT
C
404
27.921
26.198
96.948
1.00
63.56
C


ATOM
2336
N4
CYT
C
404
27.837
24.872
96.985
1.00
63.44
C


ATOM
2337
C5
CYT
C
404
26.861
26.964
96.384
1.00
63.47
C


ATOM
2338
C2′
CYT
C
404
29.213
30.917
95.922
1.00
60.30
C


ATOM
2339
O2′
CYT
C
404
29.788
32.110
96.419
1.00
59.22
C


ATOM
2340
C3′
CYT
C
404
28.298
31.176
94.737
1.00
59.12
C


ATOM
2341
O3′
CYT
C
404
28.874
32.138
93.870
1.00
60.41
C


ATOM
2342
P
GUA
C
405
29.058
31.800
92.313
1.00
61.74
C


ATOM
2343
O1P
GUA
C
405
27.858
31.061
91.852
1.00
62.51
C


ATOM
2344
O2P
GUA
C
405
29.451
33.057
91.636
1.00
62.92
C


ATOM
2345
O5′
GUA
C
405
30.300
30.809
92.261
1.00
59.83
C


ATOM
2346
C5′
GUA
C
405
31.594
31.286
91.938
1.00
55.90
C


ATOM
2347
C4′
GUA
C
405
32.500
31.127
93.120
1.00
55.47
C


ATOM
2348
O4′
GUA
C
405
31.704
30.707
94.256
1.00
56.80
C


ATOM
2349
C1′
GUA
C
405
32.410
29.728
95.004
1.00
57.76
C


ATOM
2350
N9
GUA
C
405
31.719
28.450
94.860
1.00
58.84
C


ATOM
2351
C4
GUA
C
405
32.102
27.246
95.395
1.00
58.87
C


ATOM
2352
N3
GUA
C
405
33.195
27.026
96.142
1.00
59.93
C


ATOM
2353
C2
GUA
C
405
33.291
25.767
96.511
1.00
59.79
C


ATOM
2354
N2
GUA
C
405
34.328
25.368
97.258
1.00
59.82
C


ATOM
2355
N1
GUA
C
405
32.381
24.806
96.176
1.00
59.90
C


ATOM
2356
C6
GUA
C
405
31.255
25.014
95.400
1.00
59.29
C


ATOM
2357
O6
GUA
C
405
30.510
24.076
95.143
1.00
61.07
C


ATOM
2358
C5
GUA
C
405
31.142
26.349
95.000
1.00
59.13
C


ATOM
2359
N7
GUA
C
405
30.178
26.969
94.225
1.00
60.31
C


ATOM
2360
C8
GUA
C
405
30.562
28.213
94.168
1.00
60.29
C


ATOM
2361
C2′
GUA
C
405
33.822
29.694
94.434
1.00
56.55
C


ATOM
2362
O2′
GUA
C
405
34.605
30.659
95.099
1.00
56.61
C


ATOM
2363
C3′
GUA
C
405
33.543
30.040
92.984
1.00
55.45
C


ATOM
2364
O3′
GUA
C
405
34.691
30.557
92.361
1.00
55.55
C


ATOM
2365
P
GUA
C
406
35.407
29.710
91.213
1.00
59.15
C


ATOM
2366
O1P
GUA
C
406
34.348
28.968
90.477
1.00
58.47
C


ATOM
2367
O2P
GUA
C
406
36.287
30.642
90.475
1.00
59.19
C


ATOM
2368
O5′
GUA
C
406
36.327
28.690
92.023
1.00
59.02
C


ATOM
2369
C5′
GUA
C
406
37.191
29.170
93.049
1.00
60.68
C


ATOM
2370
C4′
GUA
C
406
37.996
28.040
93.648
1.00
61.84
C


ATOM
2371
O4′
GUA
C
406
37.229
27.387
94.701
1.00
63.42
C


ATOM
2372
C1′
GUA
C
406
37.474
25.985
94.671
1.00
62.97
C


ATOM
2373
N9
GUA
C
406
36.247
25.298
94.264
1.00
63.61
C


ATOM
2374
C4
GUA
C
406
35.986
23.955
94.391
1.00
62.31
C


ATOM
2375
N3
GUA
C
406
36.819
23.036
94.915
1.00
62.46
C


ATOM
2376
C2
GUA
C
406
36.282
21.828
94.914
1.00
63.04
C


ATOM
2377
N2
GUA
C
406
36.972
20.790
95.410
1.00
63.23
C


ATOM
2378
N1
GUA
C
406
35.028
21.545
94.431
1.00
61.67
C


ATOM
2379
C6
GUA
C
406
34.152
22.475
93.891
1.00
60.40
C


ATOM
2380
O6
GUA
C
406
33.040
22.110
93.494
1.00
58.01
C


ATOM
2381
C5
GUA
C
406
34.714
23.778
93.887
1.00
61.21
C


ATOM
2382
N7
GUA
C
406
34.185
24.985
93.452
1.00
61.85
C


ATOM
2383
C8
GUA
C
406
35.127
25.855
93.690
1.00
63.00
C


ATOM
2384
C2′
GUA
C
406
38.643
25.785
93.709
1.00
61.67
C


ATOM
2385
O2′
GUA
C
406
39.842
25.986
94.423
1.00
61.44
C


ATOM
2386
C3′
GUA
C
406
38.391
26.908
92.714
1.00
61.32
C


ATOM
2387
O3′
GUA
C
406
39.575
27.226
91.992
1.00
61.04
C


ATOM
2388
P
CYT
C
407
39.696
26.813
90.441
1.00
62.09
C


ATOM
2389
O1P
CYT
C
407
38.390
27.100
89.786
1.00
60.46
C


ATOM
2390
O2P
CYT
C
407
40.938
27.411
89.900
1.00
61.54
C


ATOM
2391
O5′
CYT
C
407
39.905
25.237
90.475
1.00
62.16
C


ATOM
2392
C5′
CYT
C
407
40.898
24.665
91.310
1.00
64.28
C


ATOM
2393
C4′
CYT
C
407
40.632
23.197
91.503
1.00
65.55
C


ATOM
2394
O4′
CYT
C
407
39.418
23.007
92.269
1.00
65.83
C


ATOM
2395
C1′
CYT
C
407
38.826
21.770
91.907
1.00
65.87
C


ATOM
2396
N1
CYT
C
407
37.451
22.028
91.465
1.00
65.12
C


ATOM
2397
C6
CYT
C
407
37.117
23.212
90.878
1.00
65.22
C


ATOM
2398
C2
CYT
C
407
36.490
21.042
91.653
1.00
64.19
C


ATOM
2399
O2
CYT
C
407
36.823
19.981
92.188
1.00
64.69
C


ATOM
2400
N3
CYT
C
407
35.225
21.267
91.252
1.00
63.31
C


ATOM
2401
C4
CYT
C
407
34.906
22.425
90.680
1.00
63.47
C


ATOM
2402
N4
CYT
C
407
33.645
22.608
90.301
1.00
63.66
C


ATOM
2403
C5
CYT
C
407
35.866
23.449
90.473
1.00
64.34
C


ATOM
2404
C2′
CYT
C
407
39.701
21.163
90.810
1.00
67.10
C


ATOM
2405
O2′
CYT
C
407
40.644
20.291
91.403
1.00
68.84
C


ATOM
2406
C3′
CYT
C
407
40.360
22.410
90.238
1.00
66.94
C


ATOM
2407
O3′
CYT
C
407
41.586
22.095
89.599
1.00
68.23
C


ATOM
2408
P
GUA
C
408
41.689
22.166
88.002
1.00
70.32
C


ATOM
2409
O1P
GUA
C
408
40.649
23.080
87.472
1.00
68.95
C


ATOM
2410
O2P
GUA
C
408
43.111
22.392
87.664
1.00
70.47
C


ATOM
2411
O5′
GUA
C
408
41.345
20.690
87.551
1.00
70.99
C


ATOM
2412
C5′
GUA
C
408
42.147
19.625
88.008
1.00
73.91
C


ATOM
2413
C4′
GUA
C
408
41.779
18.368
87.287
1.00
75.11
C


ATOM
2414
O4′
GUA
C
408
40.379
18.115
87.519
1.00
75.66
C


ATOM
2415
C1′
GUA
C
408
39.857
17.389
86.431
1.00
74.76
C


ATOM
2416
N9
GUA
C
408
38.630
18.047
85.997
1.00
72.57
C


ATOM
2417
C4
GUA
C
408
37.432
17.423
85.774
1.00
71.47
C


ATOM
2418
N3
GUA
C
408
37.199
16.098
85.901
1.00
70.90
C


ATOM
2419
C2
GUA
C
408
35.948
15.786
85.611
1.00
70.55
C


ATOM
2420
N2
GUA
C
408
35.556
14.509
85.662
1.00
69.17
C


ATOM
2421
N1
GUA
C
408
34.994
16.703
85.241
1.00
70.87
C


ATOM
2422
C6
GUA
C
408
35.208
18.072
85.110
1.00
71.62
C


ATOM
2423
O6
GUA
C
408
34.271
18.811
84.776
1.00
73.46
C


ATOM
2424
C5
GUA
C
408
36.559
18.423
85.405
1.00
71.18
C


ATOM
2425
N7
GUA
C
408
37.200
19.656
85.391
1.00
70.33
C


ATOM
2426
C8
GUA
C
408
38.427
19.384
85.746
1.00
71.47
C


ATOM
2427
C2′
GUA
C
408
40.966
17.271
85.378
1.00
76.55
C


ATOM
2428
O2′
GUA
C
408
41.615
16.012
85.508
1.00
76.60
C


ATOM
2429
C3′
GUA
C
408
41.889
18.415
85.774
1.00
75.72
C


ATOM
2430
O3′
GUA
C
408
43.239
18.127
85.411
1.00
77.71
C


ATOM
2431
P
ADE
C
409
43.631
17.905
83.865
1.00
78.05
C


ATOM
2432
O1P
ADE
C
409
45.116
17.841
83.822
1.00
77.62
C


ATOM
2433
O2P
ADE
C
409
42.909
18.918
83.043
1.00
77.11
C


ATOM
2434
O5′
ADE
C
409
43.084
16.445
83.528
1.00
75.49
C


ATOM
2435
C5′
ADE
C
409
42.285
16.201
82.374
1.00
71.72
C


ATOM
2436
C4′
ADE
C
409
41.693
14.813
82.439
1.00
70.03
C


ATOM
2437
O4′
ADE
C
409
40.734
14.749
83.535
1.00
68.77
C


ATOM
2438
C1′
ADE
C
409
39.546
14.109
83.095
1.00
67.15
C


ATOM
2439
N9
ADE
C
409
38.538
15.134
82.827
1.00
63.77
C


ATOM
2440
C4
ADE
C
409
37.201
14.910
82.610
1.00
61.48
C


ATOM
2441
N3
ADE
C
409
36.566
13.727
82.597
1.00
60.86
C


ATOM
2442
C2
ADE
C
409
35.272
13.896
82.350
1.00
60.34
C


ATOM
2443
N1
ADE
C
409
34.590
15.026
82.133
1.00
59.77
C


ATOM
2444
C6
ADE
C
409
35.261
16.196
82.150
1.00
60.33
C


ATOM
2445
N6
ADE
C
409
34.584
17.323
81.924
1.00
60.45
C


ATOM
2446
C5
ADE
C
409
36.640
16.153
82.402
1.00
60.68
C


ATOM
2447
N7
ADE
C
409
37.604
17.146
82.484
1.00
61.47
C


ATOM
2448
C8
ADE
C
409
38.710
16.490
82.735
1.00
62.04
C


ATOM
2449
C2′
ADE
C
409
39.935
13.373
81.821
1.00
68.85
C


ATOM
2450
O2′
ADE
C
409
40.547
12.152
82.173
1.00
69.62
C


ATOM
2451
C3′
ADE
C
409
40.900
14.379
81.216
1.00
69.51
C


ATOM
2452
O3′
ADE
C
409
41.738
13.788
80.238
1.00
69.60
C


ATOM
2453
P
URI
C
410
41.499
14.124
78.685
1.00
71.45
C


ATOM
2454
O1P
URI
C
410
41.183
15.569
78.541
1.00
69.04
C


ATOM
2455
O2P
URI
C
410
42.648
13.542
77.940
1.00
70.39
C


ATOM
2456
O5′
URI
C
410
40.172
13.320
78.324
1.00
70.02
C


ATOM
2457
C5′
URI
C
410
40.097
11.929
78.575
1.00
70.01
C


ATOM
2458
C4′
URI
C
410
38.670
11.458
78.515
1.00
69.54
C


ATOM
2459
O4′
URI
C
410
37.849
12.157
79.484
1.00
69.30
C


ATOM
2460
C1′
URI
C
410
36.490
12.014
79.104
1.00
69.48
C


ATOM
2461
N1
URI
C
410
35.864
13.337
79.046
1.00
68.66
C


ATOM
2462
C6
URI
C
410
36.592
14.498
79.080
1.00
68.60
C


ATOM
2463
C2
URI
C
410
34.498
13.359
78.915
1.00
69.40
C


ATOM
2464
O2
URI
C
410
33.828
12.342
78.918
1.00
69.84
C


ATOM
2465
N3
URI
C
410
33.944
14.606
78.776
1.00
69.35
C


ATOM
2466
C4
URI
C
410
34.610
15.808
78.765
1.00
69.40
C


ATOM
2467
O4
URI
C
410
33.980
16.842
78.552
1.00
70.68
C


ATOM
2468
C5
URI
C
410
36.028
15.705
78.944
1.00
68.74
C


ATOM
2469
C2′
URI
C
410
36.492
11.412
77.694
1.00
70.35
C


ATOM
2470
O2′
URI
C
410
36.224
10.025
77.741
1.00
72.52
C


ATOM
2471
C3′
URI
C
410
37.907
11.736
77.240
1.00
68.80
C


ATOM
2472
O3′
URI
C
410
38.307
10.895
76.171
1.00
66.35
C


ATOM
2473
P
URI
C
411
37.802
11.224
74.683
1.00
66.37
C


ATOM
2474
O1P
URI
C
411
38.216
12.601
74.317
1.00
65.70
C


ATOM
2475
O2P
URI
C
411
38.191
10.095
73.816
1.00
67.37
C


ATOM
2476
O5′
URI
C
411
36.216
11.211
74.803
1.00
66.35
C


ATOM
2477
C5′
URI
C
411
35.502
9.992
74.705
1.00
65.04
C


ATOM
2478
C4′
URI
C
411
34.034
10.229
74.921
1.00
65.29
C


ATOM
2479
O4′
URI
C
411
33.822
11.266
75.909
1.00
64.72
C


ATOM
2480
C1′
URI
C
411
32.551
11.861
75.680
1.00
64.83
C


ATOM
2481
N1
URI
C
411
32.744
13.300
75.497
1.00
64.62
C


ATOM
2482
C6
URI
C
411
33.986
13.869
75.569
1.00
65.33
C


ATOM
2483
C2
URI
C
411
31.626
14.058
75.254
1.00
64.72
C


ATOM
2484
O2
URI
C
411
30.517
13.575
75.169
1.00
65.12
C


ATOM
2485
N3
URI
C
411
31.857
15.403
75.112
1.00
65.38
C


ATOM
2486
C4
URI
C
411
33.077
16.046
75.186
1.00
66.26
C


ATOM
2487
O4
URI
C
411
33.127
17.274
75.088
1.00
67.41
C


ATOM
2488
C5
URI
C
411
34.188
15.182
75.425
1.00
65.97
C


ATOM
2489
C2′
URI
C
411
31.982
11.214
74.419
1.00
65.19
C


ATOM
2490
O2′
URI
C
411
31.146
10.139
74.799
1.00
65.30
C


ATOM
2491
C3′
URI
C
411
33.264
10.769
73.737
1.00
65.47
C


ATOM
2492
O3′
URI
C
411
33.036
9.746
72.786
1.00
67.90
C


ATOM
2493
P
URI
C
412
33.458
9.981
71.256
1.00
69.75
C


ATOM
2494
O1P
URI
C
412
34.775
10.668
71.271
1.00
67.86
C


ATOM
2495
O2P
URI
C
412
33.316
8.688
70.542
1.00
69.18
C


ATOM
2496
O5′
URI
C
412
32.325
10.965
70.717
1.00
69.11
C


ATOM
2497
C5′
URI
C
412
30.975
10.520
70.646
1.00
67.01
C


ATOM
2498
C4′
URI
C
412
30.031
11.686
70.489
1.00
66.73
C


ATOM
2499
O4′
URI
C
412
30.184
12.623
71.575
1.00
65.01
C


ATOM
2500
C1′
URI
C
412
29.687
13.882
71.158
1.00
63.86
C


ATOM
2501
N1
URI
C
412
30.717
14.892
71.399
1.00
62.20
C


ATOM
2502
C6
URI
C
412
32.002
14.558
71.731
1.00
61.49
C


ATOM
2503
C2
URI
C
412
30.332
16.196
71.274
1.00
61.27
C


ATOM
2504
O2
URI
C
412
29.202
16.515
70.962
1.00
62.77
C


ATOM
2505
N3
URI
C
412
31.312
17.115
71.518
1.00
59.78
C


ATOM
2506
C4
URI
C
