SAM Riboswitch and Uses Thereof

Abstract
Embodiments of the present invention provide for SAM-I riboswitches and analogs thereof, and methods for using the same. In certain embodiments of the present invention, test compounds are identified that associate with SAM-I riboswitches.
Description
FIELD OF THE INVENTION

The present invention relates to compositions and methods of use thereof related to SAM-I riboswitch.


BACKGROUND OF THE INVENTION

Riboswitches are regulatory elements found within the 5′-untranslated regions (5′-UTRs) of many bacterial mRNAs. Riboswitches control gene expression in a cis-fashion through their ability to directly bind a specific small molecule metabolite. Ligand recognition is effected by the first domain of the riboswitch, termed the aptamer domain while the second, the expression platform, transduces the binding event into a regulatory switch. The switch includes an RNA element that can adapt to one of two mutually exclusive secondary structures. One of these structures is a signal for gene expression to be “on” and the other conformation turns the gene “off” (example in FIG. 1). In Bacillus subtilis and other gram positive bacteria, it is believed riboswitches control greater than 2% of all genes, many of which are important for key pathways controlling the amino acid, nucleotide and cofactor metabolism.


Riboswitch aptamer domains are controlled by a diverse set of metabolites. In one example bacteria, amino acid metabolism in various Bacillus species is controlled by three known riboswitches: glycine, lysine and S-adenosylmethionine (SAM). Each has a distinct aptamer domain that has evolved to specifically recognize a specific ligand. Currently, there are two known distinct SAM riboswitches, one of which is dominant in gram positive bacteria, SAM-I, and one dominant in gram negative bacteria, SAM-II. The SAM-I riboswitch, which regulates methionine uptake and synthesis as well as SAM synthesis, contains a secondary structure comprised of four stem-loops surrounding a four-way junction motif In the almost 300 individual SAM-I riboswitches that have been identified, a number of nucleotides within and surrounding the junction are highly phylogenetically conserved (FIG. 1), including a consensus kink-turn motif and genetically-validated pseudoknot structure. Characterization of the binding of SAM analogs has indicated that this RNA recognizes substantially every feature of the ligand, although the reactive methyl group indirectly.


A need exist to better control bacterial growth and generate effective treatments against bacterial infections. Embodiments of the present invention fulfill this need.


SUMMARY OF THE INVENTION

One aspect of the present invention provides for methods of identifying a compound that associates with a SAM-I riboswitch including modeling at least a portion of the atomic structure depicted in FIGS. 2A and 2b with a test compound; and determining the interaction between the test compound and the SAM-I riboswitch structure.


Certain embodiments herein concern crystalline atomic structures of SAM-I riboswitches. In accordance with the methods, the structures may also be used for modeling and assessing the interaction of a riboswitch with a binding ligand.


In other embodiments herein, a compound may be identified that associates with the SAM-I riboswitch and reduces bacterial gene expression or associates with the SAM-I riboswitch and induces bacterial gene expression. In accordance with these embodiments, atomic coordinates of the atomic structure can include at least a portion of the atomic coordinates listed in Table 1 for atoms depicted in FIG. 2A or 2b wherein said association determination step can include determining a minimum interaction energy, a binding constant, a dissociation constant, or a combination thereof, for the test compound in the model of the SAM-I riboswitch. In some particular embodiments, an association determination step can include determining the interaction of the test compound with a nucleotide of SAM-I riboswitch including A6, U6, G11, A45, C47, U57, G58, A86, U87, or a combination thereof In other embodiments, an association determination step can include determining the interaction of the test compound with an S-adenosyl-methionine moiety including a ribose sugar, a methionine side chain, a sulfur moiety, an adenine moiety or combination thereof. Alternatively, in a more particular embodiment, the association determination step can include determining the interaction of the test compound with a nucleotide of SAM-I riboswitch depicted in FIG. 2A or 2B including A45, G11, C44, G58 and U57 or a combination thereof Other embodiments contemplated herein include an association determination step of determining the interaction of the test compound with a P3 helix region of the SAM-I riboswitch. Yet other embodiments contemplated herein can include an association determination step including determining the interaction of the test compound within a pocket created between a P1 and P3 helices of the SAM-I riboswitch. Further embodiments concern an association determination step including determining the interaction of the test compound with a minor groove of a P1 and P3 helices of the SAM-I riboswitch.


Bacterial cells contemplated of use in the methods and compositions herein include, but are not limited to, Staphylococcus spp., Bacillus spp., Listeria spp., Clostridia spp., Streptomyces spp., Thermoanaerobacteria spp. and a combination thereof.


In certain embodiments, a SAM-I riboswitch disclosed herein can include one or more of the nucleotides listed in “Tertiary contacts” section of Table 2 where the nucleotide can be modified. In certain embodiments, the one or more modified nucleotides are selected from the group consisting of A45, G11, C44, G58 and U57. In particular embodiments, the modified nucleotide of the SAM-I riboswitch can increase gene expression in a bacterial cell. For example, a test compound that contains a modified nucleotide may induce expression of a gene that is deleterious to a bacterial cell. In other embodiments, the modified nucleotide can decrease gene expression in a cell. For example, a test compound that contains a modified nucleotide may reduce expression of a gene that is necessary for survival of a bacterial cell. In certain particular embodiments, the modified nucleotide decreases sulfur production in a cell.


Embodiments of the present invention concern a test compound that associates with at least a portion of the SAM-I riboswitch atomic structure depicted in at least one of FIG. 2A or FIG. 2B. In accordance with these embodiments, the association can include association with at least one of nucleotides A45, G11, C44, G58 and U57, wherein the composition is capable of modifying the SAM-I riboswitch activity of a bacterial organism by either inducing or reducing gene expression.


Certain embodiments concern compositions including, all of the 80 percent or more conserved nucleotides of the SAM-I riboswitch depicted in FIG. 1 left and 80% or greater, or 90% or greater or 95% or greater of the nucleotides depicted outside of the conserved region. One particular embodiment includes a composition of all 80 percent or more conserved nucleotides of the SAM-I riboswitch depicted in FIG. 1 left and all of the nucleotides depicted outside of the conserved region.


In one embodiment, the atomic coordinates of the atomic structure comprise the atomic coordinates listed in Table 1 for atoms depicted in FIGS. 2A and 2b.


Yet in another embodiment, the interaction determination step can include determining a minimum interaction energy, a binding constant, a dissociation constant, or a combination thereof, for the test compound in the model of the SAM-I riboswitch.


Still in other embodiments, the interaction determination step and test compound identification can include determining the interaction of the test compound with a nucleotide of SAM-I riboswitch comprising A6, U6, G11, A45, C47, U57, G58, A86, U87, or a combination thereof Within this embodiment, the interaction determination step can include determining the interaction of the test compound with a nucleotide of SAM-I riboswitch comprising A45, G11, C44, G58 and U57, or a combination thereof In addition, the test compound that effectively interacts with one or more of the above mentioned nucleotides can be identified and expanded for use in targeting bacterial organisms disclosed herein.


Another aspect of the present invention provides, a method of regulating a gene in a cell by modulating an mRNA, said method comprising administering a SAM-I riboswitch modulating compound to the cell to modulate the SAM-I riboswitch activity of the mRNA. In certain embodiments, the gene expression is stimulated, while in other embodiments the gene expression is inhibited. Within certain embodiments where the gene expression is inhibited, the SAM-I riboswitch modulating compound forms a complex with the SAM-I riboswitch, thereby preventing the mRNA from forming an antiterminator element.


Another aspect of the present invention provides a SAM-I riboswitch in which one or more of the nucleotides listed in “Tertiary contacts” section of Table 2 is modified, e.g., replaced with another nucleotide. Alternatively, certain embodiments include a compound that associates with one or more of the contact nucleotides and modulates the activity of the SAM-1 riboswitch. In one particular embodiment, a compound capable of associating with one or more of the contact nucleotides may be capable of reducing sulfur metabolism in an organism having a SAM-I or SAM-I like riboswitch. In accordance with these embodiments, compounds of the present invention may be used to reduce infection caused by, or as a treatment for infection caused by an organism contemplated herein. In certain embodiments target organisms include bacteria. Bacteria contemplated herein include, but are not limited to, Staphylococcus spp., Bacillus spp., Listeria spp., Clostridia spp., Streptomyces spp., Thermoanaerobacteria spp. and a combination thereof.




BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain embodiments of the present invention. The embodiments may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.



FIG. 1 (SEQ ID NO:2) represents a schematic of switching by a SAM-I riboswitch.



FIGS. 2A (SEQ ID NO:3) and 2B represents a schematic of the secondary structure of the SAM-I riboswitch and a global view of a three-dimensional structure of the SAM-I riboswitch, respectively.



FIG. 3 represents tertiary architecture of the pseudoknot.



FIGS. 4A and 4B represent schematics of S-adenosyl-methionine recognition by the SAM-I riboswitch.



FIG. 5 represents a schematic of direct interactions between the P1 and P3 helices.



FIG. 6 represents an exemplary crystal structure of SAM-I and data collection and model refinement.




DEFINITIONS

As used herein, “a” or “an” may mean one or more than one of an item.


DETAILED DESCRIPTION

In the following sections, various exemplary compositions and methods are described in order to detail various embodiments of the invention. It will be obvious to one skilled in the art that practicing the various embodiments does not require the employment of all or even some of the specific details outlined herein, but rather that molecules, test compounds, samples, concentrations, times and other specific details may be modified through routine experimentation. In some cases, well known methods or components have not been included in the description.


Embodiments of the present invention provide for compositions and methods concerning SAM-I riboswitch and SAM-I riboswitch-like molecules.


In certain embodiments herein, the aptamer domain of the SAM-I riboswitch that controls the metFH2 operon in Thermoanerobacter tengcogensis was used as a template for construction of an RNA that could be crystallized in the presence of SAM (S-adenylsylmethionine). A series of constructs were made that encompassed all of the nucleotides that were >95% conserved across phylogeny and preserved the integrity of the four-way junction motif Out of ˜30 constructs tested, one (FIG. 2A) crystallized reproducibly, yielding crystals of P43212 space group and diffracted to 2.8 Å resolution. Phase information was obtained using iridium hexammine, using a two wavelength MAD experiment. This yielded a readily interpretable electron density map, allowing for all 94 nucleotides to be built into the model along with the S-adenosylmethionine ligand. The final model has excellent geometry with a final Rxtal of 26.7% and Rfree of 28.8% (Table 1).


Ligand recognition is effected by the first domain of the riboswitch, termed the aptamer domain while the second, the expression platform, transduces the binding event into a regulatory switch. The switch comprises an RNA element that can adopt one of two mutually exclusive secondary structures in which one signal for gene expression to be on and the other conformation turns the gene off (FIG. 1). In B. subtilis and other gram positive bacteria, riboswitches control>2% of all genes, many of which are important for key pathways controlling the amino acid, nucleotide and cofactor metabolism.


Riboswitch aptamer domains are controlled by a diverse set of metabolites. Amino acid metabolism in various Bacillus species is controlled by three known riboswitches: glycine, lysine and S-adenosylmethionine (SAM). Each has a distinct aptamer domain that has evolved to specifically recognize a specific ligand. Currently, there are two distinct SAM riboswitches, one of which is dominant in gram positive bacteria, SAM-1, and one dominant in gram negative bacteria, SAM-II. The SAM-I riboswitch, which regulates methionine uptake and synthesis as well as SAM synthesis, contains a secondary structure comprised of four stem-loops surrounding a four-way junction motif. In the greater than approximately 300 SAM-I motifs that have been identified a number of nucleotides within and surrounding the junction are highly phylogenetically conserved (FIG. 1), including a consensus kink-turn motif and genetically-validated pseudoknot structure. Characterization of the binding of SAM analogs has indicated that this RNA recognizes every feature of the ligand, although the reactive methyl group indirectly. To further understand how this extreme degree of discrimination between SAM and closely related compounds can be achieved by this mRNA element, a crystal structure in complex with SAM has been solved.