412
32.611
16.861
71.861
1.00
59.79
C


ATOM
2507
O4
URI
C
412
33.374
17.804
72.049
1.00
59.40
C


ATOM
2508
C5
URI
C
412
32.941
15.475
71.962
1.00
60.45
C


ATOM
2509
C2′
URI
C
412
29.380
13.779
69.665
1.00
66.11
C


ATOM
2510
O2′
URI
C
412
27.995
13.585
69.466
1.00
67.05
C


ATOM
2511
C3′
URI
C
412
30.221
12.574
69.276
1.00
67.25
C


ATOM
2512
O3′
URI
C
412
29.704
11.954
68.111
1.00
71.00
C


ATOM
2513
P
ADE
C
413
30.718
11.338
67.033
1.00
73.23
C


ATOM
2514
O1P
ADE
C
413
30.203
10.003
66.618
1.00
73.04
C


ATOM
2515
O2P
ADE
C
413
32.098
11.461
67.573
1.00
72.20
C


ATOM
2516
O5′
ADE
C
413
30.585
12.334
65.810
1.00
73.28
C


ATOM
2517
C5′
ADE
C
413
30.645
13.727
66.017
1.00
73.61
C


ATOM
2518
C4′
ADE
C
413
29.751
14.418
65.038
1.00
74.87
C


ATOM
2519
O4′
ADE
C
413
29.847
15.831
65.290
1.00
75.30
C


ATOM
2520
C1′
ADE
C
413
30.475
16.458
64.205
1.00
75.52
C


ATOM
2521
N9
ADE
C
413
31.805
16.884
64.637
1.00
72.95
C


ATOM
2522
C4
ADE
C
413
32.223
18.189
64.754
1.00
71.28
C


ATOM
2523
N3
ADE
C
413
31.532
19.298
64.439
1.00
69.94
C


ATOM
2524
C2
ADE
C
413
32.242
20.389
64.724
1.00
70.10
C


ATOM
2525
N1
ADE
C
413
33.467
20.488
65.256
1.00
69.99
C


ATOM
2526
C6
ADE
C
413
34.128
19.351
65.564
1.00
69.99
C


ATOM
2527
N6
ADE
C
413
35.337
19.444
66.113
1.00
69.89
C


ATOM
2528
C5
ADE
C
413
33.492
18.130
65.296
1.00
70.40
C


ATOM
2529
N7
ADE
C
413
33.887
16.814
65.474
1.00
70.94
C


ATOM
2530
C8
ADE
C
413
32.857
16.116
65.058
1.00
72.68
C


ATOM
2531
C2′
ADE
C
413
30.364
15.552
62.973
1.00
76.97
C


ATOM
2532
O2′
ADE
C
413
29.313
16.035
62.146
1.00
80.11
C


ATOM
2533
C3′
ADE
C
413
30.064
14.164
63.561
1.00
75.75
C


ATOM
2534
O3′
ADE
C
413
28.930
13.511
62.951
1.00
75.06
C


ATOM
2535
P
ADE
C
414
28.765
13.461
61.338
1.00
76.96
C


ATOM
2536
O1P
ADE
C
414
27.335
13.728
61.042
1.00
76.26
C


ATOM
2537
O2P
ADE
C
414
29.811
14.270
60.658
1.00
78.09
C


ATOM
2538
O5′
ADE
C
414
29.092
11.954
60.949
1.00
74.22
C


ATOM
2539
C5′
ADE
C
414
30.427
11.471
61.047
1.00
70.82
C


ATOM
2540
C4′
ADE
C
414
30.851
10.780
59.771
1.00
66.77
C


ATOM
2541
O4′
ADE
C
414
29.773
9.960
59.251
1.00
65.37
C


ATOM
2542
C1′
ADE
C
414
29.876
9.887
57.841
1.00
63.05
C


ATOM
2543
N9
ADE
C
414
28.710
10.543
57.255
1.00
61.54
C


ATOM
2544
C4
ADE
C
414
28.003
10.100
56.168
1.00
59.49
C


ATOM
2545
N3
ADE
C
414
28.217
8.979
55.466
1.00
58.27
C


ATOM
2546
C2
ADE
C
414
27.363
8.889
54.459
1.00
58.36
C


ATOM
2547
N1
ADE
C
414
26.395
9.731
54.090
1.00
60.36
C


ATOM
2548
C6
ADE
C
414
26.211
10.858
54.810
1.00
61.88
C


ATOM
2549
N6
ADE
C
414
25.261
11.719
54.421
1.00
62.50
C


ATOM
2550
C5
ADE
C
414
27.045
11.062
55.922
1.00
60.84
C


ATOM
2551
N7
ADE
C
414
27.123
12.083
56.858
1.00
61.16
C


ATOM
2552
C8
ADE
C
414
28.119
11.723
57.630
1.00
61.66
C


ATOM
2553
C2′
ADE
C
414
31.169
10.612
57.475
1.00
63.77
C


ATOM
2554
O2′
ADE
C
414
32.225
9.683
57.550
1.00
63.04
C


ATOM
2555
C3′
ADE
C
414
31.237
11.646
58.587
1.00
64.95
C


ATOM
2556
O3′
ADE
C
414
32.562
12.156
58.741
1.00
65.26
C


ATOM
2557
P
CYT
C
415
33.103
13.307
57.750
1.00
64.49
C


ATOM
2558
O1P
CYT
C
415
32.556
13.058
56.397
1.00
64.22
C


ATOM
2559
O2P
CYT
C
415
32.929
14.645
58.378
1.00
63.51
C


ATOM
2560
O5′
CYT
C
415
34.657
13.010
57.669
1.00
63.60
C


ATOM
2561
C5′
CYT
C
415
35.129
11.714
57.340
1.00
61.44
C


ATOM
2562
C4′
CYT
C
415
36.619
11.758
57.148
1.00
60.98
C


ATOM
2563
O4′
CYT
C
415
36.914
12.600
55.995
1.00
61.26
C


ATOM
2564
C1′
CYT
C
415
38.068
13.381
56.256
1.00
58.35
C


ATOM
2565
N1
CYT
C
415
37.666
14.787
56.333
1.00
57.21
C


ATOM
2566
C6
CYT
C
415
36.358
15.155
56.196
1.00
57.26
C


ATOM
2567
C2
CYT
C
415
38.647
15.747
56.549
1.00
57.02
C


ATOM
2568
O2
CYT
C
415
39.823
15.383
56.668
1.00
59.07
C


ATOM
2569
N3
CYT
C
415
38.298
17.046
56.625
1.00
55.70
C


ATOM
2570
C4
CYT
C
415
37.024
17.399
56.496
1.00
55.51
C


ATOM
2571
N4
CYT
C
415
36.730
18.693
56.588
1.00
56.00
C


ATOM
2572
C5
CYT
C
415
35.995
16.440
56.270
1.00
56.63
C


ATOM
2573
C2′
CYT
C
415
38.651
12.861
57.566
1.00
58.28
C


ATOM
2574
O2′
CYT
C
415
39.501
11.771
57.275
1.00
58.67
C


ATOM
2575
C3′
CYT
C
415
37.386
12.423
58.280
1.00
59.17
C


ATOM
2576
O3′
CYT
C
415
37.659
11.498
59.322
1.00
57.74
C


ATOM
2577
P
CYT
C
416
37.493
11.963
60.851
1.00
59.52
C


ATOM
2578
O1P
CYT
C
416
36.259
12.797
60.912
1.00
58.54
C


ATOM
2579
O2P
CYT
C
416
37.627
10.769
61.730
1.00
54.71
C


ATOM
2580
O5′
CYT
C
416
38.731
12.941
61.096
1.00
58.54
C


ATOM
2581
C5′
CYT
C
416
40.063
12.480
60.905
1.00
56.26
C


ATOM
2582
C4′
CYT
C
416
41.046
13.602
61.094
1.00
53.74
C


ATOM
2583
O4′
CYT
C
416
40.937
14.552
60.009
1.00
54.50
C


ATOM
2584
C1′
CYT
C
416
41.313
15.837
60.466
1.00
52.76
C


ATOM
2585
N1
CYT
C
416
40.191
16.738
60.245
1.00
52.47
C


ATOM
2586
C6
CYT
C
416
38.959
16.263
59.895
1.00
53.65
C


ATOM
2587
C2
CYT
C
416
40.398
18.085
60.416
1.00
52.84
C


ATOM
2588
O2
CYT
C
416
41.525
18.463
60.740
1.00
53.51
C


ATOM
2589
N3
CYT
C
416
39.366
18.949
60.236
1.00
53.73
C


ATOM
2590
C4
CYT
C
416
38.160
18.482
59.906
1.00
53.74
C


ATOM
2591
N4
CYT
C
416
37.164
19.358
59.753
1.00
53.22
C


ATOM
2592
C5
CYT
C
416
37.921
17.094
59.721
1.00
54.01
C


ATOM
2593
C2′
CYT
C
416
41.598
15.715
61.962
1.00
53.86
C


ATOM
2594
O2′
CYT
C
416
42.981
15.591
62.179
1.00
56.70
C


ATOM
2595
C3′
CYT
C
416
40.826
14.451
62.322
1.00
54.09
C


ATOM
2596
O3′
CYT
C
416
41.376
13.796
63.453
1.00
52.07
C


ATOM
2597
P
GUA
C
417
40.666
13.954
64.877
1.00
50.57
C


ATOM
2598
O1P
GUA
C
417
39.279
13.475
64.689
1.00
50.99
C


ATOM
2599
O2P
GUA
C
417
41.515
13.315
65.909
1.00
49.71
C


ATOM
2600
O5′
GUA
C
417
40.676
15.533
65.098
1.00
49.38
C


ATOM
2601
C5′
GUA
C
417
41.879
16.271
64.953
1.00
51.97
C


ATOM
2602
C4′
GUA
C
417
41.622
17.748
65.133
1.00
57.26
C


ATOM
2603
O4′
GUA
C
417
41.047
18.318
63.925
1.00
57.83
C


ATOM
2604
C1′
GUA
C
417
40.017
19.231
64.270
1.00
59.99
C


ATOM
2605
N9
GUA
C
417
38.746
18.618
63.896
1.00
61.24
C


ATOM
2606
C4
GUA
C
417
37.612
19.249
63.444
1.00
59.92
C


ATOM
2607
N3
GUA
C
417
37.455
20.576
63.273
1.00
59.88
C


ATOM
2608
C2
GUA
C
417
36.240
20.875
62.829
1.00
61.24
C


ATOM
2609
N2
GUA
C
417
35.894
22.158
62.613
1.00
59.68
C


ATOM
2610
N1
GUA
C
417
35.268
19.939
62.568
1.00
61.42
C


ATOM
2611
C6
GUA
C
417
35.416
18.565
62.736
1.00
62.16
C


ATOM
2612
O6
GUA
C
417
34.475
17.800
62.475
1.00
63.58
C


ATOM
2613
C5
GUA
C
417
36.703
18.237
63.214
1.00
61.70
C


ATOM
2614
N7
GUA
C
417
37.250
16.999
63.519
1.00
61.89
C


ATOM
2615
C8
GUA
C
417
38.457
17.272
63.921
1.00
62.05
C


ATOM
2616
C2′
GUA
C
417
40.144
19.478
65.776
1.00
60.59
C


ATOM
2617
O2′
GUA
C
417
41.060
20.524
66.020
1.00
60.70
C


ATOM
2618
C3′
GUA
C
417
40.675
18.134
66.259
1.00
60.19
C


ATOM
2619
O3′
GUA
C
417
41.418
18.282
67.467
1.00
63.36
C


ATOM
2620
P
URI
C
418
40.649
18.448
68.868
1.00
64.75
C


ATOM
2621
O1P
URI
C
418
39.195
18.308
68.586
1.00
64.68
C


ATOM
2622
O2P
URI
C
418
41.292
17.551
69.870
1.00
60.42
C


ATOM
2623
O5′
URI
C
418
40.941
19.967
69.252
1.00
63.59
C


ATOM
2624
C5′
URI
C
418
42.277
20.447
69.381
1.00
63.57
C


ATOM
2625
C4′
URI
C
418
42.293
21.952
69.332
1.00
64.03
C


ATOM
2626
O4′
URI
C
418
41.790
22.373
68.040
1.00
64.53
C


ATOM
2627
C1′
URI
C
418
41.029
23.558
68.183
1.00
64.27
C


ATOM
2628
N1
URI
C
418
39.654
23.276
67.757
1.00
64.25
C


ATOM
2629
C6
URI
C
418
39.136
21.998
67.775
1.00
64.17
C


ATOM
2630
C2
URI
C
418
38.900
24.342
67.338
1.00
63.52
C


ATOM
2631
O2
URI
C
418
39.319
25.477
67.342
1.00
63.70
C


ATOM
2632
N3
URI
C
418
37.630
24.032
66.922
1.00
63.65
C


ATOM
2633
C4
URI
C
418
37.048
22.782
66.896
1.00
63.02
C


ATOM
2634
O4
URI
C
418
35.904
22.659
66.450
1.00
62.11
C


ATOM
2635
C5
URI
C
418
37.892
21.721
67.372
1.00
63.38
C


ATOM
2636
C2′
URI
C
418
41.084
23.960
69.651
1.00
65.55
C


ATOM
2637
O2′
URI
C
418
42.113
24.892
69.868
1.00
67.22
C


ATOM
2638
C3′
URI
C
418
41.362
22.625
70.320
1.00
66.18
C


ATOM
2639
O3′
URI
C
418
42.000
22.835
71.564
1.00
68.22
C


ATOM
2640
P
ADE
C
419
41.108
23.135
72.859
1.00
69.94
C


ATOM
2641
O1P
ADE
C
419
42.038
23.210
74.017
1.00
69.40
C


ATOM
2642
O2P
ADE
C
419
39.974
22.169
72.868
1.00
68.19
C


ATOM
2643
O5′
ADE
C
419
40.535
24.595
72.609
1.00
68.67
C


ATOM
2644
C5′
ADE
C
419
41.334
25.731
72.889
1.00
69.84
C


ATOM
2645
C4′
ADE
C
419
40.592
26.984
72.518
1.00
71.36
C


ATOM
2646
O4′
ADE
C
419
39.995
26.802
71.212
1.00
71.02
C


ATOM
2647
C1′
ADE
C
419
38.859
27.640
71.099
1.00
71.24
C


ATOM
2648
N9
ADE
C
419
37.749
26.831
70.600
1.00
71.50
C


ATOM
2649
C4
ADE
C
419
36.570
27.309
70.086
1.00
71.60
C


ATOM
2650
N3
ADE
C
419
36.211
28.596
69.936
1.00
71.24
C


ATOM
2651
C2
ADE
C
419
34.998
28.680
69.398
1.00
71.83
C


ATOM
2652
N1
ADE
C
419
34.163
27.698
69.022
1.00
71.68
C


ATOM
2653
C6
ADE
C
419
34.554
26.417
69.193
1.00
71.81
C


ATOM
2654
N6
ADE
C
419
33.719
25.440
68.829
1.00
72.19
C


ATOM
2655
C5
ADE
C
419
35.826
26.192
69.751
1.00
71.46
C


ATOM
2656
N7
ADE
C
419
36.525
25.031
70.047
1.00
70.90
C


ATOM
2657
C8
ADE
C
419
37.657
25.463
70.544
1.00
71.01
C


ATOM
2658
C2′
ADE
C
419
38.597
28.251
72.480
1.00
71.58
C


ATOM
2659
O2′
ADE
C
419
39.053
29.588
72.523
1.00
70.81
C


ATOM
2660
C3′
ADE
C
419
39.391
27.314
73.384
1.00
71.75
C


ATOM
2661
O3′
ADE
C
419
39.783
27.926
74.606
1.00
72.07
C


ATOM
2662
P
URI
C
420
39.153
27.397
75.984
1.00
73.09
C


ATOM
2663
O1P
URI
C
420
39.251
25.913
75.945
1.00
72.17
C


ATOM
2664
O2P
URI
C
420
39.755
28.136
77.116
1.00
72.78
C


ATOM
2665
O5′
URI
C
420
37.623
27.829
75.875
1.00
72.35
C


ATOM
2666
C5′
URI
C
420
37.270
29.189
75.637
1.00
71.51
C


ATOM
2667
C4′
URI
C
420
35.856
29.286
75.113
1.00
71.76
C


ATOM
2668
O4′
URI
C
420
35.791
28.756
73.764
1.00
72.59
C


ATOM
2669
C1′
URI
C
420
34.534
28.135
73.556
1.00
72.66
C


ATOM
2670
N1
URI
C
420
34.769
26.717
73.253
1.00
73.83
C


ATOM
2671
C6
URI
C
420
35.983
26.127
73.498
1.00
73.89
C


ATOM
2672
C2
URI
C
420
33.722
25.997
72.708
1.00
74.56
C


ATOM
2673
O2
URI
C
420
32.618
26.482
72.506
1.00
74.87
C


ATOM
2674
N3
URI
C
420
34.012
24.685
72.420
1.00
74.69
C


ATOM
2675
C4
URI
C
420
35.209
24.033
72.635
1.00
75.13
C


ATOM
2676
O4
URI
C
420
35.320
22.846
72.320
1.00
75.68
C


ATOM
2677
C5
URI
C
420