Certain embodiments herein concern compositions and methods for selecting and identifying compounds that can activate, deactivate or block SAM-1 riboswitch. Activation or deactivation of a SAM-I riboswitch refers to the change in state of the riboswitch upon binding of the compound of interest, a test compound. The term trigger molecule is used herein to refer to molecules and compounds that can activate the SAM-I riboswitch.


Deactivation of a riboswitch refers to the change in state of the riboswitch when the trigger molecule is not bound. A riboswitch can be deactivated by binding of compounds other than the trigger molecule and in ways other than removal of the trigger molecule. Blocking of a riboswitch refers to a condition or state of the riboswitch where the presence of the trigger molecule does not activate the riboswitch.


In certain particular embodiments, methods of identifying a compound that interact with a SAM-I riboswitch include modeling the atomic structure of the SAM-I riboswitch with a test compound and determining if the test compound interacts with the SAM-I riboswitch. In accordance with these embodiments, the atomic contacts of the SAM-I riboswitch and test compound can be determined by means known in the art. Further, analogs of a compound known to interact with a SAM-I riboswitch can be generated by analyzing the atomic contacts for example the contacts that interact with ligand binding, then optimizing the atomic structure of the analog to maximize interaction. In certain embodiments, these methods can be used in a high throughput screen.


Other embodiments concern methods for identifying compounds that block a riboswitch. For example, an assay can be performed for assessing the induction or inhibition of SAM-I riboswitch in the presence of a test compound.


Some embodiments herein concern compositions and methods for identifying a test compound for significantly reducing the activity or inactivating a SAM-I riboswitch by binding the test compound to at least a portion of the atomic structure represented in FIG. 2A or 2B. In accordance with these embodiments, activity of the SAM-1 riboswitch can be measured by any methods known in the art. For example, the activity of the riboswitch can be measured in the presence or absence of a test compound in order to identify the efficiency of the test compound to reduce the activity of or inactivate the SAM-I riboswitch. Inactivation of a riboswitch in this manner can result from, for example, an alteration that prevents an S-adenosylmethionine molecule from binding; that prevents the change in state of the SAM-I riboswitch upon binding of S-adenosylmethionine; or the binding of the test compound interferes with ligand interaction or prevents the change in state of the SAM riboswitch.


In other embodiments, a test compound that activates a SAM-I riboswitch can be identified. For example, test compounds that activate a riboswitch can be identified by bringing into contact a test compound and a SAM-I riboswitch including at least a portion of the SAM-I riboswitch of FIG. 2A and FIG. 2B and assessing activation of the riboswitch. Activation of a SAM-I riboswitch can be assessed in any suitable manner. For example, activation of the SAM-I riboswitch can be measured by expression level of or modification of the expression level of a reporter gene in the presence or absence of the test compound. Examples of a reporter gene include, but are not limited to, beta-galactosidase, luciferase or green-fluorescence protein.


The SAM-I riboswitch is known to regulate multiple operons in a number of bacteria. Example bacteria contemplated herein include, but are not limited to, Staphylococcus spp., Bacillus spp., Listeria spp., Clostridia spp., Streptomyces spp., Thermoanaerobacteria spp. and a combination thereof.


Organization of Riboswitch RNAs


Structural probing studies demonstrate that bacterial riboswitch elements are composed of two domains: a natural aptamer that serves as the ligand-binding domain, and an ‘expression platform’ that interfaces with RNA elements that are involved in gene expression. Structural probing investigations suggest that the aptamer domain of most riboswitches adopts a particular secondary- and tertiary-structure fold when examined independently, that is essentially identical to the aptamer structure when examined in the context of the entire 5′ leader RNA. This implies that, in many cases, the aptamer domain is a modular unit that folds independently of the expression platform.


The ligand-bound or unbound status of the aptamer domain is interpreted through the expression platform, which is responsible for exerting an influence upon gene expression. The aptamer domains are highly conserved amongst various organisms, whereas the expression platform varies in sequence, structure, and in the mechanism by which expression of the appended open reading frame is controlled.


Aptamer domains for riboswitch RNAs typically range from ˜70 to 170 nt in length. Some aptamer domains, when isolated from the appended expression platform, exhibit improved affinity for the target ligand over that of the intact riboswitch. (˜10 to 100-fold). Presumably, there is an energetic cost in sampling the multiple distinct RNA conformations required by a fully intact riboswitch RNA, which is reflected by a loss in ligand affinity. Since the aptamer domain must serve as a molecular switch, this might also add to the functional demands on natural aptamers that might help rationalize their more sophisticated structures.


Riboswitch Regulation


Bacteria primarily use two methods for termination of transcription. Certain genes incorporate a termination signal that is dependent upon the Rho protein, while others make use of Rho-independent terminators (intrinsic terminators) to destabilize the transcription elongation complex. The latter RNA elements are composed of a GC-rich stem-loop followed by a stretch of 6-9 uridyl residues. Intrinsic terminators are widespread throughout bacterial genomes, and are typically located at the 3′-termini of genes or operons. Interestingly, an increasing number of examples are being observed for intrinsic terminators located within 5′-UTRs.


In certain examples, RNA polymerase responds to a termination signal within the 5′-UTR in a regulated fashion. Under certain conditions, the RNA polymerase complex is directed by external signals either to perceive or to ignore the termination signal. Although transcription initiation might occur without regulation, control over mRNA synthesis (and of gene expression) is ultimately dictated by regulation of the intrinsic terminator. Presumably, one of at least two mutually exclusive mRNA conformations results in the formation or disruption of the RNA structure that signals transcription termination. A trans-acting factor, which in some instances an RNA is generally required for receiving a particular intracellular signal and subsequently stabilizing one of the RNA conformations. Riboswitches offer a direct link between RNA structure modulation and the metabolite signals that are interpreted by the genetic control machinery.


Certain mRNAs involved in thiamine biosynthesis bind to thiamine (vitamin B1) or its bioactive pyrophosphate derivative (TPP) without the participation of protein factors. The mRNA-effector complex adopts a distinct structure that sequesters the ribosome-binding site and leads to a reduction in gene expression. This metabolite-sensing mRNA system provides an example of a genetic “riboswitch” (referred to herein as a riboswitch) whose origin might predate the evolutionary emergence of proteins. It has been discovered that the mRNA leader sequence of the btuB gene of Escherichia coli can bind coenzyme B12 selectively, and that this binding event brings about a structural change in the RNA that is important for genetic control. It was also discovered that mRNAs that encode thiamine biosynthetic proteins also employ a riboswitch mechanism.


Although certain specific natural riboswitches such as SAM-I riboswitch was one of the first examples of mRNA elements that control genetic expression by metabolite binding, it is suspected that this genetic control strategy may be widespread in biology. If these metabolites were being biosynthesized and used before the advent of proteins, then certain riboswitches might be modern examples of the most ancient form of genetic control. A search of genomic sequence databases has revealed that sequences corresponding to the TPP aptamer exist in organisms from bacteria, archaea and eukarya-largely without major alteration. Although new metabolite-binding mRNAs are likely to emerge as evolution progresses, it is possible that the known riboswitches are molecular fossils from the RNA world.


In certain embodiments, it is contemplated that a SAM-I Reporter system can be used to assess whether a test compound activates or inactivates the SAM-I riboswitch. In certain particular embodiments, an in vitro selection protocol can be designed for example to assess whether a test compound activates or deactivates the SAM-I riboswitch. In one particular embodiment, binding of the ligand can be monitored by a mobility-shift assay, known in the art, to discern free and bound RNA, providing a basis for selection of binding-competent RNAs. Ligand binding to the RNA can cause a conformational and/or secondary structural change in the RNA that can result in a change in its migration in a native polyacrylamide gel.


In certain embodiments, a detectable tag can be incorporated into the SAM-I riboswitch. In accordance with these embodiments, a test compound can be placed in contact with the SAM-I riboswitch and the interaction of the test compound and the SAM-I riboswitch assessed by measuring the presence or absence of a detectable tag. In certain particular examples, a detectable tag may be undetectable in the presence of a test compound thereby quenching the signal. This mechanism can be adapted to existing SAM-I riboswitches, as this method can take advantage of assessing a ligand-mediated interaction of the SAM-I riboswitch. In certain particular embodiments, a detectable tag can be placed within the ligand interaction region. In more particular embodiments, a detectable tag can be placed on any one of ligand binding nucleic acids, including but not limited to, A6, U6, G11, A45, C47, U57, G58, A86, U87, or a combination thereof of FIG. 2A or FIG. 2B of the SAM-I riboswitch. In these examples, a test compound can be combined with a SAM-I riboswitch depicted FIG. 2A or FIG. 2B and a detectable signal on the SAM-I riboswitch quenched when the test compound binds to at least one of the ligand-binding nucleic acids indicated above. In one particular example, a florescent tag molecule can be positioned in RNA adjacent to the binding site of SAM and binding can be monitored via a change in fluorescence of a reporter gene.


In other embodiments, control compounds can be used to assess interaction of the test compound compared to a known compound that interacts with a SAM-I riboswitch. To use riboswitches to report ligand binding by analyzing for a detectable tag, the appropriate construct can be determined empirically. The optimum length and composition of a test compound and its binding site on the riboswitch can be assessed systematically to result in the highest ligand binding region interaction possible. The validity of the assay can be determined by comparing apparent relative binding affinities of different SAM-I analogs, SAM-I antibodies or other SAM-I binding agents to a particular test compound (determined by the presence or level of detectable signal generation of the tag) to the binding constants determined by standard in-line probing.


In other embodiments, interaction of a test compound with at least a portion of the atomic structures depicted in FIG. 2A or FIG. 2B may be assessed by measuring uptake and/or synthesis of methionine and/or synthesis of SAM in a bacterial test cell system (e.g., cultures of B. subtilus). In accordance with these embodiments, a test compound confirmed to interact with at least a portion of the atomic structures depicted in FIG. 2A or 2B can be synthesized and/or purified for future use. In one example use, the test compound may be placed in contact with SAM-I riboswitch and the uptake and/or synthesis of methionine and/or synthesis of SAM can be measured. If a test compound is found to effectively block these functions, the test compound may be a candidate for use in inhibiting bacterial expansion or eliminating bacteria within a subject or a system.


In one example method, the structure depicted in FIG. 2A or 2B indicates that the RNA does not recognize the methyl group attached to the sulfur moiety, providing a place to build additional functionality that would be recognized by the RNA. Additionally, the positive charge on the sulfur is also recognized but not the sulfur atom itself, indicating that this region can be altered to ensure stability of the compound. Potential compounds could be computationally built and fit into the structure in place of SAM to determine if they would fit in the binding pocket of the riboswitch. Novel compounds can be synthesized by established chemistries and tested using a flourescence or footprinting type assay to ensure that they are recognized by the RNA.


It is contemplated herein that test compounds capable of associating with the atomic structures depicted in FIG. 2A or 2B may be a nucleic acid molecule, a small molecule, an antibody, a pharmaceutical agent, small peptide, peptide mimetic, nucleic acid mimetic, modified saccharide or aminoglycoside. Preferred test compound compositions would be small molecule mimetics of SAM or nucleic acid mimetics that build off of the adenosine moiety of SAM.