36.231
24.844
73.221
1.00
75.12
C


ATOM
2678
C2′
URI
C
420
33.715
28.336
74.828
1.00
72.30
C


ATOM
2679
O2′
URI
C
420
32.894
29.473
74.680
1.00
71.57
C


ATOM
2680
C3′
URI
C
420
34.817
28.485
75.870
1.00
71.73
C


ATOM
2681
O3′
URI
C
420
34.385
29.203
77.013
1.00
72.72
C


ATOM
2682
P
URI
C
421
34.258
28.445
78.421
1.00
73.56
C


ATOM
2683
O1P
URI
C
421
34.493
29.419
79.518
1.00
71.63
C


ATOM
2684
O2P
URI
C
421
35.102
27.234
78.331
1.00
73.93
C


ATOM
2685
O5′
URI
C
421
32.734
27.986
78.454
1.00
72.57
C


ATOM
2686
C5′
URI
C
421
31.714
28.809
77.898
1.00
70.50
C


ATOM
2687
C4′
URI
C
421
30.450
28.009
77.697
1.00
70.66
C


ATOM
2688
O4′
URI
C
421
30.495
27.386
76.389
1.00
70.40
C


ATOM
2689
C1′
URI
C
421
29.731
26.190
76.413
1.00
70.60
C


ATOM
2690
N1
URI
C
421
30.585
25.074
75.982
1.00
69.64
C


ATOM
2691
C6
URI
C
421
31.945
25.095
76.161
1.00
69.33
C


ATOM
2692
C2
URI
C
421
29.966
23.990
75.404
1.00
69.60
C


ATOM
2693
O2
URI
C
421
28.765
23.939
75.223
1.00
70.36
C


ATOM
2694
N3
URI
C
421
30.802
22.963
75.053
1.00
69.02
C


ATOM
2695
C4
URI
C
421
32.165
22.911
75.222
1.00
68.95
C


ATOM
2696
O4
URI
C
421
32.772
21.881
74.924
1.00
69.29
C


ATOM
2697
C5
URI
C
421
32.734
24.077
75.813
1.00
68.62
C


ATOM
2698
C2′
URI
C
421
29.220
26.007
77.845
1.00
71.32
C


ATOM
2699
O2′
URI
C
421
27.907
26.514
77.977
1.00
72.51
C


ATOM
2700
C3′
URI
C
421
30.224
26.831
78.635
1.00
70.79
C


ATOM
2701
O3′
URI
C
421
29.629
27.235
79.860
1.00
70.56
C


ATOM
2702
P
GUA
C
422
29.852
26.353
81.188
1.00
72.90
C


ATOM
2703
O1P
GUA
C
422
31.224
25.778
81.143
1.00
71.16
C


ATOM
2704
O2P
GUA
C
422
29.449
27.203
82.343
1.00
71.02
C


ATOM
2705
O5′
GUA
C
422
28.807
25.155
81.054
1.00
68.77
C


ATOM
2706
C5′
GUA
C
422
27.420
25.393
81.250
1.00
66.08
C


ATOM
2707
C4′
GUA
C
422
26.633
24.104
81.165
1.00
64.53
C


ATOM
2708
O4′
GUA
C
422
27.229
23.176
80.219
1.00
64.44
C


ATOM
2709
C1′
GUA
C
422
26.859
21.846
80.570
1.00
62.29
C


ATOM
2710
N9
GUA
C
422
28.079
21.089
80.834
1.00
62.20
C


ATOM
2711
C4
GUA
C
422
28.208
19.719
80.893
1.00
61.30
C


ATOM
2712
N3
GUA
C
422
27.229
18.815
80.671
1.00
61.22
C


ATOM
2713
C2
GUA
C
422
27.663
17.569
80.819
1.00
60.68
C


ATOM
2714
N2
GUA
C
422
26.832
16.537
80.629
1.00
59.27
C


ATOM
2715
N1
GUA
C
422
28.947
17.241
81.161
1.00
60.17
C


ATOM
2716
C6
GUA
C
422
29.969
18.149
81.394
1.00
59.68
C


ATOM
2717
O6
GUA
C
422
31.092
17.738
81.696
1.00
59.79
C


ATOM
2718
C5
GUA
C
422
29.524
19.491
81.234
1.00
60.33
C


ATOM
2719
N7
GUA
C
422
30.214
20.688
81.359
1.00
61.18
C


ATOM
2720
C8
GUA
C
422
29.322
21.606
81.108
1.00
61.74
C


ATOM
2721
C2′
GUA
C
422
25.987
21.974
81.823
1.00
62.23
C


ATOM
2722
O2′
GUA
C
422
24.633
22.114
81.447
1.00
59.81
C


ATOM
2723
C3′
GUA
C
422
26.531
23.260
82.419
1.00
63.24
C


ATOM
2724
O3′
GUA
C
422
25.614
23.826
83.350
1.00
63.42
C


ATOM
2725
P
CYT
C
423
25.701
23.419
84.903
1.00
63.44
C


ATOM
2726
O1P
CYT
C
423
27.112
23.605
85.339
1.00
62.60
C


ATOM
2727
O2P
CYT
C
423
24.612
24.108
85.639
1.00
63.14
C


ATOM
2728
O5′
CYT
C
423
25.367
21.859
84.903
1.00
62.50
C


ATOM
2729
C5′
CYT
C
423
24.200
21.356
84.249
1.00
59.63
C


ATOM
2730
C4′
CYT
C
423
24.091
19.861
84.448
1.00
57.75
C


ATOM
2731
O4′
CYT
C
423
24.956
19.159
83.503
1.00
54.89
C


ATOM
2732
C1′
CYT
C
423
25.509
18.008
84.127
1.00
54.29
C


ATOM
2733
N1
CYT
C
423
26.964
18.198
84.267
1.00
53.29
C


ATOM
2734
C6
CYT
C
423
27.507
19.448
84.335
1.00
53.60
C


ATOM
2735
C2
CYT
C
423
27.786
17.075
84.331
1.00
53.88
C


ATOM
2736
O2
CYT
C
423
27.268
15.953
84.273
1.00
57.13
C


ATOM
2737
N3
CYT
C
423
29.122
17.235
84.456
1.00
52.34
C


ATOM
2738
C4
CYT
C
423
29.641
18.456
84.517
1.00
51.34
C


ATOM
2739
N4
CYT
C
423
30.960
18.566
84.632
1.00
51.69
C


ATOM
2740
C5
CYT
C
423
28.831
19.620
84.459
1.00
52.45
C


ATOM
2741
C2′
CYT
C
423
24.816
17.892
85.481
1.00
56.07
C


ATOM
2742
O2′
CYT
C
423
23.620
17.170
85.325
1.00
54.32
C


ATOM
2743
C3′
CYT
C
423
24.580
19.361
85.793
1.00
57.83
C


ATOM
2744
O3′
CYT
C
423
23.641
19.584
86.842
1.00
59.37
C


ATOM
2745
P
ADE
C
424
23.978
19.061
88.330
1.00
63.43
C


ATOM
2746
O1P
ADE
C
424
22.818
19.387
89.198
1.00
61.43
C


ATOM
2747
O2P
ADE
C
424
25.346
19.517
88.742
1.00
61.11
C


ATOM
2748
O5′
ADE
C
424
24.014
17.483
88.115
1.00
60.07
C


ATOM
2749
C5′
ADE
C
424
24.210
16.607
89.205
1.00
58.07
C


ATOM
2750
C4′
ADE
C
424
25.091
15.462
88.795
1.00
55.88
C


ATOM
2751
O4′
ADE
C
424
25.801
15.776
87.572
1.00
56.48
C


ATOM
2752
C1′
ADE
C
424
27.120
15.250
87.647
1.00
57.15
C


ATOM
2753
N9
ADE
C
424
28.055
16.370
87.707
1.00
59.22
C


ATOM
2754
C4
ADE
C
424
29.412
16.286
87.902
1.00
58.46
C


ATOM
2755
N3
ADE
C
424
30.138
15.179
88.114
1.00
57.20
C


ATOM
2756
C2
ADE
C
424
31.420
15.482
88.231
1.00
57.56
C


ATOM
2757
N1
ADE
C
424
32.018
16.672
88.157
1.00
57.82
C


ATOM
2758
C6
ADE
C
424
31.258
17.762
87.941
1.00
58.97
C


ATOM
2759
N6
ADE
C
424
31.852
18.953
87.845
1.00
60.54
C


ATOM
2760
C5
ADE
C
424
29.883
17.578
87.819
1.00
58.76
C


ATOM
2761
N7
ADE
C
424
28.841
18.468
87.613
1.00
61.16
C


ATOM
2762
C8
ADE
C
424
27.779
17.704
87.561
1.00
60.44
C


ATOM
2763
C2′
ADE
C
424
27.184
14.421
88.923
1.00
55.92
C


ATOM
2764
O2′
ADE
C
424
26.784
13.099
88.655
1.00
56.30
C


ATOM
2765
C3′
ADE
C
424
26.199
15.182
89.780
1.00
54.65
C


ATOM
2766
O3′
ADE
C
424
25.681
14.415
90.827
1.00
54.00
C


ATOM
2767
P
GUA
C
425
25.671
15.023
92.297
1.00
55.14
C


ATOM
2768
O1P
GUA
C
425
25.540
16.492
92.171
1.00
54.82
C


ATOM
2769
O2P
GUA
C
425
24.679
14.267
93.096
1.00
55.19
C


ATOM
2770
O5′
GUA
C
425
27.130
14.653
92.800
1.00
54.58
C


ATOM
2771
C5′
GUA
C
425
27.602
13.329
92.630
1.00
53.72
C


ATOM
2772
C4′
GUA
C
425
29.087
13.320
92.505
1.00
52.36
C


ATOM
2773
O4′
GUA
C
425
29.485
14.125
91.377
1.00
53.75
C


ATOM
2774
C1′
GUA
C
425
30.791
14.626
91.607
1.00
55.50
C


ATOM
2775
N9
GUA
C
425
30.774
16.076
91.399
1.00
57.33
C


ATOM
2776
C4
GUA
C
425
31.849
16.935
91.500
1.00
57.15
C


ATOM
2777
N3
GUA
C
425
33.115
16.592
91.812
1.00
57.47
C


ATOM
2778
C2
GUA
C
425
33.925
17.635
91.819
1.00
56.02
C


ATOM
2779
N2
GUA
C
425
35.219
17.469
92.092
1.00
55.54
C


ATOM
2780
N1
GUA
C
425
33.528
18.917
91.559
1.00
56.41
C


ATOM
2781
C6
GUA
C
425
32.232
19.303
91.247
1.00
57.54
C


ATOM
2782
O6
GUA
C
425
31.981
20.499
91.048
1.00
59.51
C


ATOM
2783
C5
GUA
C
425
31.345
18.187
91.216
1.00
57.41
C


ATOM
2784
N7
GUA
C
425
29.985
18.121
90.943
1.00
56.45
C


ATOM
2785
C8
GUA
C
425
29.690
16.854
91.065
1.00
57.56
C


ATOM
2786
C2′
GUA
C
425
31.178
14.194
93.027
1.00
54.96
C


ATOM
2787
O2′
GUA
C
425
31.884
12.977
92.972
1.00
55.11
C


ATOM
2788
C3′
GUA
C
425
29.814
13.975
93.652
1.00
53.91
C


ATOM
2789
O3′
GUA
C
425
29.879
13.068
94.743
1.00
55.10
C


ATOM
2790
P
URI
C
426
29.644
13.602
96.243
1.00
55.46
C


ATOM
2791
O1P
URI
C
426
28.622
14.689
96.184
1.00
54.09
C


ATOM
2792
O2P
URI
C
426
29.429
12.439
97.148
1.00
52.76
C


ATOM
2793
O5′
URI
C
426
31.064
14.214
96.588
1.00
53.38
C


ATOM
2794
C5′
URI
C
426
32.232
13.489
96.251
1.00
51.95
C


ATOM
2795
C4′
URI
C
426
33.440
14.328
96.507
1.00
51.33
C


ATOM
2796
O4′
URI
C
426
33.752
15.073
95.305
1.00
50.28
C


ATOM
2797
C1′
URI
C
426
34.131
16.385
95.647
1.00
49.45
C


ATOM
2798
N1
URI
C
426
33.084
17.280
95.148
1.00
48.32
C


ATOM
2799
C6
URI
C
426
31.803
16.839
95.002
1.00
46.72
C


ATOM
2800
C2
URI
C
426
33.435
18.569
94.830
1.00
47.83
C


ATOM
2801
O2
URI
C
426
34.564
19.001
94.955
1.00
47.66
C


ATOM
2802
N3
URI
C
426
32.413
19.340
94.358
1.00
47.12
C


ATOM
2803
C4
URI
C
426
31.117
18.960
94.182
1.00
47.17
C


ATOM
2804
O4
URI
C
426
30.342
19.736
93.635
1.00
50.31
C


ATOM
2805
C5
URI
C
426
30.833
17.614
94.547
1.00
47.19
C


ATOM
2806
C2′
URI
C
426
34.275
16.420
97.170
1.00
51.69
C


ATOM
2807
O2′
URI
C
426
35.583
16.059
97.573
1.00
52.95
C


ATOM
2808
C3′
URI
C
426
33.259
15.375
97.590
1.00
51.04
C


ATOM
2809
O3′
URI
C
426
33.625
14.817
98.839
1.00
52.74
C


ATOM
2810
P
CYT
C
427
33.377
15.647
100.187
1.00
55.80
C


ATOM
2811
O1P
CYT
C
427
31.930
15.990
100.242
1.00
53.06
C


ATOM
2812
O2P
CYT
C
427
34.005
14.909
101.317
1.00
54.75
C


ATOM
2813
O5′
CYT
C
427
34.224
16.977
99.972
1.00
54.34
C


ATOM
2814
C5′
CYT
C
427
35.518
17.108
100.541
1.00
53.79
C


ATOM
2815
C4′
CYT
C
427
36.034
18.508
100.340
1.00
52.68
C


ATOM
2816
O4′
CYT
C
427
35.823
18.895
98.961
1.00
51.71
C


ATOM
2817
C1′
CYT
C
427
35.651
20.299
98.886
1.00
52.92
C


ATOM
2818
N1
CYT
C
427
34.338
20.573
98.292
1.00
54.24
C


ATOM
2819
C6
CYT
C
427
33.402
19.583
98.172
1.00
55.08
C


ATOM
2820
C2
CYT
C
427
34.049
21.874
97.865
1.00
54.20
C


ATOM
2821
O2
CYT
C
427
34.929
22.740
97.950
1.00
53.16
C


ATOM
2822
N3
CYT
C
427
32.819
22.148
97.365
1.00
53.57
C


ATOM
2823
C4
CYT
C
427
31.909
21.178
97.272
1.00
54.42
C


ATOM
2824
N4
CYT
C
427
30.714
21.491
96.794
1.00
55.39
C


ATOM
2825
C5
CYT
C
427
32.186
19.839
97.671
1.00
55.03
C


ATOM
2826
C2′
CYT
C
427
35.748
20.827
100.317
1.00
53.24
C


ATOM
2827
O2′
CYT
C
427
37.085
21.179
100.595
1.00
55.47
C


ATOM
2828
C3′
CYT
C
427
35.320
19.605
101.106
1.00
52.83
C


ATOM
2829
O3′
CYT
C
427
35.781
19.690
102.445
1.00
53.08
C


ATOM
2830
P
GUA
C
428
34.819
19.224
103.637
1.00
56.16
C


ATOM
2831
O1P
GUA
C
428
33.772
18.364
103.013
1.00
56.05
C


ATOM
2832
O2P
GUA
C
428
35.649
18.690
104.747
1.00
56.57
C


ATOM
2833
O5′
GUA
C
428
34.122
20.566
104.140
1.00
56.07
C


ATOM
2834
C5′
GUA
C
428
34.815
21.494
104.971
1.00
55.18
C


ATOM
2835
C4′
GUA
C
428
35.171
22.736
104.186
1.00
54.66
C


ATOM
2836
O4′
GUA
C
428
34.976
22.483
102.774
1.00
55.76
C


ATOM
2837
C1′
GUA
C
428
34.557
23.666
102.128
1.00
55.37
C


ATOM
2838
N9
GUA
C
428
33.277
23.407
101.484
1.00
56.56
C


ATOM
2839
C4
GUA
C
428
32.555
24.276
100.713
1.00
57.44
C


ATOM
2840
N3
GUA
C
428
32.898
25.541
100.414
1.00
59.24
C


ATOM
2841
C2
GUA
C
428
32.000
26.121
99.635
1.00
60.77
C


ATOM
2842
N2
GUA
C
428
32.188
27.382
99.216
1.00
61.88
C


ATOM
2843
N1
GUA
C
428
30.855
25.507
99.203
1.00
59.95
C


ATOM
2844
C6
GUA
C
428
30.487
24.206
99.509
1.00
58.62
C


ATOM
2845
O6
GUA
C
428
29.436
23.747
99.075
1.00
61.20
C


ATOM
2846
C5
GUA
C
428
31.436
23.576
100.324
1.00
57.79
C


ATOM
2847
N7
GUA
C
428
31.452
22.295
100.842
1.00
58.66
C


ATOM
2848
C8
GUA
C
428
32.562
22.240
101.525
1.00
58.08
C


ATOM
2849
C2′
GUA
C
428
34.510
24.768
103.182
1.00
54.88
C


ATOM
2850
O2′
GUA
C
428
35.741
25.444
103.138
1.00
56.37
C


ATOM
2851
C3′
GUA
C
428
34.340
23.975
104.471
1.00
54.17
C


ATOM
2852
O3′
GUA
C
428
34.938
24.693
105.543
1.00
53.83
C


ATOM
2853
P
CYT
C
429
34.036
25.227
106.760
1.00
55.71
C


ATOM
2854
O1P
CYT
C
429
32.936
24.258
107.022
1.00
54.57
C


ATOM
2855
O2P
CYT
C
429
34.965
25.601
107.852
1.00
52.48
C


ATOM
2856
O5′
CYT
C
429
33.373
26.557
106.191
1.00
55.60
C


ATOM
2857
C5′
CYT
C
429
34.183
27.609
105.690
1.00
54.46
C


ATOM
2858
C4′
CYT
C
429
33.340
28.611
104.941
1.00
54.38
C


ATOM
2859
O4′
CYT
C
429
33.174
28.184
103.562
1.00
54.38
C


ATOM
2860
C1′
CYT
C
429
31.881
28.547
103.102
1.00
54.82
C


ATOM
2861
N1
CYT
C
429
31.095
27.318
102.934
1.00
55.41
C


ATOM
2862
C6
CYT
C
429
31.401
26.195
103.646
1.00
56.89
C


ATOM
2863
C2
CYT
C
429
30.018
27.318
102.047
1.00
55.74
C


ATOM
2864
O2
CYT
C
429
29.769
28.337
101.409
1.00
56.97
C


ATOM
2865
N3
CYT
C
429
29.273
26.207
101.910
1.00
57.40
C


ATOM
2866
C4
CYT
C
429
29.567
25.118
102.620
1.00
59.54
C


ATOM
2867
N4
CYT
C
429
28.789
24.038
102.465
1.00
59.89
C


ATOM
2868
C5
CYT
C
429
30.670
25.084
103.525
1.00
59.76
C


ATOM
2869
C2′
CYT
C
429
31.292
29.436
104.194
1.00
54.49
C


ATOM
2870
O2′
CYT
C
429
31.715
30.769
104.009
1.00
54.42
C


ATOM
2871
C3′
CYT
C
429
31.916
28.809
105.427
1.00
54.17
C


ATOM
2872
O3′
CYT
C
429
31.868
29.702
106.530
1.00
55.30
C


ATOM
2873
P
GUA
C
430
30.474
29.975
107.280
1.00
55.18
C


ATOM
2874
O1P
GUA
C
430
29.896
28.696
107.762
1.00
54.20
C


ATOM
2875
O2P
GUA
C
430
30.703
31.072
108.240
1.00
55.34
C


ATOM
2876
O5′
GUA
C
430
29.533
30.517
106.120
1.00
56.60
C


ATOM
2877
C5′
GUA
C
430
29.584
31.875
105.702
1.00
58.01
C


ATOM
2878
C4′
GUA
C
430
28.227
32.297
105.204
1.00
60.07
C


ATOM
2879
O4′
GUA
C
430
27.824
31.334
104.211
1.00
59.91
C


ATOM
2880
C1′
GUA
C
430
26.494
30.933
104.428
1.00
60.74
C


ATOM
2881
N9
GUA
C
430
26.421
29.482
104.266
1.00
60.14
C


ATOM
2882
C4
GUA
C
430
25.465
28.782
103.566
1.00
59.13
C


ATOM
2883
N3
GUA
C
430
24.429
29.315
102.889
1.00
59.30
C


ATOM
2884
C2
GUA
C
430
23.658
28.384
102.353
1.00
60.04
C


ATOM
2885
N2
GUA
C
430
22.564
28.731
101.664
1.00
60.31
C


ATOM
2886
N1
GUA
C
430
23.891
27.043
102.458
1.00
59.51
C


ATOM
2887
C6
GUA
C
430
24.948
26.470
103.141
1.00
59.46
C


ATOM
2888
O6
GUA
C
430
25.052
25.244
103.178
1.00
60.37
C


ATOM
2889
C5
GUA
C
430
25.788
27.456
103.730
1.00
59.42
C


ATOM
2890
N7
GUA
C
430
26.939
27.321
104.493
1.00
59.34
C


ATOM
2891
C8
GUA
C
430
27.279
28.547
104.787
1.00
59.75
C


ATOM
2892
C2′
GUA
C
430
26.012
31.435
105.789
1.00
60.81
C


ATOM
2893
O2′
GUA
C
430
24.775
32.101
105.631
1.00
63.49
C


ATOM
2894
C3′
GUA
C
430
27.162
32.318
106.291
1.00
61.67
C


ATOM
2895
O3′
GUA
C
430
26.835
33.650
106.732
1.00
66.15
C


ATOM
2896
P
URI
C
431
26.269
34.760
105.696
1.00
68.52
C


ATOM
2897
O1P
URI
C
431
25.470
34.098
104.634
1.00
71.17
C


ATOM
2898
O2P
URI
C
431
25.641
35.811
106.523
1.00
69.16
C


ATOM
2899
O5′
URI
C
431
27.553
35.410
105.010
1.00
71.54
C


ATOM
2900
C5′
URI
C
431
27.731
35.343
103.595
1.00
77.99
C


ATOM
2901
C4′
URI
C
431
27.963
36.722
103.013
1.00
82.63
C


ATOM
2902
O4′
URI
C
431
26.978
37.659
103.522
1.00
84.74
C


ATOM
2903
C1′
URI
C
431
27.617
38.881
103.806
1.00
84.92
C


ATOM
2904
N1
URI
C
431
26.808
39.608
104.793
1.00
84.31
C


ATOM
2905
C6
URI
C
431
26.189
38.950
105.829
1.00
84.61
C


ATOM
2906
C2
URI
C
431
26.681
40.977
104.640
1.00
84.06
C


ATOM
2907
O2
URI
C
431
27.224
41.598
103.736
1.00
83.22
C


ATOM
2908
N3
URI
C
431
25.894
41.593
105.583
1.00
84.06
C


ATOM
2909
C4
URI
C
431
25.238
40.990
106.641
1.00
84.44
C


ATOM
2910
O4
URI
C
431
24.541
41.674
107.393
1.00
84.73
C


ATOM
2911
C5
URI
C
431
25.428
39.576
106.733
1.00
84.34
C


ATOM
2912
C2′
URI
C
431
29.005
38.467
104.283
1.00
85.04
C


ATOM
2913
O2′
URI
C
431
29.904
39.548
104.148
1.00
87.61
C


ATOM
2914
C3′
URI
C
431
29.324
37.354
103.291
1.00
84.77
C


ATOM
2915
O3′
URI
C
431
29.813
37.934
102.097
1.00
86.28
C


ATOM
2916
P
GUA
C
432
31.210
37.441
101.497
1.00
90.42
C


ATOM
2917
O1P
GUA
C
432
31.952
38.646
101.053
1.00
90.72
C


ATOM
2918
O2P
GUA
C
432
31.839
36.515
102.472
1.00
89.74
C


ATOM
2919
O5′
GUA
C
432
30.782
36.625
100.200
1.00
90.83
C


ATOM
2920
C5′
GUA
C
432
30.313
37.303
99.043
1.00
92.43
C


ATOM
2921
C4′
GUA
C
432
29.470
36.381
98.201
1.00
94.35
C


ATOM
2922
O4′
GUA
C
432
28.357
35.893
99.001
1.00
95.57
C


ATOM
2923
C1′
GUA
C
432
27.137
36.278
98.401
1.00
97.09
C


ATOM
2924
N9
GUA
C
432
26.682
37.501
99.056
1.00
99.52
C


ATOM
2925
C4
GUA
C
432
25.840
37.572
100.135
1.00
100.59
C


ATOM
2926
N3
GUA
C
432
25.272
36.523
100.757
1.00
101.44
C


ATOM
2927
C2
GUA
C
432
24.518
36.902
101.774
1.00
103.28
C


ATOM
2928
N2
GUA
C
432
23.868
35.971
102.501
1.00
104.52
C


ATOM
2929
N1
GUA
C
432
24.340
38.217
102.155
1.00
102.87
C


ATOM
2930
C6
GUA
C
432
24.916
39.317
101.527
1.00
101.33
C


ATOM
2931
O6
GUA
C
432
24.694
40.461
101.953
1.00
99.83
C


ATOM
2932
C5
GUA
C
432
25.725
38.919
100.426
1.00
101.00
C


ATOM
2933
N7
GUA
C
432
26.467
39.680
99.533
1.00
100.89
C


ATOM
2934
C8
GUA
C
432
27.014
38.800
98.738
1.00
100.42
C


ATOM
2935
C2′
GUA
C
432
27.453
36.453
96.918
1.00
96.55
C


ATOM
2936
O2′
GUA
C
432
27.415
35.208
96.248
1.00
97.29
C


ATOM
2937
C3′
GUA
C
432
28.852
37.056
96.983
1.00
95.20
C


ATOM
2938
O3′
GUA
C
432
29.616
36.775
95.821
1.00
94.28
C


ATOM
2939
P
ADE
C
433
30.860
37.719
95.454
1.00
93.89
C


ATOM
2940
O1P
ADE
C
433
31.273
37.434
94.053
1.00
93.02
C


ATOM
2941
O2P
ADE
C
433
30.498
39.108
95.848
1.00
92.98
C


ATOM
2942
O5′
ADE
C
433
32.011
37.212
96.427
1.00
91.05
C


ATOM
2943
C5′
ADE
C
433
32.764
38.132
97.209
1.00
85.17
C


ATOM
2944
C4′
ADE
C
433
34.017
37.471
97.711
1.00
80.49
C


ATOM
2945
O4′
ADE
C
433
33.648
36.316
98.506
1.00
77.74
C


ATOM
2946
C1′
ADE
C
433
34.344
35.184
98.048
1.00
74.83
C


ATOM
2947
N9
ADE
C
433
33.454
34.036
98.172
1.00
71.45
C


ATOM
2948
C4
ADE
C
433
33.173
33.345
99.322
1.00
69.90
C


ATOM
2949
N3
ADE
C
433
33.654
33.582
100.554
1.00
70.14
C


ATOM
2950
C2
ADE
C
433
33.152
32.710
101.426
1.00
69.09
C


ATOM
2951
N1
ADE
C
433
32.295
31.706
101.220
1.00
67.52
C


ATOM
2952
C6
ADE
C
433
31.836
31.498
99.969
1.00
67.36
C


ATOM
2953
N6
ADE
C
433
30.986
30.500
99.759
1.00
66.58
C


ATOM
2954
C5
ADE
C
433
32.286
32.353
98.957
1.00
68.74
C


ATOM
2955
N7
ADE
C
433
32.013
32.414
97.599
1.00
69.59
C


ATOM
2956
C8
ADE
C
433
32.728
33.426
97.181
1.00
70.82
C


ATOM
2957
C2′
ADE
C
433
34.731
35.467
96.600
1.00
76.41
C


ATOM
2958
O2′
ADE
C
433
35.919
34.775
96.295
1.00
77.66
C


ATOM
2959
C3′
ADE
C
433
34.946
36.973
96.613
1.00
77.91
C


ATOM
2960
O3′
ADE
C
433
36.287
37.288
96.938
1.00
78.38
C


ATOM
2961
P
URI
C
434
36.861
38.737
96.573
1.00
79.09
C


ATOM
2962
O1P
URI
C
434
36.931
38.805
95.093
1.00
79.39
C


ATOM
2963
O2P
URI
C
434
36.083
39.759
97.329
1.00
76.85
C


ATOM
2964
O5′
URI
C
434
38.352
38.733
97.122
1.00
77.52
C


ATOM
2965
C5′
URI
C
434
39.306
37.780
96.677
1.00
75.37
C


ATOM
2966
C4′
URI
C
434
40.437
37.713
97.670
1.00
76.23
C


ATOM
2967
O4′
URI
C
434
41.106
38.997
97.657
1.00
77.08
C


ATOM
2968
C1′
URI
C
434
41.570
39.311
98.957
1.00
77.57
C


ATOM
2969
N1
URI
C
434
41.269
40.727
99.224
1.00
78.74
C


ATOM
2970
C6
URI
C
434
40.067
41.285
98.853
1.00
79.58
C


ATOM
2971
C2
URI
C
434
42.238
41.486
99.858
1.00
78.34
C


ATOM
2972
O2
URI
C
434
43.312
41.027
100.204
1.00
79.04
C


ATOM
2973
N3
URI
C
434
41.899
42.804
100.067
1.00
77.66
C


ATOM
2974
C4
URI
C
434
40.716
43.428
99.715
1.00
78.36
C


ATOM
2975
O4
URI
C
434
40.557
44.627
99.965
1.00
79.03
C


ATOM
2976
C5
URI
C
434
39.766
42.576
99.070
1.00
79.25
C


ATOM
2977
C2′
URI
C
434
40.942
38.338
99.963
1.00
75.79
C


ATOM
2978
O2′
URI
C
434
41.926
37.552
100.609
1.00
75.86
C


ATOM
2979
C3′
URI
C
434
39.957
37.538
99.106
1.00
75.37
C


ATOM
2980
O3′
URI
C
434
39.822
36.165
99.498
1.00
73.16
C


ATOM
2981
P
ADE
C
435
40.896
35.055
99.030
1.00
70.07
C


ATOM
2982
O1P
ADE
C
435
40.489
34.541
97.697
1.00
67.84
C


ATOM
2983
O2P
ADE
C
435
42.289
35.524
99.248
1.00
69.36
C


ATOM
2984
O5′
ADE
C
435
40.663
33.927
100.113
1.00
69.65
C


ATOM
2985
C5′
ADE
C
435
40.828
34.244
101.483
1.00
70.14
C


ATOM
2986
C4′
ADE
C
435
39.571
33.936
102.246
1.00
69.70
C


ATOM
2987
O4′
ADE
C
435
38.403
34.134
101.418
1.00
71.18
C


ATOM
2988
C1′
ADE
C
435
37.383
33.234
101.823
1.00
70.22
C


ATOM
2989
N9
ADE
C
435
36.925
32.513
100.636
1.00
70.43
C


ATOM
2990
C4
ADE
C
435
36.083
31.428
100.598
1.00
69.40
C


ATOM
2991
N3
ADE
C
435
35.515
30.801
101.639
1.00
69.03
C


ATOM
2992
C2
ADE
C
435
34.747
29.800
101.219
1.00
68.55
C


ATOM
2993
N1
ADE
C
435
34.500
29.389
99.969
1.00
68.15
C


ATOM
2994
C6
ADE
C
435
35.083
30.044
98.947
1.00
68.35
C


ATOM
2995
N6
ADE
C
435
34.828
29.641
97.703
1.00
67.46
C


ATOM
2996
C5
ADE
C
435
35.925
31.121
99.259
1.00
69.18
C


ATOM
2997
N7
ADE
C
435
36.661
31.988
98.465
1.00
70.13
C


ATOM
2998
C8
ADE
C
435
37.237
32.790
99.327
1.00
70.31
C


ATOM
2999
C2′
ADE
C
435
37.973
32.339
102.916
1.00
69.38
C


ATOM
3000
O2′
ADE
C
435
37.591
32.838
104.176
1.00
68.95
C


ATOM
3001
C3′
ADE
C
435
39.465
32.487
102.646
1.00
69.55
C


ATOM
3002
O3′
ADE
C
435
40.295
32.301
103.774
1.00
68.77
C


ATOM
3003
P
ADE
C
436
41.552
31.314
103.666
1.00
69.41
C


ATOM
3004
O1P
ADE
C
436
42.557
31.779
104.656
1.00
67.75
C


ATOM
3005
O2P
ADE
C
436
41.938
31.161
102.236
1.00
66.39
C


ATOM
3006
O5′
ADE
C
436
40.930
29.948
104.192
1.00
68.62
C


ATOM
3007
C5′
ADE
C
436
39.961
29.978
105.237
1.00
67.50
C


ATOM
3008
C4′
ADE
C
436
39.062
28.778
105.153
1.00
66.76
C


ATOM
3009
O4′
ADE
C
436
37.955
29.042
104.253
1.00
65.84
C


ATOM
3010
C1′
ADE
C
436
37.673
27.878
103.500
1.00
64.84
C


ATOM
3011
N9
ADE
C
436
37.994
28.169
102.107
1.00
63.84
C


ATOM
3012
C4
ADE
C
436
37.339
27.711
100.988
1.00
63.55
C


ATOM
3013
N3
ADE
C
436
36.295
26.869
100.940
1.00
62.20
C


ATOM
3014
C2
ADE
C
436
35.910
26.673
99.678
1.00
63.29
C


ATOM
3015
N1
ADE
C
436
36.410
27.187
98.546
1.00
62.42
C


ATOM
3016
C6
ADE
C
436
37.456
28.030
98.631
1.00
62.84
C