Kits


In still further embodiments, kits for methods and compositions described herein are contemplated. In one embodiment, the kits have a point-of care application, for example, the kits may have portability for use at a site of suspected bacterial outbreak. In another embodiment, a kit for treatment of a subject having a bacterial-induced infection is contemplated. In accordance with this embodiment, the kit may be used to reduce the bacterial infection of a subject.


The kits may include a container means. Any of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which the testing agent, may be preferably and/or suitably aliquoted. Kits herein may also include a means for comparing the results such as a suitable control sample such as a positive and/or negative control.


Nucleic Acids


In various embodiments, isolated nucleic acids may be used as test compounds for binding the atomic structure depicted in FIG. 2A or 2B. The isolated nucleic acid may be derived from genomic RNA or complementary DNA (cDNA). In other embodiments, isolated nucleic acids, such as chemically or enzymatically synthesized DNA, may be of use for capture probes, primers and/or labeled detection oligonucleotides.


A “nucleic acid” includes single-stranded and double-stranded molecules, as well as DNA, RNA, chemically modified nucleic acids and nucleic acid analogs. It is contemplated that a nucleic acid may be of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 275, about 300, about 325, about 350, about 375, about 400, about 425, about 450, about 475, about 500, about 525, about 550, about 575, about 600, about 625, about 650, about 675, about 700, about 725, about 750, about 775, about 800, about 825, about 850, about 875, about 900, about 925, about 950, about 975, about 1000, about 1100, about 1200, about 1300, about 1400, about 1500, about 1750, about 2000 or greater nucleotide residues in length, up to a full length protein encoding or regulatory genetic element.


Construction of Nucleic Acids


Isolated nucleic acids may be made by any method known in the art, for example using standard recombinant methods, synthetic techniques, or combinations thereof. In some embodiments, the nucleic acids may be cloned, amplified, or otherwise constructed.


The nucleic acids may conveniently comprise sequences in addition to a portion of a SAM-I riboswitch. For example, a multi-cloning site comprising one or more endonuclease restriction sites may be added. A nucleic acid may be attached to a vector, adapter, or linker for cloning of a nucleic acid. Additional sequences may be added to such cloning and sequences to optimize their function, to aid in isolation of the nucleic acid, or to improve the introduction of the nucleic acid into a cell. Use of cloning vectors, expression vectors, adapters, and linkers is well known in the art.


Recombinant Methods for Constructing Nucleic Acids


Isolated nucleic acids may be obtained from bacterial or other sources using any number of cloning methodologies known in the art. In some embodiments, oligonucleotide probes which selectively hybridize, under stringent conditions, to the nucleic acids of a bacterial organism. Methods for construction of nucleic acid libraries are known and any such known methods may be used.


Nucleic Acid Screening and Isolation


Bacterial RNA or cDNA may be screened for the presence of an identified genetic element of interest using a probe based upon one or more sequences. Various degrees of stringency of hybridization may be employed in the assay. As the conditions for hybridization become more stringent, there must be a greater degree of complementarity between the probe and the target for duplex formation to occur. The degree of stringency may be controlled by temperature, ionic strength, pH and/or the presence of a partially denaturing solvent such as formamide. For example, the stringency of hybridization is conveniently varied by changing the concentration of formamide within the range up to and about 50%. The degree of complementarity (sequence identity) required for detectable binding will vary in accordance with the stringency of the hybridization medium and/or wash medium. In certain embodiments, the degree of complementarity can optimally be about 100 percent; but in other embodiments, sequence variations in the RNA may result in <100% complementarity, <90% complimentarily probes, <80% complimentarily probes, <70% complimentarily probes or lower depending upon the conditions. In certain examples, primers may be compensated for by reducing the stringency of the hybridization and/or wash medium.


High stringency conditions for nucleic acid hybridization are well known in the art. For example, conditions may comprise low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C. to about 70° C. Other exemplary conditions are disclosed in the following Examples. It is understood that the temperature and ionic strength of a desired stringency are determined in part by the length of the particular nucleic acid(s), the length and nucleotide content of the target sequence(s), the charge composition of the nucleic acid(s), and by the presence or concentration of formamide, tetramethylammonium chloride or other solvent(s) in a hybridization mixture. Nucleic acids may be completely complementary to a target sequence or may exhibit one or more mismatches.


Nucleic Acid Amplification


Nucleic acids of interest may also be amplified using a variety of known amplification techniques. For instance, polymerase chain reaction (PCR) technology may be used to amplify target sequences directly from bacterial RNA or cDNA. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences, to make nucleic acids to use as probes for detecting the presence of a target nucleic acid in samples, for nucleic acid sequencing, or for other purposes.


Synthetic Methods for Constructing Nucleic Acids


Isolated nucleic acids may be prepared by direct chemical synthesis by methods such as the phosphotriester method, or using an automated synthesizer. Chemical synthesis generally produces a single stranded oligonucleotide. This may be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template. While chemical synthesis of DNA is best employed for sequences of about 100 bases or less, longer sequences may be obtained by the ligation of shorter sequences.


Covalent Modification of Nucleic Acids


A variety of cross-linking agents, alkylating agents and radical generating species may be used to bind, label, detect, and/or cleave nucleic acids. In addition, covalent crosslinking to a target nucleotide using an alkylating agent complementary to the single-stranded target nucleotide sequence can be used. A photoactivated crosslinking to single-stranded oligonucleotides mediated by psoralen can be used. Use of N4,N4-ethanocytosine as an alkylating agent to crosslink to single-stranded oligonucleotides has also been disclosed. Various compounds to bind, detect, label, and/or cleave nucleic acids are known in the art.