ATOM
3017
N6
ADE
C
436
37.944
28.550
97.505
1.00
62.83
C


ATOM
3018
C5
ADE
C
436
37.964
28.314
99.912
1.00
63.58
C


ATOM
3019
N7
ADE
C
436
39.010
29.113
100.343
1.00
65.53
C


ATOM
3020
C8
ADE
C
436
38.989
28.986
101.649
1.00
64.55
C


ATOM
3021
C2′
ADE
C
436
38.503
26.756
104.120
1.00
65.24
C


ATOM
3022
O2′
ADE
C
436
37.804
26.224
105.227
1.00
66.40
C


ATOM
3023
C3′
ADE
C
436
39.715
27.531
104.595
1.00
66.18
C


ATOM
3024
O3′
ADE
C
436
40.368
26.843
105.646
1.00
66.58
C


ATOM
3025
P
ADE
C
437
41.651
25.943
105.318
1.00
67.89
C


ATOM
3026
O1P
ADE
C
437
42.351
25.674
106.598
1.00
67.81
C


ATOM
3027
O2P
ADE
C
437
42.384
26.565
104.182
1.00
67.40
C


ATOM
3028
O5′
ADE
C
437
41.023
24.572
104.831
1.00
66.73
C


ATOM
3029
C5′
ADE
C
437
40.025
23.933
105.603
1.00
67.55
C


ATOM
3030
C4′
ADE
C
437
39.313
22.918
104.762
1.00
68.47
C


ATOM
3031
O4′
ADE
C
437
38.419
23.610
103.845
1.00
68.30
C


ATOM
3032
C1′
ADE
C
437
38.485
23.002
102.567
1.00
67.40
C


ATOM
3033
N9
ADE
C
437
39.111
23.954
101.651
1.00
65.38
C


ATOM
3034
C4
ADE
C
437
38.823
24.112
100.320
1.00
64.64
C


ATOM
3035
N3
ADE
C
437
37.923
23.432
99.598
1.00
64.22
C


ATOM
3036
C2
ADE
C
437
37.920
23.852
98.335
1.00
65.30
C


ATOM
3037
N1
ADE
C
437
38.660
24.801
97.756
1.00
65.94
C


ATOM
3038
C6
ADE
C
437
39.558
25.467
98.512
1.00
65.81
C


ATOM
3039
N6
ADE
C
437
40.298
26.411
97.934
1.00
66.54
C


ATOM
3040
C5
ADE
C
437
39.656
25.118
99.870
1.00
65.25
C


ATOM
3041
N7
ADE
C
437
40.454
25.591
100.900
1.00
66.13
C


ATOM
3042
C8
ADE
C
437
40.092
24.869
101.932
1.00
66.12
C


ATOM
3043
C2′
ADE
C
437
39.272
21.703
102.755
1.00
67.83
C


ATOM
3044
O2′
ADE
C
437
38.406
20.672
103.193
1.00
66.91
C


ATOM
3045
C3′
ADE
C
437
40.231
22.118
103.857
1.00
68.95
C


ATOM
3046
O3′
ADE
C
437
40.751
21.005
104.565
1.00
71.12
C


ATOM
3047
P
URI
C
438
41.863
20.075
103.879
1.00
73.66
C


ATOM
3048
O1P
URI
C
438
42.506
20.826
102.769
1.00
71.57
C


ATOM
3049
O2P
URI
C
438
42.702
19.539
104.981
1.00
73.16
C


ATOM
3050
O5′
URI
C
438
41.002
18.886
103.258
1.00
74.03
C


ATOM
3051
C5′
URI
C
438
41.468
18.148
102.138
1.00
76.70
C


ATOM
3052
C4′
URI
C
438
40.353
17.964
101.141
1.00
78.88
C


ATOM
3053
O4′
URI
C
438
39.685
19.237
100.955
1.00
79.02
C


ATOM
3054
C1′
URI
C
438
39.506
19.493
99.575
1.00
78.40
C


ATOM
3055
N1
URI
C
438
40.353
20.638
99.206
1.00
76.81
C


ATOM
3056
C6
URI
C
438
41.213
21.205
100.120
1.00
77.28
C


ATOM
3057
C2
URI
C
438
40.249
21.142
97.920
1.00
75.94
C


ATOM
3058
O2
URI
C
438
39.522
20.654
97.072
1.00
75.16
C


ATOM
3059
N3
URI
C
438
41.033
22.243
97.666
1.00
75.22
C


ATOM
3060
C4
URI
C
438
41.892
22.877
98.545
1.00
75.03
C


ATOM
3061
O4
URI
C
438
42.431
23.931
98.208
1.00
73.84
C


ATOM
3062
C5
URI
C
438
41.966
22.278
99.840
1.00
76.07
C


ATOM
3063
C2′
URI
C
438
39.817
18.199
98.826
1.00
79.68
C


ATOM
3064
O2′
URI
C
438
38.650
17.426
98.641
1.00
80.05
C


ATOM
3065
C3′
URI
C
438
40.810
17.522
99.759
1.00
81.02
C


ATOM
3066
O3′
URI
C
438
40.687
16.114
99.641
1.00
85.73
C


ATOM
3067
P
GUA
C
439
41.958
15.243
99.201
1.00
89.61
C


ATOM
3068
O1P
GUA
C
439
43.063
15.595
100.137
1.00
86.65
C


ATOM
3069
O2P
GUA
C
439
41.487
13.839
99.104
1.00
88.33
C


ATOM
3070
O5′
GUA
C
439
42.317
15.776
97.734
1.00
94.00
C


ATOM
3071
C5′
GUA
C
439
41.454
15.520
96.617
1.00
101.35
C


ATOM
3072
C4′
GUA
C
439
41.385
16.731
95.698
1.00
106.66
C


ATOM
3073
O4′
GUA
C
439
41.296
17.935
96.498
1.00
109.59
C


ATOM
3074
C1′
GUA
C
439
42.080
18.963
95.920
1.00
111.32
C


ATOM
3075
N9
GUA
C
439
43.115
19.344
96.874
1.00
113.82
C


ATOM
3076
C4
GUA
C
439
43.905
20.462
96.810
1.00
115.05
C


ATOM
3077
N3
GUA
C
439
43.864
21.402
95.844
1.00
115.22
C


ATOM
3078
C2
GUA
C
439
44.748
22.363
96.054
1.00
116.16
C


ATOM
3079
N2
GUA
C
439
44.845
23.380
95.188
1.00
116.49
C


ATOM
3080
N1
GUA
C
439
45.605
22.397
97.130
1.00
117.15
C


ATOM
3081
C6
GUA
C
439
45.665
21.437
98.139
1.00
117.34
C


ATOM
3082
O6
GUA
C
439
46.480
21.561
99.069
1.00
118.17
C


ATOM
3083
C5
GUA
C
439
44.720
20.400
97.924
1.00
116.29
C


ATOM
3084
N7
GUA
C
439
44.448
19.263
98.672
1.00
115.53
C


ATOM
3085
C8
GUA
C
439
43.492
18.666
98.012
1.00
115.04
C


ATOM
3086
C2′
GUA
C
439
42.648
18.457
94.595
1.00
110.41
C


ATOM
3087
O2′
GUA
C
439
41.899
18.960
93.505
1.00
109.71
C


ATOM
3088
C3′
GUA
C
439
42.567
16.938
94.756
1.00
109.48
C


ATOM
3089
O3′
GUA
C
439
42.291
16.365
93.486
1.00
111.37
C


ATOM
3090
P
URI
C
440
41.819
14.834
93.390
1.00
113.61
C


ATOM
3091
O1P
URI
C
440
42.876
14.008
94.033
1.00
113.47
C


ATOM
3092
O2P
URI
C
440
40.423
14.748
93.891
1.00
113.46
C


ATOM
3093
O5′
URI
C
440
41.824
14.541
91.820
1.00
113.15
C


ATOM
3094
C5′
URI
C
440
41.126
15.393
90.908
1.00
112.76
C


ATOM
3095
C4′
URI
C
440
39.673
14.991
90.843
1.00
112.75
C


ATOM
3096
O4′
URI
C
440
38.835
16.101
90.479
1.00
112.32
C


ATOM
3097
C1′
URI
C
440
37.587
15.567
90.130
1.00
111.52
C


ATOM
3098
N1
URI
C
440
36.778
16.612
89.482
1.00
109.39
C


ATOM
3099
C6
URI
C
440
37.282
17.876
89.285
1.00
109.63
C


ATOM
3100
C2
URI
C
440
35.484
16.296
89.108
1.00
107.64
C


ATOM
3101
O2
URI
C
440
35.011
15.182
89.229
1.00
105.80
C


ATOM
3102
N3
URI
C
440
34.764
17.338
88.584
1.00
107.65
C


ATOM
3103
C4
URI
C
440
35.198
18.634
88.389
1.00
108.72
C


ATOM
3104
O4
URI
C
440
34.416
19.477
87.948
1.00
109.01
C


ATOM
3105
C5
URI
C
440
36.556
18.871
88.768
1.00
109.19
C


ATOM
3106
C2′
URI
C
440
37.908
14.313
89.313
1.00
112.54
C


ATOM
3107
O2′
URI
C
440
36.925
13.323
89.561
1.00
112.81
C


ATOM
3108
C3′
URI
C
440
39.304
13.908
89.834
1.00
113.01
C


ATOM
3109
O3′
URI
C
440
39.263
12.650
90.501
1.00
113.21
C


ATOM
3110
P
ADE
C
441
40.229
11.459
90.017
1.00
113.40
C


ATOM
3111
O1P
ADE
C
441
40.156
10.387
91.047
1.00
113.55
C


ATOM
3112
O2P
ADE
C
441
41.553
12.033
89.643
1.00
112.92
C


ATOM
3113
O5′
ADE
C
441
39.519
10.921
88.696
1.00
110.64
C


ATOM
3114
C5′
ADE
C
441
38.116
11.095
88.499
1.00
104.96
C


ATOM
3115
C4′
ADE
C
441
37.362
9.926
89.076
1.00
100.67
C


ATOM
3116
O4′
ADE
C
441
36.506
10.381
90.160
1.00
99.35
C


ATOM
3117
C1′
ADE
C
441
35.350
9.551
90.222
1.00
99.29
C


ATOM
3118
N9
ADE
C
441
34.178
10.370
89.921
1.00
99.63
C


ATOM
3119
C4
ADE
C
441
32.866
9.986
90.077
1.00
100.33
C


ATOM
3120
N3
ADE
C
441
32.409
8.815
90.560
1.00
100.94
C


ATOM
3121
C2
ADE
C
441
31.076
8.787
90.543
1.00
100.93
C


ATOM
3122
N1
ADE
C
441
30.214
9.724
90.127
1.00
100.56
C


ATOM
3123
C6
ADE
C
441
30.706
10.889
89.647
1.00
100.33
C


ATOM
3124
N6
ADE
C
441
29.847
11.819
89.224
1.00
100.95
C


ATOM
3125
C5
ADE
C
441
32.106
11.047
89.618
1.00
100.21
C


ATOM
3126
N7
ADE
C
441
32.922
12.092
89.202
1.00
99.64
C


ATOM
3127
C8
ADE
C
441
34.138
11.644
89.407
1.00
99.73
C


ATOM
3128
C2′
ADE
C
441
35.535
8.476
89.149
1.00
98.46
C


ATOM
3129
O2′
ADE
C
441
36.198
7.350
89.691
1.00
98.08
C


ATOM
3130
C3′
ADE
C
441
36.378
9.242
88.143
1.00
98.19
C


ATOM
3131
O3′
ADE
C
441
37.018
8.396
87.189
1.00
93.51
C


ATOM
3132
P
GUA
C
442
36.821
8.678
85.612
1.00
89.51
C


ATOM
3133
O1P
GUA
C
442
37.440
9.991
85.294
1.00
89.28
C


ATOM
3134
O2P
GUA
C
442
37.273
7.462
84.887
1.00
89.23
C


ATOM
3135
O5′
GUA
C
442
35.241
8.828
85.427
1.00
84.16
C


ATOM
3136
C5′
GUA
C
442
34.414
7.677
85.295
1.00
76.13
C


ATOM
3137
C4′
GUA
C
442
32.964
8.028
85.534
1.00
70.89
C


ATOM
3138
O4′
GUA
C
442
32.854
9.114
86.483
1.00
69.42
C


ATOM
3139
C1′
GUA
C
442
31.710
9.895
86.176
1.00
69.07
C


ATOM
3140
N9
GUA
C
442
32.148
11.239
85.830
1.00
69.99
C


ATOM
3141
C4
GUA
C
442
31.341
12.276
85.441
1.00
70.26
C


ATOM
3142
N3
GUA
C
442
30.001
12.225
85.304
1.00
70.70
C


ATOM
3143
C2
GUA
C
442
29.500
13.389
84.932
1.00
71.20
C


ATOM
3144
N2
GUA
C
442
28.181
13.513
84.739
1.00
72.00
C


ATOM
3145
N1
GUA
C
442
30.255
14.518
84.720
1.00
71.27
C


ATOM
3146
C6
GUA
C
442
31.638
14.595
84.866
1.00
71.01
C


ATOM
3147
O6
GUA
C
442
32.224
15.671
84.676
1.00
71.49
C


ATOM
3148
C5
GUA
C
442
32.188
13.348
85.248
1.00
70.44
C


ATOM
3149
N7
GUA
C
442
33.504
12.984
85.492
1.00
69.90
C


ATOM
3150
C8
GUA
C
442
33.433
11.726
85.833
1.00
70.15
C


ATOM
3151
C2′
GUA
C
442
31.029
9.239
84.983
1.00
68.98
C


ATOM
3152
O2′
GUA
C
442
30.049
8.342
85.438
1.00
69.32
C


ATOM
3153
C3′
GUA
C
442
32.207
8.541
84.327
1.00
69.32
C


ATOM
3154
O3′
GUA
C
442
31.757
7.461
83.538
1.00
67.22
C


ATOM
3155
P
CYT
C
443
31.675
7.628
81.951
1.00
66.82
C


ATOM
3156
O1P
CYT
C
443
32.780
8.543
81.568
1.00
65.40
C


ATOM
3157
O2P
CYT
C
443
31.602
6.273
81.351
1.00
66.64
C


ATOM
3158
O5′
CYT
C
443
30.280
8.362
81.719
1.00
64.23
C


ATOM
3159
C5′
CYT
C
443
29.212
8.179
82.632
1.00
60.44
C


ATOM
3160
C4′
CYT
C
443
28.034
9.028
82.237
1.00
60.42
C


ATOM
3161
O4′
CYT
C
443
28.120
10.311
82.901
1.00
60.75
C


ATOM
3162
C1′
CYT
C
443
27.632
11.325
82.043
1.00
59.94
C


ATOM
3163
N1
CYT
C
443
28.741
12.233
81.752
1.00
60.55
C


ATOM
3164
C6
CYT
C
443
30.034
11.807
81.851
1.00
61.41
C


ATOM
3165
C2
CYT
C
443
28.458
13.543
81.398
1.00
61.61
C


ATOM
3166
O2
CYT
C
443
27.281
13.879
81.264
1.00
62.93
C


ATOM
3167
N3
CYT
C
443
29.473
14.411
81.203
1.00
62.99
C


ATOM
3168
C4
CYT
C
443
30.736
13.998
81.338
1.00
63.16
C


ATOM
3169
N4
CYT
C
443
31.714
14.898
81.176
1.00
63.54
C


ATOM
3170
C5
CYT
C
443
31.054
12.648
81.655
1.00
62.50
C


ATOM
3171
C2′
CYT
C
443
27.071
10.626
80.811
1.00
60.08
C


ATOM
3172
O2′
CYT
C
443
25.713
10.318
81.032
1.00
58.31
C


ATOM
3173
C3′
CYT
C
443
27.939
9.382
80.770
1.00
60.24
C


ATOM
3174
O3′
CYT
C
443
27.290
8.353
80.052
1.00
61.43
C


ATOM
3175
P
URI
C
444
27.651
8.130
78.509
1.00
62.89
C


ATOM
3176
O1P
URI
C
444
29.135
8.146
78.411
1.00
62.11
C


ATOM
3177
O2P
URI
C
444
26.902
6.940
78.051
1.00
62.24
C


ATOM
3178
O5′
URI
C
444
27.049
9.422
77.789
1.00
62.10
C


ATOM
3179
C5′
URI
C
444
25.641
9.652
77.769
1.00
60.87
C


ATOM
3180
C4′
URI
C
444
25.324
11.023
77.207
1.00
61.87
C


ATOM
3181
O4′
URI
C
444
25.733
12.063
78.133
1.00
63.01
C


ATOM
3182
C1′
URI
C
444
26.046
13.248
77.410
1.00
62.90
C


ATOM
3183
N1
URI
C
444
27.444
13.612
77.690
1.00
64.77
C


ATOM
3184
C6
URI
C
444
28.354
12.674
78.113
1.00
65.25
C


ATOM
3185
C2
URI
C
444
27.826
14.936
77.505
1.00
64.97
C


ATOM
3186
O2
URI
C
444
27.060
15.803
77.139
1.00
66.12
C


ATOM
3187
N3