Nucleic Acid Labeling


In various embodiments, tag nucleic acids may be labeled with one or more detectable labels to facilitate identification of a target nucleic acid sequence bound to a capture probe on the surface of a microchip. A number of different labels may be used, such as fluorophores, chromophores, radio-isotopes, enzymatic tags, antibodies, chemiluminescent, electroluminescent, affinity labels, etc. One of skill in the art will recognize that these and other label moieties not mentioned herein can be used. Examples of enzymatic tags include urease, alkaline phosphatase or peroxidase. Colorimetric indicator substrates can be employed with such enzymes to provide a detection means visible to the human eye or spectrophotometrically. A well-known example of a chemiluminescent label is the luciferin/luciferase combination.


In preferred embodiments, the label may be a fluorescent, phosphorescent or chemiluminescent label. Exemplary photodetectable labels may be selected from the group consisting of Alexa 350, Alexa 430, AMCA, aminoacridine, BODIPY 630/650, BODIPY 650/665, BODIPY-FL, BODIPY-R6G, BODIPY-TMR, BODIPY-TRX, 5-carboxy-4′,5′-dichloro-2′,7′-dimethoxy fluorescein, 5-carboxy-2′,4′,5′,7′-tetrachlorofluorescein, 5-carboxyfluorescein, 5-carboxyrhodamine, 6-carboxyrhodamine, 6-carboxytetramethyl amino, Cascade Blue, Cy2, Cy3, Cy5,6-FAM, dansyl chloride, Fluorescein, HEX, 6-JOE, NBD (7-nitrobenz-2-oxa-1,3-diazole), Oregon Green 488, Oregon Green 500, Oregon Green 514, Pacific Blue, phthalic acid, terephthalic acid, isophthalic acid, cresyl fast violet, cresyl blue violet, brilliant cresyl blue, para-aminobenzoic acid, erythrosine, phthalocyanines, azomethines, cyanines, xanthines, succinylfluoresceins, rare earth metal cryptates, europium trisbipyridine diamine, a europium cryptate or chelate, diamine, dicyanins, La Jolla blue dye, allopycocyanin, allococyanin B, phycocyanin C, phycocyanin R, thiamine, phycoerythrocyanin, phycoerythrin R, REG, Rhodamine Green, rhodamine isothiocyanate, Rhodamine Red, ROX, TAMRA, TET, TRIT (tetramethyl rhodamine isothiol), Tetramethylrhodamine, and Texas Red. These and other labels are available from commercial sources, such as Molecular Probes (Eugene, Oreg.).


Solid Supports


Solid supports are solid-state substrates or supports with which molecules (such as trigger molecules, e.g., SAM) and riboswitches (or other components used in, or produced by, the disclosed methods) can be associated. Riboswitches and other molecules can be associated with solid supports directly or indirectly. For example, analytes (e.g., trigger molecules, test compounds) can be bound to the surface of a solid support or associated with capture agents (e.g., compounds or molecules that bind an analyte) immobilized on solid supports. As another example, riboswitches can be bound to the surface of a solid support or associated with probes immobilized on solid supports. An array is a solid support to which multiple riboswitches, probes or other molecules have been associated in an array, grid, or other organized pattern.


In some embodiments, a solid-state substrate may be used. Solid supports contemplated of use can include any solid material with which components can be associated, directly or indirectly. These material include but are not limited to acrylamide, agarose, cellulose, nitrocellulose, glass, gold, polystyrene, polyethylene vinyl acetate, polypropylene, polymethacrylate, polyethylene, polyethylene oxide, polysilicates, polycarbonates, teflon, fluorocarbons, nylon, silicon rubber, polyanhydrides, polyglycolic acid, polylactic acid, polyorthoesters, functionalized silane, polypropylfumerate, collagen, glycosaminoglycans, and polyamino acids. Solid-state substrates can have any useful form including thin film, membrane, bottles, dishes, fibers, woven fibers, shaped polymers, particles, beads, microparticles, or a combination. Solid-state substrates and solid supports can be porous or non-porous. A chip is a rectangular or square small piece of material. Preferred forms for solid-state substrates are thin films, beads, or chips. A useful form for a solid-state substrate is a microtiter dish. In some embodiments, a multi-well glass slide can be employed.


In certain embodiments, an array can include a plurality of riboswitches, trigger molecules, other molecules, compounds or probes immobilized at identified or predefined locations on the solid support. Each predefined location on the solid support generally has one type of component (that is, all the components at that location are the same). Alternatively, multiple types of components can be immobilized in the same predefined location on a solid support. Each location will have multiple copies of the given components. The spatial separation of different components on the solid support allows separate detection and identification.


Although useful, it is not required that the solid support be a single unit or structure. A set of riboswitches, trigger molecules, other molecules, compounds and/or probes can be distributed over any number of solid supports. For example, in some embodiments, each component can be immobilized in a separate reaction tube or container, or on separate beads or microparticles.


Methods for immobilization of oligonucleotides to solid-state substrates are well established. Oligonucleotides, including address probes and detection probes, can be coupled to substrates using established coupling methods. For example, suitable attachment methods are described by Pease et al., Proc. Natl. Acad. Sci. USA 91(11):5022-5026 (1994), and Khrapko et al., Mol Biol (Mosk) (USSR) 25:718-730 (1991). A method for immobilization of 3′-amine oligonucleotides on casein-coated slides is described by Stimpson et al., Proc. Natl. Acad. Sci. USA 92:6379-6383 (1995). A useful method of attaching oligonucleotides to solid-state substrates is described by Guo et al., Nucleic Acids Res. 22:5456-5465 (1994).