URI
C
444
29.144
15.204
77.763
1.00
65.12
C


ATOM
3188
C4
URI
C
444
30.105
14.311
78.170
1.00
65.52
C


ATOM
3189
O4
URI
C
444
31.270
14.694
78.287
1.00
66.32
C


ATOM
3190
C5
URI
C
444
29.637
12.970
78.351
1.00
66.21
C


ATOM
3191
C2′
URI
C
444
25.805
12.934
75.933
1.00
62.39
C


ATOM
3192
O2′
URI
C
444
24.491
13.306
75.581
1.00
60.13
C


ATOM
3193
C3′
URI
C
444
26.013
11.425
75.918
1.00
62.63
C


ATOM
3194
O3′
URI
C
444
25.383
10.827
74.793
1.00
64.64
C


ATOM
3195
P
ADE
C
445
25.916
11.155
73.308
1.00
66.28
C


ATOM
3196
O1P
ADE
C
445
25.219
10.211
72.397
1.00
64.73
C


ATOM
3197
O2P
ADE
C
445
27.409
11.194
73.325
1.00
66.33
C


ATOM
3198
O5′
ADE
C
445
25.378
12.631
73.036
1.00
62.89
C


ATOM
3199
C5′
ADE
C
445
26.059
13.503
72.143
1.00
62.04
C


ATOM
3200
C4′
ADE
C
445
25.576
14.918
72.337
1.00
61.54
C


ATOM
3201
O4′
ADE
C
445
26.035
15.392
73.628
1.00
61.02
C


ATOM
3202
C1′
ADE
C
445
26.237
16.797
73.573
1.00
59.77
C


ATOM
3203
N9
ADE
C
445
27.620
17.092
73.952
1.00
57.68
C


ATOM
3204
C4
ADE
C
445
28.145
18.350
74.089
1.00
57.02
C


ATOM
3205
N3
ADE
C
445
27.499
19.518
73.939
1.00
58.61
C


ATOM
3206
C2
ADE
C
445
28.333
20.541
74.126
1.00
60.44
C


ATOM
3207
N1
ADE
C
445
29.641
20.529
74.422
1.00
58.87
C


ATOM
3208
C6
ADE
C
445
30.256
19.337
74.571
1.00
57.61
C


ATOM
3209
N6
ADE
C
445
31.557
19.330
74.874
1.00
58.29
C


ATOM
3210
C5
ADE
C
445
29.477
18.172
74.399
1.00
56.54
C


ATOM
3211
N7
ADE
C
445
29.783
16.821
74.481
1.00
56.12
C


ATOM
3212
C8
ADE
C
445
28.649
16.225
74.213
1.00
56.67
C


ATOM
3213
C2′
ADE
C
445
25.940
17.243
72.139
1.00
60.70
C


ATOM
3214
O2′
ADE
C
445
24.631
17.755
72.031
1.00
58.79
C


ATOM
3215
C3′
ADE
C
445
26.135
15.946
71.368
1.00
61.36
C


ATOM
3216
O3′
ADE
C
445
25.406
15.987
70.150
1.00
63.54
C


ATOM
3217
P
ADE
C
446
26.082
16.646
68.855
1.00
65.43
C


ATOM
3218
O1P
ADE
C
446
25.161
16.539
67.699
1.00
64.30
C


ATOM
3219
O2P
ADE
C
446
27.449
16.070
68.762
1.00
64.89
C


ATOM
3220
O5′
ADE
C
446
26.212
18.185
69.236
1.00
65.58
C


ATOM
3221
C5′
ADE
C
446
25.061
18.980
69.484
1.00
67.19
C


ATOM
3222
C4′
ADE
C
446
25.449
20.438
69.609
1.00
69.70
C


ATOM
3223
O4′
ADE
C
446
26.117
20.673
70.881
1.00
69.91
C


ATOM
3224
C1′
ADE
C
446
27.070
21.719
70.732
1.00
68.88
C


ATOM
3225
N9
ADE
C
446
28.390
21.162
71.001
1.00
67.70
C


ATOM
3226
C4
ADE
C
446
29.535
21.876
71.246
1.00
66.81
C


ATOM
3227
N3
ADE
C
446
29.667
23.211
71.291
1.00
66.09
C


ATOM
3228
C2
ADE
C
446
30.929
23.545
71.544
1.00
65.77
C


ATOM
3229
N1
ADE
C
446
31.991
22.758
71.741
1.00
64.82
C


ATOM
3230
C6
ADE
C
446
31.821
21.422
71.690
1.00
65.47
C


ATOM
3231
N6
ADE
C
446
32.882
20.636
71.883
1.00
66.43
C


ATOM
3232
C5
ADE
C
446
30.532
20.938
71.431
1.00
66.11
C


ATOM
3233
N7
ADE
C
446
30.025
19.653
71.306
1.00
67.03
C


ATOM
3234
C8
ADE
C
446
28.753
19.840
71.051
1.00
67.08
C


ATOM
3235
C2′
ADE
C
446
26.974
22.201
69.284
1.00
70.69
C


ATOM
3236
O2′
ADE
C
446
26.100
23.309
69.172
1.00
71.01
C


ATOM
3237
C3′
ADE
C
446
26.462
20.944
68.599
1.00
70.64
C


ATOM
3238
O3′
ADE
C
446
25.863
21.222
67.346
1.00
72.10
C


ATOM
3239
P
ADE
C
447
26.629
20.801
66.002
1.00
74.80
C


ATOM
3240
O1P
ADE
C
447
25.726
21.123
64.867
1.00
74.26
C


ATOM
3241
O2P
ADE
C
447
27.136
19.409
66.164
1.00
73.67
C


ATOM
3242
O5′
ADE
C
447
27.877
21.791
65.965
1.00
73.64
C


ATOM
3243
C5′
ADE
C
447
27.703
23.182
66.193
1.00
73.27
C


ATOM
3244
C4′
ADE
C
447
29.010
23.806
66.603
1.00
73.72
C


ATOM
3245
O4′
ADE
C
447
29.479
23.193
67.826
1.00
72.33
C


ATOM
3246
C1′
ADE
C
447
30.894
23.188
67.843
1.00
72.82
C


ATOM
3247
N9
ADE
C
447
31.335
21.803
67.995
1.00
73.10
C


ATOM
3248
C4
ADE
C
447
32.552
21.369
68.464
1.00
72.15
C


ATOM
3249
N3
ADE
C
447
33.582
22.124
68.880
1.00
72.73
C


ATOM
3250
C2
ADE
C
447
34.600
21.352
69.276
1.00
72.40
C


ATOM
3251
N1
ADE
C
447
34.695
20.015
69.296
1.00
70.81
C


ATOM
3252
C6
ADE
C
447
33.642
19.290
68.867
1.00
70.89
C


ATOM
3253
N6
ADE
C
447
33.738
17.961
68.877
1.00
69.94
C


ATOM
3254
C5
ADE
C
447
32.500
19.987
68.428
1.00
71.53
C


ATOM
3255
N7
ADE
C
447
31.271
19.555
67.949
1.00
72.07
C


ATOM
3256
C8
ADE
C
447
30.620
20.667
67.706
1.00
72.94
C


ATOM
3257
C2′
ADE
C
447
31.359
23.840
66.541
1.00
73.60
C


ATOM
3258
O2′
ADE
C
447
31.584
25.213
66.757
1.00
72.67
C


ATOM
3259
C3′
ADE
C
447
30.158
23.597
65.639
1.00
74.90
C


ATOM
3260
O3′
ADE
C
447
30.084
24.566
64.603
1.00
79.87
C


ATOM
3261
P
ADE
C
448
30.492
24.163
63.098
1.00
83.67
C


ATOM
3262
O1P
ADE
C
448
29.899
25.203
62.213
1.00
82.49
C


ATOM
3263
O2P
ADE
C
448
30.178
22.725
62.860
1.00
80.82
C


ATOM
3264
O5′
ADE
C
448
32.077
24.339
63.091
1.00
84.13
C


ATOM
3265
C5′
ADE
C
448
32.699
25.406
62.374
1.00
84.08
C


ATOM
3266
C4′
ADE
C
448
32.454
26.728
63.066
1.00
83.97
C


ATOM
3267
O4′
ADE
C
448
32.636
26.595
64.504
1.00
83.19
C


ATOM
3268
C1′
ADE
C
448
33.134
27.821
65.033
1.00
83.31
C


ATOM
3269
N9
ADE
C
448
34.454
27.575
65.611
1.00
82.50
C


ATOM
3270
C4
ADE
C
448
35.292
28.540
66.112
1.00
81.82
C


ATOM
3271
N3
ADE
C
448
35.047
29.857
66.208
1.00
82.11
C


ATOM
3272
C2
ADE
C
448
36.095
30.491
66.727
1.00
82.15
C


ATOM
3273
N1
ADE
C
448
37.275
29.996
67.122
1.00
81.66
C


ATOM
3274
C6
ADE
C
448
37.492
28.671
67.003
1.00
80.57
C


ATOM
3275
N6
ADE
C
448
38.676
28.191
67.369
1.00
78.90
C


ATOM
3276
C5
ADE
C
448
36.449
27.882
66.484
1.00
81.08
C


ATOM
3277
N7
ADE
C
448
36.333
26.520
66.253
1.00
81.17
C


ATOM
3278
C8
ADE
C
448
35.131
26.388
65.742
1.00
82.13
C


ATOM
3279
C2′
ADE
C
448
33.242
28.796
63.858
1.00
83.95
C


ATOM
3280
O2′
ADE
C
448
32.075
29.588
63.742
1.00
84.45
C


ATOM
3281
C3′
ADE
C
448
33.436
27.827
62.704
1.00
84.49
C


ATOM
3282
O3′
ADE
C
448
33.142
28.405
61.440
1.00
86.19
C


ATOM
3283
P
ADE
C
449
34.210
28.275
60.245
1.00
87.99
C


ATOM
3284
O1P
ADE
C
449
33.853
29.283
59.215
1.00
87.00
C


ATOM
3285
O2P
ADE
C
449
34.307
26.840
59.863
1.00
86.93
C


ATOM
3286
O5′
ADE
C
449
35.588
28.715
60.919
1.00
86.55
C


ATOM
3287
C5′
ADE
C
449
35.750
30.027
61.447
1.00
85.31
C


ATOM
3288
C4′
ADE
C
449
37.078
30.154
62.154
1.00
85.28
C


ATOM
3289
O4′
ADE
C
449
37.082
29.328
63.350
1.00
85.85
C


ATOM
3290
C1′
ADE
C
449
38.410
28.880
63.611
1.00
84.64
C


ATOM
3291
N9
ADE
C
449
38.424
27.420
63.534
1.00
82.84
C


ATOM
3292
C4
ADE
C
449
39.426
26.589
63.976
1.00
81.56
C


ATOM
3293
N3
ADE
C
449
40.587
26.942
64.555
1.00
80.63
C


ATOM
3294
C2
ADE
C
449
41.310
25.864
64.858
1.00
79.78
C


ATOM
3295
N1
ADE
C
449
41.030
24.571
64.665
1.00
79.45
C


ATOM
3296
C6
ADE
C
449
39.856
24.249
64.080
1.00
81.05
C


ATOM
3297
N6
ADE
C
449
39.571
22.957
63.888
1.00
81.21
C


ATOM
3298
C5
ADE
C
449
38.996
25.305
63.706
1.00
81.23
C


ATOM
3299
N7
ADE
C
449
37.749
25.326
63.096
1.00
81.07
C


ATOM
3300
C8
ADE
C
449
37.456
26.600
63.017
1.00
80.87
C


ATOM
3301
C2′
ADE
C
449
39.302
29.513
62.544
1.00
84.95
C


ATOM
3302
O2′
ADE
C
449
39.817
30.743
63.022
1.00
84.38
C


ATOM
3303
C3′
ADE
C
449
38.305
29.666
61.403
1.00
85.19
C


ATOM
3304
O3′
ADE
C
449
38.751
30.611
60.443
1.00
84.91
C


ATOM
3305
P
GUA
C
450
39.413
30.095
59.074
1.00
84.58
C


ATOM
3306
O1P
GUA
C
450
38.369
29.339
58.332
1.00
83.17
C


ATOM
3307
O2P
GUA
C
450
40.085
31.251
58.427
1.00
84.98
C


ATOM
3308
O5′
GUA
C
450
40.556
29.094
59.551
1.00
83.16
C


ATOM
3309
C5′
GUA
C
450
41.783
29.595
60.073
1.00
81.52
C


ATOM
3310
C4′
GUA
C
450
42.628
28.459
60.594
1.00
81.00
C


ATOM
3311
O4′
GUA
C
450
41.834
27.654
61.508
1.00
80.06
C


ATOM
3312
C1′
GUA
C
450
42.197
26.286
61.380
1.00
79.33
C


ATOM
3313
N9
GUA
C
450
41.032
25.541
60.904
1.00
77.56
C


ATOM
3314
C4
GUA
C
450
40.926
24.175
60.809
1.00
74.96
C


ATOM
3315
N3
GUA
C
450
41.891
23.285
61.115
1.00
72.47
C


ATOM
3316
C2
GUA
C
450
41.486
22.042
60.933
1.00
72.36
C


ATOM
3317
N2
GUA
C
450
42.324
21.023
61.174
1.00
71.30
C


ATOM
3318
N1
GUA
C
450
40.227
21.701
60.498
1.00
72.99
C


ATOM
3319
C6
GUA
C
450
39.216
22.600
60.187
1.00
72.97
C


ATOM
3320
C6
GUA
C
450
38.113
22.183
59.828
1.00
72.47
C


ATOM
3321
C5
GUA
C
450
39.641
23.937
60.357
1.00
74.31
C


ATOM
3322
N7
GUA
C
450
38.963
25.129
60.146
1.00
75.07
C


ATOM
3323
C8
GUA
C
450
39.825
26.054
60.481
1.00
77.45
C


ATOM
3324
C2′
GUA
C
450
43.375
26.233
60.410
1.00
80.25
C


ATOM
3325
O2′
GUA
C
450
44.596
26.322
61.117
1.00
78.73
C


ATOM
3326
C3′
GUA
C
450
43.084
27.454
59.551
1.00
80.96
C


ATOM
3327
O3′
GUA
C
450
44.236
27.901
58.853
1.00
81.13
C


ATOM
3328
P
GUA
C
451
44.420
27.508
57.305
1.00
81.46
C


ATOM
3329
O1P
GUA
C
451
43.133
27.796
56.616
1.00
80.36
C


ATOM
3330
O2P
GUA
C
451
45.673
28.147
56.825
1.00
80.48
C


ATOM
3331
O5′
GUA
C
451
44.631
25.927
57.341
1.00
79.28
C


ATOM
3332
C5′
GUA
C
451
45.580
25.349
58.229
1.00
76.29
C


ATOM
3333
C4′
GUA
C
451
45.730
23.875
57.957
1.00
74.88
C


ATOM
3334
O4′
GUA
C
451
44.758
23.130
58.728
1.00
73.92
C


ATOM
3335
C1′
GUA
C
451
44.363
21.975
58.003
1.00
72.37
C


ATOM
3336
N9
GUA
C
451
42.947
22.106
57.687
1.00
69.07
C


ATOM
3337
C4
GUA
C
451
42.051
21.085
57.486
1.00
66.32
C


ATOM
3338
N3
GUA
C
451
42.325
19.763
57.546
1.00
63.40
C


ATOM
3339
C2
GUA
C
451
41.246
19.027
57.317
1.00
63.39
C


ATOM
3340
N2
GUA
C
451
41.323
17.683
57.356
1.00
60.65
C


ATOM
3341
N1
GUA
C
451
40.004
19.554
57.040
1.00
64.12
C


ATOM
3342
C6
GUA
C
451
39.703
20.914
56.975
1.00
64.33
C


ATOM
3343
O6
GUA
C
451
38.544
21.287
56.729
1.00
62.58
C


ATOM
3344
C5
GUA
C
451
40.846
21.707
57.222
1.00
65.72
C


ATOM
3345
N7
GUA
C
451
40.987
23.086
57.252
1.00
67.31
C


ATOM
3346
C8
GUA
C
451
42.247
23.277
57.530
1.00
67.97
C


ATOM
3347
C2′
GUA
C
451
45.215
21.935
56.736
1.00
73.66
C


ATOM
3348
O2′
GUA
C
451
46.375
21.162
56.966
1.00
72.93
C


ATOM
3349
C3′
GUA
C
451
45.501
23.414
56.529
1.00
74.10
C


ATOM
3350
O3′
GUA
C
451
46.695
23.571
55.791
1.00
76.92
C


ATOM
3351
P
ADE
C
452
46.646
23.622
54.191
1.00
79.92
C


ATOM
3352
O1P
ADE
C
452
45.749
24.737
53.778
1.00
77.97
C


ATOM
3353
O2P
ADE
C
452
48.062
23.622
53.752
1.00
80.27
C


ATOM
3354
O5′
ADE
C
452
46.002
22.225
53.768
1.00
81.04
C


ATOM
3355
PC
ADE
C
452
47.403
20.187
49.052
1.00
94.69
C


ATOM
3356
O1C
ADE
C
452
48.478
20.648
48.135
1.00
92.74
C


ATOM
3357
O2C
ADE
C
452
46.873
18.888
48.562
1.00
93.16
C


ATOM
3358
O3′
ADE
C
452
47.997
19.949
50.531
1.00
92.25
C


ATOM
3359
C5′
ADE
C
452
46.769
21.023
53.811
1.00
84.82
C


ATOM
3360
C4′
ADE
C
452
46.607
20.249
52.521
1.00
88.58
C


ATOM
3361
O4′
ADE
C
452
45.193
20.079
52.251
1.00
89.88
C


ATOM
3362
C1′
ADE
C
452
44.954
20.314
50.882
1.00
90.96
C


ATOM
3363
N9
ADE
C
452
43.567
20.751
50.722
1.00
90.40
C


ATOM
3364
C4
ADE
C
452
42.474
19.924
50.615
1.00
89.68
C


ATOM
3365
N3
ADE
C
452
42.462
18.579
50.648
1.00
89.15
C


ATOM
3366
C2
ADE
C
452
41.222
18.118
50.497
1.00
89.12
C


ATOM
3367
N1
ADE
C
452
40.076
18.797
50.332
1.00
88.58
C


ATOM
3368
C6
ADE
C
452
40.123
20.148
50.308
1.00
89.15
C


ATOM
3369
N6
ADE
C
452
38.982
20.827
50.148
1.00
88.59
C


ATOM
3370
C5
ADE
C
452
41.383
20.761
50.455
1.00
89.44
C


ATOM
3371
N7
ADE
C
452
41.779
22.092
50.468
1.00
89.57
C


ATOM
3372
C8
ADE
C
452
43.079
22.033
50.633
1.00
90.05
C


ATOM
3373
C2′
ADE
C
452
46.001
21.345
50.459
1.00
91.00
C


ATOM
3374
O2′
ADE
C
452
46.225
21.291
49.060
1.00
92.14
C


ATOM
3375
C3′
ADE
C
452
47.216
20.892
51.270
1.00
90.65
C


TER


HETATM
3376
CS + 1
CS1

101
2.853
25.764
50.394
1.00
98.04
D


HETATM
3377
CS + 1
CS1

501
30.101
22.718
92.220
1.00
108.11
F


HETATM
3378
MG + 2
MG2

102
2.352
24.068
36.432
1.00
50.96
E


HETATM
3379
N
SAM

100
−8.439
27.146
69.630
1.00
67.99
G


HETATM
3380
CA
SAM

100
−9.271
27.703
68.534
1.00
70.40
G


HETATM
3381
C
SAM

100
−10.749
27.414
68.789
1.00
71.30
G


HETATM
3382
O
SAM

100
−11.601
27.834
68.013
1.00
71.72
G


HETATM
3383
OXT
SAM

100
−11.093
26.708
69.727
1.00
72.44
G


HETATM
3384
CB
SAM

100
−8.870
27.061
67.190
1.00
70.62
G


HETATM
3385
CG
SAM

100
−7.645
27.736
66.544
1.00
71.18
G


HETATM
3386
SD
SAM

100
−6.617
26.445
65.764
1.00
69.00
G


HETATM
3387
CE
SAM

100
−5.148
26.604
66.812
1.00
70.58
G


HETATM
3388
C5′
SAM

100
−6.000
27.274
64.272
1.00
68.56
G


HETATM
3389
C4′
SAM

100
−5.124
26.274
63.522
1.00
67.11
G


HETATM
3390
O4′
SAM

100
−5.882
25.101
63.332
1.00
68.09
G


HETATM
3391
C3′
SAM

100
−4.748
26.782
62.126
1.00
67.21
G


HETATM
3392
O3′
SAM

100
−3.403
27.274
62.073
1.00
66.59
G


HETATM
3393
C2′
SAM

100
−4.914
25.524
61.221
1.00
68.03
G


HETATM
3394
O2′
SAM

100
−3.763
25.403
60.376
1.00
68.41
G


HETATM
3395
C1′
SAM

100
−5.287
24.402
62.250
1.00
67.94
G


HETATM
3396
N9
SAM

100
−6.236
23.412
61.722
1.00
68.51
G


HETATM
3397
C8
SAM

100
−7.480
23.661
61.200
1.00
69.21
G


HETATM
3398
N7
SAM

100
−8.049
22.542
60.827
1.00
70.09
G


HETATM
3399
C5
SAM

100
−7.217
21.507
61.086
1.00
69.15
G


HETATM
3400
C6
SAM

100
−7.270
20.099
60.911
1.00
68.58
G


HETATM
3401
N6
SAM

100
−8.373
19.508
60.350
1.00
69.87
G


HETATM
3402
N1
SAM

100
−6.223
19.349
61.301
1.00
68.53
G


HETATM
3403
C2
SAM

100
−5.144
19.895
61.859
1.00
69.32
G


HETATM
3404
N3
SAM

100
−5.039
21.218
62.023
1.00
69.30
G


HETATM
3405
C4
SAM

100
−6.039
22.051
61.667
1.00
69.21
G


HETATM
3406
N
SAM

300
10.237
21.648
2.816
1.00
60.97
H


HETATM
3407
CA
SAM

300
11.651
22.047
3.005
1.00
62.32
H


HETATM
3408
C
SAM

300
12.362
21.942
1.712
1.00
62.83
H


HETATM
3409
O
SAM

300
13.587
21.876
1.687
1.00
64.00
H


HETATM
3410
OXT
SAM

300
11.716
21.890
0.688
1.00
64.42
H


HETATM
3411
CB
SAM

300
12.377
21.174
4.031
1.00
60.97
H


HETATM
3412
CG
SAM

300
11.577
21.118
5.324
1.00
63.92
H


HETATM
3413
SD
SAM

300
12.498
21.859
6.693
1.00
63.71
H


HETATM
3414
CE
SAM

300
14.101
21.012
6.547
1.00
64.61
H


HETATM
3415
C5′
SAM

300
11.741
20.937
8.074
1.00
64.51
H


HETATM
3416
C4′
SAM

300
12.212
21.514
9.408
1.00
64.50
H


HETATM
3417
O4′
SAM

300
12.014
22.911
9.367
1.00
64.16
H


HETATM
3418
C3′
SAM

300
11.355
20.977
10.578
1.00
64.84
H


HETATM
3419
O3′
SAM

300
12.242
20.357
11.519
1.00
63.50
H


HETATM
3420
C2′
SAM

300
10.763
22.266
11.209
1.00
64.14
H


HETATM
3421
O2′
SAM

300
10.507
22.213
12.604
1.00
65.81
H


HETATM
3422
C1′
SAM

300
11.770
23.312
10.702
1.00
64.78
H


HETATM
3423
N9
SAM

300
11.276
24.678
10.695
1.00
66.74
H


HETATM
3424
C8
SAM

300
10.025
25.110
10.342
1.00
67.03
H


HETATM
3425
N7
SAM

300
9.961
26.407
10.437
1.00
68.42
H


HETATM
3426
C5
SAM

300
11.160
26.888
10.851
1.00
68.11
H


HETATM
3427
C6
SAM

300
11.695
28.174
11.120
1.00
68.47
H


HETATM
3428
N6
SAM

300
10.914
29.302
10.963
1.00
68.71
H


HETATM
3429
N1
SAM

300
12.984
28.276
11.521
1.00
68.18
H


HETATM
3430
C2
SAM

300
13.765
27.201
11.655
1.00
67.60
H


HETATM
3431
N3
SAM

300
13.296
25.977
11.432
1.00
67.44
H


HETATM
3432
C4
SAM

300
12.020
25.779
11.024
1.00
67.46
H


HETATM
3433
N
SAM

500
37.476
19.907
71.774
1.00
68.92
I


HETATM
3434
CA
SAM

500
37.189
18.545
72.257
1.00
67.92
I


HETATM
3435
C
SAM

500
36.755
17.664
71.104
1.00
68.27
I


HETATM
3436
O
SAM

500
36.488
16.474
71.300
1.00
67.81
I


HETATM
3437
OXT
SAM

500
36.602
18.151
69.994
1.00
68.25
I


HETATM
3438
CB
SAM

500
36.063
18.606
73.284
1.00
66.91
I


HETATM
3439
CG
SAM

500
36.585
19.106
74.614
1.00
65.20
I


HETATM
3440
SD
SAM

500
35.226
19.924
75.468
1.00
66.03
I


HETATM
3441
CE
SAM

500
35.742
21.645
75.216
1.00
64.78
I


HETATM
3442
C5′
SAM

500
35.723
19.678
77.207
1.00
63.31
I


HETATM
3443
C4′
SAM

500
34.701
20.362
78.111
1.00
61.48
I


HETATM
3444
O4′
SAM

500
33.419
20.080
77.600
1.00
60.13
I


HETATM
3445
C3′
SAM

500
34.729
19.784
79.530
1.00
61.39
I


HETATM
3446
O3′
SAM

500
35.604
20.343
80.522
1.00
60.89
I


HETATM
3447
C2′
SAM

500
33.217
19.729
79.929
1.00
61.21
I


HETATM
3448
O2′
SAM

500
33.076
20.298
81.242
1.00
62.97
I


HETATM
3449
C1′
SAM

500
32.495
20.295
78.655
1.00
59.83
I


HETATM
3450
N9
SAM

500
31.254
19.595
78.306
1.00
59.64
I


HETATM
3451
C8
SAM

500
31.073
18.238
78.197
1.00
59.28
I


HETATM
3452
N7
SAM

500
29.849
17.970
77.845
1.00
59.16
I


HETATM
3453
C5
SAM

500
29.164
19.128
77.702
1.00
59.32
I


HETATM
3454
C6
SAM

500
27.830
19.479
77.339
1.00
59.18
I


HETATM
3455
N6
SAM

500
26.899
18.506
77.027
1.00
58.09
I


HETATM
3456
N1
SAM

500
27.493
20.782
77.296
1.00
59.09
I


HETATM
3457
C2
SAM

500
28.380
21.745
77.571
1.00
58.95
I


HETATM
3458
N3
SAM

500
29.630
21.460
77.925
1.00
58.97
I


HETATM
3459
C4
SAM

500
30.062
20.188
77.999
1.00
59.11
I


HETATM
3460
O
HOH

1000
1.710
38.862
57.073
1.00
6.38
S


HETATM
3461
O
HOH

1002
9.109
30.706
−10.011
1.00
41.55
S


HETATM
3462
O
HOH

1003
10.672
39.117
54.293
1.00
13.45
S


HETATM
3463
O
HOH

1004
−1.136
27.508
33.730
1.00
37.86
S


HETATM
3464
O
HOH

1005
9.642
20.371
24.593
1.00
23.91
S


HETATM
3465
O
HOH

1006
24.182
12.968
37.659
1.00
29.49
S


HETATM
3466
O
HOH

1007
23.014
43.756
107.299
1.00
42.31
S


HETATM
3467
O
HOH

1008
1.203
10.487
33.970
1.00
19.01
S


HETATM
3468
O
HOH

1009
0.895
28.820
56.844
1.00
19.53
S


HETATM
3469
O
HOH

1011
−12.488
37.567
51.296
1.00
41.81
S


HETATM
3470
O
HOH

1012
30.364
42.530
104.047
1.00
38.54
S


HETATM
3471
O
HOH

1013
14.002
22.976
53.710
1.00
32.39
S


HETATM
3472
O
HOH

1014
10.679
28.362
−4.887
1.00
74.66
S


HETATM
3473
O
HOH

1015
8.558
21.534
−0.603
1.00
37.38
S


HETATM
3474
O
HOH

1016
6.242
38.900
42.266
1.00
33.46
S


HETATM
3475
O
HOH

1017
−15.226
17.903
65.737
1.00
45.33
S


HETATM
3476
O
HOH

1018
4.523
11.428
11.327
1.00
36.06
S


HETATM
3477
O
HOH

1020
18.196
24.026
37.816
1.00
57.02
S


HETATM
3478
O
HOH

1021
−1.012
36.439
45.147
1.00
32.47
S


HETATM
3479
O
HOH

1022
7.578
20.568
51.009
1.00
39.39
S


HETATM
3480
O
HOH

1023
−14.823
28.188
59.227
1.00
30.57
S


HETATM
3481
O
HOH

1024
36.985
17.198
95.795
1.00
52.06
S


HETATM
3482
O
HOH

1026
25.333
21.807
45.339
1.00
36.69
S


HETATM
3483
O
HOH

1027
15.473
28.282
57.160
1.00
49.29
S


HETATM
3484
O
HOH

1028
41.659
12.070
93.116
1.00
51.81
S


HETATM
3485
O
HOH

1029
37.830
24.077
56.753
1.00
56.04
S


HETATM
3486
O
HOH

1030
1.496
18.974
19.910
1.00
46.52
S


HETATM
3487
O
HOH

1031
−21.564
18.695
76.954
1.00
42.72
S


HETATM
3488
O
HOH

1032
5.632
6.369
28.271
1.00
54.24
S


HETATM
3489
O
HOH

1033
−12.164
20.042
54.326
1.00
37.69
S


HETATM
3490
O
HOH

1034
−9.635
21.741
83.667
1.00
28.64
S


HETATM
3491
O
HOH

1035
16.349
18.517
−10.014
1.00
32.54
S


HETATM
3492
O
HOH

1036
−19.165
22.912
60.859
1.00
40.83
S


HETATM
3493
O
HOH

1037
42.317
14.698
87.404
1.00
54.29
S


HETATM
3494
O
HOH

1038
5.305
30.972
14.298
1.00
45.65
S


HETATM
3495
O
HOH

1039
17.404
7.202
37.021
1.00
42.45
S


HETATM
3496
O
HOH

1040
9.144
11.513
24.225
1.00
119.44
S


HETATM
3497
O
HOH

1041
3.177
32.569
38.072
1.00
25.83
S


HETATM
3498
O
HOH

1042
29.325
17.646
67.611
1.00
53.76
S


HETATM
3499
O
HOH

1043
−11.046
32.302
57.055
1.00
47.80
S


HETATM
3500
O
HOH

1045
2.422
16.973
31.694
1.00
41.35
S


HETATM
3501
O
HOH

1046
−13.045
28.534
71.549
1.00
47.13
S


HETATM
3502
O
HOH

1047
8.497
31.635
16.931
1.00
50.64
S


HETATM
3503
O
HOH

1048
−0.041
28.567
59.602
1.00
32.18
S


HETATM
3504
O
HOH

1049
24.871
19.578
80.883
1.00
68.34
S


HETATM
3505
O
HOH

1050
−7.523
19.578
79.061
1.00
113.57
S


HETATM
3506
O
HOH

1051
32.273
17.481
60.997
1.00
41.48
S


HETATM
3507
O
HOH

1052
1.502
18.555
10.879
1.00
50.88
S


HETATM
3508
O
HOH

1053
−1.995
27.026
58.607
1.00
49.02
S


HETATM
3509
O
HOH

1054
−17.653
24.848
53.584
1.00
77.80
S


HETATM
3510
O
HOH

1055
40.398
23.070
95.424
1.00
51.36
S


HETATM
3511
O
HOH

1056
15.212
31.641
−13.652
1.00
63.71
S


HETATM
3512
O
HOH

1057
24.773
21.394
76.777
1.00
54.68
S


HETATM
3513
O
HOH

1058
16.892
31.552
45.517
1.00
36.41
S


HETATM
3514
O
HOH

1059
10.090
33.120
2.682
1.00
35.81
S


HETATM
3515
O
HOH

1060
40.562
32.813
61.039
1.00
58.14
S


HETATM
3516
O
HOH

1061
14.161
20.416
47.160
1.00
49.47
S


HETATM
3517
O
HOH

1062
16.854
25.674
45.737
1.00
63.64
S


HETATM
3518
O
HOH

1063
3.203
43.376
51.094
1.00
49.11
S


HETATM
3519
O
HOH

1064
10.256
14.418
12.230
1.00
47.72
S


HETATM
3520
O
HOH

1065
−11.321
23.776
50.912
1.00
41.32
S


HETATM
3521
O
HOH

1066
43.248
26.720
100.251
1.00
43.17
S


HETATM
3522
O
HOH

1067
6.827
22.199
53.781
1.00
44.26
S


HETATM
3523
O
HOH

1068
11.021
5.705
24.649
1.00
32.82
S


HETATM
3524
O
HOH

1069
−5.141
16.290
65.889
1.00
67.72
S


HETATM
3525
O
HOH

1070
37.653
20.345
106.218
1.00
43.17
S


HETATM
3526
O
HOH

1071
1.874
28.432
16.664
1.00
40.53
S


HETATM
3527
O
HOH

1072
−3.039
39.908