Each of the components (for example, riboswitches, trigger molecules, or other molecules) immobilized on the solid support can be located in a different predefined region of the solid support. The different locations can be different reaction chambers. Each of the different predefined regions can be physically separated from each other of the different regions. The distance between the different predefined regions of the solid support can be either fixed or variable. For example, in an array, each of the components can be arranged at fixed distances from each other, while components associated with beads will not be in a fixed spatial relationship. In particular, the use of multiple solid support units (for example, multiple beads) will result in variable distances. In accordance with these examples, components can be associated or immobilized on a solid support at any density. Components can be immobilized to the solid support at a density exceeding 400 different components per cubic centimeter. Arrays of components can have any number of components depending on the circumstances.


Pharmaceutical Compositions


In certain embodiments, compositions of identified test compounds may be generated for use in a subject having a bacterial infection in order to reduce or eliminate the infection in the subject. In accordance with these embodiments, the compositions can be administered in a subject in a biologically compatible form suitable for pharmaceutical administration in vivo. By “biologically compatible form suitable for administration in vivo” is meant a form of the active agent (e.g., pharmaceutical chemical, protein, gene, antibody etc of the embodiments) to be administered in which any toxic effects are outweighed by the therapeutic effects of the active agent. Administration of a therapeutically active amount of the therapeutic compositions is defined as an amount effective, at dosages and for periods of time necessary to achieve the desired result. For example, a therapeutically effective amount of an antibody or nucleic acid molecule reactive with at least a portion of SAM-I riboswitch depicted in FIG. 2A or FIG. 2B may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of antibody to elicit a desired response in the individual. Dosage regima may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.


In one embodiment, the compound (e.g., pharmaceutical chemical, nucleic acid molecule, gene, protein, antibody etc of the embodiments) may be administered in a convenient manner such as by injection such as subcutaneous, intravenous, by oral administration, inhalation, transdermal application, intravaginal application, topical application, intranasal or rectal administration. Depending on the route of administration, the active compound may be coated in a material to protect the compound from the degradation by enzymes, acids and other natural conditions that may inactivate the compound. In a preferred embodiment, the compound may be orally administered. In another preferred embodiment, the compound may be inhaled in order to make the compound bioavailable to the lung.


A compound may be administered to a subject in an appropriate carrier or diluent, co-administered with enzyme inhibitors or in an appropriate carrier such as liposomes. The term “pharmaceutically acceptable carrier” as used herein is intended to include diluents such as saline and aqueous buffer solutions. To administer a compound that stimulates or inhibits a SAM-I riboswitch by other than parenteral administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation. Enzyme inhibitors include pancreatic trypsin inhibitor, diisopropylfluorophosphate (DEP) and trasylol. Liposomes include water-in-oil-in-water emulsions as well as conventional liposomes. The active agent may also be administered parenterally or intraperitoneally. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms.


Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. In all cases, the composition must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The pharmaceutically acceptable carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of microorganisms can be achieved by various antibacterial and antifungal agents (i.e., parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like). In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. A compound such as aluminum monostearate and gelatin can be included to prolong absorption of the injectable compositions.


Sterile injectable solutions can be prepared by incorporating active compound (e.g., a chemical that modulates the SAM-I riboswitch) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a dispersion medium and other required ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient (i.e., a chemical agent, antibody etc.) plus any additional desired ingredient from a previously sterile-filtered solution thereof


When the active agent is suitably protected, as described above, the composition may be orally administered (or otherwise indicated), for example, with an inert diluent or an assimilable edible carrier. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms are dictated by and directly dependent on (a) the unique characteristics of the active agent and the particular therapeutic effect to be achieved, and (b) the limitations inherent an active agent for the therapeutic treatment of individuals.


EXAMPLES

The following examples are included to illustrate various embodiments. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered to function well in the practice of the claimed methods, compositions and apparatus. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes may be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.


RNA preparation. A 94 nucleotide construct consisting of the sequence for the SAM riboswitch from the metF-metH2 operon of T. tencongensis was constructed by PCR using overlapping DNA oligonucleotides (e.g., Integrated DNA Technologies). The resulting fragment contained sites for the restriction enzymes EcoRI and NgoMIV and was ligated into plasmid vector pRAV12, which is designed for either native or denaturing purification of RNA. The cloned sequence was verified by sequencing. Transcription template was prepared by PCR using primers directed against the T7 promoter (SEQ ID NO:1: 5′, GCGCGCGAATTCTAATAC GACTCACTATAG, 3′) and the HδV ribozyme in the vector


The global architecture of the SAM-I riboswitch aptamer domain is established through two coaxial stacks of helices. The first comprises the P1/P4 stack (FIGS. 2A and 2B) in which the J4/1 strand containing three highly conserved adenosine residues are stacked in between the two helices with no disruption to the A-form geometry between them. One of the adenosines in the J4/1 region interacts with U64 of J3/4 and A24 of L2 to form a triple that serves to tie the P1/P4 stack against P2b. The other set of stacked helices is P2a/P3 (FIG. 1), the binding pocket for the S-adenosylmethionine (SAM) ligand lies in a region where the P1 and P3 helices come into close contact. This arrangement of the two domains (P1/P4 and P2/P3) is topologically similar to the arrangement of the P4P6 and P3P7 that form the catalytic core in group I introns. Despite very different secondary structures, the similarity of interdomain arrangements suggests that this is a very favorable topology for forming ligand binding and catalytic sites in RNAs.