51.178
1.00
52.15
S


HETATM
3528
O
HOH

1073
1.616
35.304
49.349
1.00
31.83
S


HETATM
3529
O
HOH

1074
19.821
9.573
32.159
1.00
94.53
S


HETATM
3530
O
HOH

1075
21.624
32.806
94.159
1.00
47.85
S


HETATM
3531
O
HOH

1076
24.732
34.155
108.435
1.00
51.09
S


HETATM
3532
O
HOH

1077
44.822
15.942
65.700
1.00
67.94
S


HETATM
3533
O
HOH

1078
36.613
14.026
63.136
1.00
45.24
S


HETATM
3534
O
HOH

1079
6.121
30.417
−2.435
1.00
46.00
S


HETATM
3535
O
HOH

1080
−4.110
38.667
58.528
1.00
47.87
S


HETATM
3536
O
HOH

1081
12.209
22.292
−13.923
1.00
42.28
S


HETATM
3537
O
HOH

1082
0.899
35.587
51.902
1.00
26.89
S


HETATM
3538
O
HOH

1083
44.968
38.661
100.718
1.00
44.22
S


HETATM
3539
O
HOH

1084
−16.065
33.146
77.476
1.00
39.70
S


HETATM
3540
O
HOH

1085
5.667
23.312
50.094
1.00
54.65
S


HETATM
3541
O
HOH

1086
13.710
35.700
41.870
1.00
32.97
S


HETATM
3542
O
HOH

1087
12.259
28.157
57.075
1.00
58.60
S


HETATM
3543
O
HOH

1088
9.409
21.549
27.534
1.00
31.98
S


HETATM
3544
O
HOH

1089
10.012
36.290
54.703
1.00
31.08
S


HETATM
3545
O
HOH

1090
24.694
14.271
55.811
1.00
58.74
S


HETATM
3546
O
HOH

1091
21.329
17.967
85.737
1.00
52.06
S


HETATM
3547
O
HOH

1092
28.126
18.707
−4.949
1.00
56.14
S


HETATM
3548
O
HOH

1093
7.439
16.780
52.218
1.00
40.03
S


HETATM
3549
O
HOH

1094
23.184
15.715
36.268
1.00
74.82
S


HETATM
3550
O
HOH

1095
12.880
8.881
36.591
1.00
45.48
S


HETATM
3551
O
HOH

1096
32.397
14.748
68.336
1.00
66.46
S


HETATM
3552
O
HOH

1097
29.121
35.417
93.382
1.00
61.44
S


HETATM
3553
O
HOH

1098
38.004
11.531
92.474
1.00
48.19
S


HETATM
3554
O
HOH

1099
−22.649
19.849
71.095
1.00
64.38
S


HETATM
3555
O
HOH

1100
12.052
19.274
24.729
1.00
31.27
S


HETATM
3556
O
HOH

1102
0.090
13.188
35.366
1.00
32.03
S


HETATM
3557
O
HOH

1104
23.453
21.387
48.664
1.00
63.46
S


HETATM
3558
O
HOH

1105
1.388
17.977
33.901
1.00
23.04
S


HETATM
3559
O
HOH

1106
7.878
30.217
−11.732
1.00
37.04
S


HETATM
3560
O
HOH

1107
−24.804
23.927
75.393
1.00
49.59
S


HETATM
3561
O
HOH

1108
16.882
19.485
−12.274
1.00
44.73
S


HETATM
3562
O
HOH

1109
14.777
27.186
38.023
1.00
29.39
S


HETATM
3563
O
HOH

1110
10.347
22.869
25.228
1.00
25.02
S


HETATM
3564
O
HOH

1111
29.806
43.730
102.021
1.00
65.53
S


HETATM
3565
O
HOH

1112
24.539
44.456
105.464
1.00
47.15
S


HETATM
3566
O
HOH

1114
2.511
8.834
32.890
1.00
40.34
S


HETATM
3567
O
HOH

1115
0.302
44.186
52.911
1.00
35.43
S


HETATM
3568
O
HOH

1117
35.474
19.466
108.178
1.00
47.59
S


HETATM
3569
O
HOH

1118
9.046
17.460
7.452
1.00
52.67
S


HETATM
3570
O
HOH

1119
13.977
25.103
55.311
1.00
65.26
S


HETATM
3571
O
HOH

1120
35.407
36.186
102.048
1.00
50.73
S


HETATM
3572
O
HOH

1121
22.824
25.739
−8.232
1.00
37.73
S


HETATM
3573
O
HOH

1122
0.043
26.609
56.812
1.00
54.24
S


HETATM
3574
O
HOH

1123
−13.846
35.118
50.740
1.00
32.63
S


HETATM
3575
O
HOH

1125
11.978
33.811
55.449
1.00
51.87
S


HETATM
3576
O
HOH

1126
−9.343
19.524
53.426
1.00
46.19
S


HETATM
3577
O
HOH

1127
6.170
24.270
42.074
1.00
36.77
S


HETATM
3578
O
HOH

1128
−4.329
16.897
62.855
1.00
54.10
S


HETATM
3579
O
HOH

1129
14.894
23.528
19.116
1.00
54.16
S


HETATM
3580
O
HOH

1130
17.139
17.867
35.891
1.00
36.70
S


HETATM
3581
O
HOH

1131
24.693
13.072
28.311
1.00
43.09
S


HETATM
3582
O
HOH

1132
−9.732
23.050
48.641
1.00
59.37
S


HETATM
3583
O
HOH

1134
19.573
25.812
−1.906
1.00
60.33
S


HETATM
3584
O
HOH

1135
16.632
2.961
29.344
1.00
55.25
S


HETATM
3585
O
HOH

1136
14.928
18.328
−7.543
1.00
56.32
S


HETATM
3586
O
HOH

1137
0.639
23.943
84.616
1.00
72.67
S


HETATM
3587
O
HOH

1138
7.076
38.013
40.230
1.00
36.05
S


HETATM
3588
O
HOH

1139
5.349
21.667
44.278
1.00
35.31
S


HETATM
3589
O
HOH

1140
−10.726
18.421
55.747
1.00
39.21
S


HETATM
3590
O
HOH

1141
13.721
30.346
55.808
1.00
60.85
S


HETATM
3591
O
HOH

1142
15.808
12.052
20.001
1.00
38.62
S


HETATM
3592
O
HOH

1143
41.564
40.597
95.179
1.00
54.30
S


HETATM
3593
O
HOH

1144
28.387
35.762
107.518
1.00
41.34
S


HETATM
3594
O
HOH

1145
−7.803
17.872
56.940
1.00
50.33
S


HETATM
3595
O
HOH

1146
−0.206
16.169
9.275
1.00
45.70
S


HETATM
3596
O
HOH

1147
22.226
14.100
6.368
1.00
54.35
S


HETATM
3597
O
HOH

1148
−3.958
39.941
64.039
1.00
38.06
S


HETATM
3598
O
HOH

1149
−15.212
25.794
59.423
1.00
56.35
S


HETATM
3599
O
HOH

1150
−0.407
7.594
32.284
1.00
37.21
S


HETATM
3600
O
HOH

1151
42.733
12.142
57.515
1.00
37.02
S


HETATM
3601
O
HOH

1152
31.461
6.907
58.235
1.00
37.15
S


HETATM
3602
O
HOH

1153
5.446
26.093
52.566
1.00
51.35
S


HETATM
3603
O
HOH

1154
33.199
9.154
79.042
1.00
48.70
S


HETATM
3604
O
HOH

1155
−18.518
20.525
59.955
1.00
46.00
S


HETATM
3605
O
HOH

1156
−2.783
28.127
64.601
1.00
49.49
S


HETATM
3606
O
HOH

1157
10.260
2.953
24.931
1.00
35.76
S


HETATM
3607
O
HOH

1158
17.806
19.552
41.831
1.00
62.42
S


HETATM
3608
O
HOH

1159
34.865
16.077
59.910
1.00
77.33
S


HETATM
3609
O
HOH

1160
13.810
38.261
−7.058
1.00
40.41
S


HETATM
3610
O
HOH

1161
10.253
23.899
0.112
1.00
44.76
S


HETATM
3611
O
HOH

1162
−8.092
22.939
45.493
1.00
60.62
S


HETATM
3612
O
HOH

1163
12.939
42.444
43.941
1.00
47.94
S


HETATM
3613
O
HOH

1164
−7.966
16.660
61.300
1.00
56.65
S


END









The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit the invention to the form or forms disclosed herein. Although the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the invention, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.

Claims
  • 1. A method for identifying a compound that associates with a SAM-II riboswitch comprising the steps of: modeling at least one portion of the SAM-II riboswitch atomic structure depicted in at least one of FIG. 4A (SEQ ID NO:6) or FIG. 4B (SEQ ID NO:7) with a test compound; anddetermining an association between the test compound and the SAM-II riboswitch atomic structure.
  • 2. The method of claim 1, further comprising determining that the test compound reduces bacterial gene expression.
  • 3. The method of claim 1, further comprising determining that the test compound induces bacterial gene expression.
  • 4. The method of claim 1, wherein the association determination step comprises determining at least one of a minimum interaction energy, a binding constant, a dissociation constant, or a combination thereof, for the test compound with the modeling of at least one portion of the SAM-II riboswitch atomic structure.
  • 5. The method of claim 1, wherein the association determination step comprises determining the interaction of the test compound with one or more nucleotides of the SAM-II riboswitch comprising U10, U11 , U12, U20, U21, G22, U44, A45, A46, A47, or a combination thereof.
  • 6. The method of claim 1, wherein the association determination step further comprises determining an interaction of the test compound with a S-adenosyl-methionine moiety comprising a ribose sugar, a methionine side chain, a sulfur atom, an adenine moiety or combination thereof.
  • 7. The method of claim 1, wherein the association determination step further comprises determining an interaction of the test compound with a nucleotide of the SAM-II riboswitch atomic structure comprising U10, U12, U20, G22, U44, A46, A47 or a combination thereof.
  • 8. The method of claim 1, wherein the association determination step further comprises determining an interaction of the test compound with a P2b helix region of the SAM-II riboswitch atomic structure.
  • 9. A method of regulating gene expression in a cell by modulating an mRNA, the method comprising the steps of administering a SAM-II riboswitch modulating compound to the cell to modulate the SAM-II riboswitch activity of the mRNA.
  • 10. The method of claim 9, wherein gene expression is stimulated.
  • 11. The method of claim 9, wherein gene expression is inhibited.
  • 12. The method of claim 9, wherein the SAM-II riboswitch modulating compound forms a complex with the SAM-II riboswitch decreasing the formation of an antiterminator element by the mRNA.
  • 13. The method of claim 10, wherein the cell is a bacterial cell.
  • 14. The method of claim 14, wherein the bacterial cell is a gram-negative bacterial cell.
  • 15. A SAM-II riboswitch, wherein one or more of nucleotides U10, U11, U12, U20, U21, G22, U44, A45, A46, A47 are modified.
  • 16. The method of claim 15, wherein interaction with a SAM-II riboswitch having the one or more modified nucleotide causes an increase gene expression in a cell.
  • 17. The method of claim 15, wherein interaction with a SAM-II riboswitch having the one or more modified nucleotide causes a decrease gene expression in a cell.
  • 18. The method of claim 15, wherein interaction with a SAM-II riboswitch having the one or more modified nucleotide causes a decreases in sulfur production in a cell.
  • 19. A composition comprising a compound that associates with at least a portion of the SAM-II riboswitch atomic structure depicted in at least one of FIG. 4A (SEQ ID NO:6) or FIG. 4B (SEQ ID NO:7), wherein the association includes compound interaction with at least one of nucleotides U10, U11, U12, U20, U21, G22, U44, A45, A46, or A47, and wherein the composition is capable of modifying SAM-II riboswitch activity in a bacterial organism.
  • 20. The composition of claim 19, wherein the composition further comprises a pharmaceutically acceptable excipient.
  • 21. A composition comprising at least 80% of a conserved nucleotide sequence of a SAM-II riboswitch core depicted in FIG. 1 (SEQ ID NO:1) and 80% or more of nucleotides depicted outside of a conserved region depicted in FIG. 4A (SEQ ID NO:6) or 4B (SEQ ID NO:7).
  • 22. The composition of claim 21, further comprising a nucleotide sequence depicted in FIG. 4A (SEQ ID NO:6) or 4B (SEQ ID NO:7).
Parent Case Info

This application claims priority from U.S. provisional application 60/967,603, filed Sep. 6, 2007, the contents of which are herein incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Grant No. R-01 GM073850-01 awarded by the National Institutes of Health.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US08/10426 9/5/2008 WO 00 12/7/2010
Provisional Applications (1)
Number Date Country
60967603 Sep 2007 US