The global tertiary architecture of the riboswitch is believed to be established through a series of interactions between L2, J3/4 and J4/1 (See FIG. 3). Within P2 is a kink-turn motif that creates a ˜100° bend in the helix; this structure of this motif is identical to that observed in the ribosome the Box C/D snoRNP and the U4 snRNP. The kink-turn in the SAM-I riboswitch conforms to the consensus motif and has a structure that is substantially identical to that observed in other RNAs. This motif allows for P2b to be oriented back towards the P1/P4 stack allowing for a pseudoknot interaction between L2 and J3/4, which was predicted from phylogeny and genetic experiments. This pseudoknot is tied against P1/P4 through an (A85-U64)•A24 triple. J3/4 is further tied to P2b through two adenine-mediated triples in which the Watson-Crick face of A61 and A62 interact with the minor groove of the G22-C30 and G23-C29 pairs, respectively. This form of adenosine triple is not nearly as common as the A-minor triple motif but has been observed in the 16S rRNA and in RNA-mediated crystal contacts. Without being bound by any theory, it is believed that these elements of tertiary architecture are formed prior to ligand binding; in-line probing of several different SAM-I riboswitches have all demonstrated that nucleotides involved in formation of the pseudoknot and the adenine-triples are protected from cleavage. This indicates that these residues are not significantly conformationally flexible in the free state. Thus, the SAM-I riboswitch, like the guanine riboswitch, has a pre-established global architecture that organizes the RNA for ligand recognition.


S-adenosylmethionine is specifically recognized by the riboswitch within a pocket created between the P1 and P3 helices (FIGS. 2A and 2B). The ligand adopts a conformation in which the methionine moiety stacks upon the adenine ring, such that the main chain atoms of the amino acid are spatially adjacent to the Watson-Crick face of the adenine base. The adenine ring is the central base of a base triple between A45 and U57 (FIG. 4A). These two nucleotides are part of an asymmetric internal loop motif (5′AA/U) in helix 3 (FIG. 1) that is believed to be universally conserved among SAM-I riboswitch RNAs. Interestingly, it is believed that the adenine moiety needs to disrupt a Watson-Crick A-U pair in the free form of the riboswitch RNA in order to establish the base triple. The placement of the adenine ring is further stabilized by stacking with C47, which is part of a dinucleotide platform adjacent the P3 internal loop. The main chain atoms of the methionine moiety are extensively recognized through a series of hydrogen bonds with the C44-G58 base pair of the P3 helix and G11 of J1/2 region to form a pseudo-quadruple (FIG. 4B). This arrangement is consistent with the observation that while S-adenosylhomocysteine (SAH) is tightly bound by the RNA (400 nM in the yitJ homolog from B. subtilis), the analog S-adenosylcysteine (SAC), which contains one less side chain methylene group, is bound very weakly (˜30 μM). Shortening of the side chain would prevent the main chain carboxylate group from being able to effectively hydrogen bond with G11.


Many riboswitches and aptamers recognize ligands with negatively charged groups including ATP thiamine pyrophosphate, flavin mononucleotide, as well as SAM. Negative charge is expected to be difficult for the polyanionic RNA to recognize; aptamers selected to bind SAM indeed bind the adenine and ribose moiety well, but do not recognize the methionine functional group. In this structure, it is clear the negatively charged functional group is recognized by the Watson-Crick face of a guanine residue (G11). This is very analogous to an acetate ion binding in the purine riboswitch, as well as binding of non-bridging phosphate oxygens in the backbone of the GAAA tetraloop, SRP RNA, and the ribosomal RNA. It is likely that a very general mode for anion recognition, particularly carboxy and phosphate groups, is through the N1 and N2 groups of unpaired guanine residues.


The other half of the binding pocket for SAM is created by the minor groove of the P1 helix, adjacent to the universally conserved A6-U88 and U7-A87 base pairs. The ribose sugar of SAM bridges the P1 and P3 helices via interactions between SAM-2′-OH and O4′ of C47 in P3, SAM-3′-OH and O4′ of U7, and SAM-O4′ and O2′ of U88. The sulfur atom is situated approximately 4 A from the O2 carbonyl oxygens of U7 and U88 (data not shown). This positioning likely serves as the basis for a 100-fold preference for SAM over SAH. In SAM, the positively charged sulfur would be positioned to make favorable electrostatic interactions with the carbonyls of the minor groove of P1. This electrostatic interaction is consistent with observations that the identity of the charged moiety at this position is not important, but the presence of a formal positive charge or high partial positive charge is sensed. While in the electron density maps we did not observe a region of clear electron density around the sulfur atom that would correspond to the methyl group of SAM, its position can be readily inferred as the sulfur is biologically always found in the S configuration. The model of SAM places the methyl group facing towards a solvent cavity within the interior of the folded RNA. This is consistent with the biochemical observations that have suggested that the methyl group is not directly recognized by the RNA.


The binding site for SAM can be created through the docking of the minor groove faces of the P1 and P3 helices. While SAM has a fairly loose association with the P1 helix, as suggested by the long hydrogen-bonding distances between SAM and functional groups of P1, the backbone of P1 makes intimate contacts with the minor groove of P3. These interactions involve a mixture of hydrogen bonding and van der Waals contacts between the backbone ribose/phosphate atoms of U88-A90 in helix P1 and C47, C48, G56, U57 and G58 of helix P3 (FIG. 5). Like the purine riboswitch, the P1 helix is stabilized via a series of tertiary interactions that form only upon association of ligand. This suggests a common mechanism for how riboswitches are able to transduce a ligand binding event into changes in gene expression. All known riboswitches that regulate at the transcriptional level, which is the majority of those characterized, have the equivalent of a P1 helix involving the pairing of the 5′- and 3′-ends of the aptamer domain. The 3′-side of the P1 helix is an integral part of a structural switch involving two mutually exclusive secondary structures (FIG. 1). Ligand binding to the aptamer domain induces the formation of a set of tertiary interactions with the P1 helix that certainly serve to stabilize it and favor its formation over the alternate structure. In the case of the guanine riboswitch, this involves formation of base triple interactions, while in the SAM-I riboswitch backbone-minor groove interactions occur between P1 and P3. While the secondary structure of the aptamer domain and the nature of its cognate ligand differs significantly in each class of riboswitch, this study suggests that there exists strong similarities in how they achieve efficient gene regulation.


Additional objects, advantages, and novel features of this invention will become apparent to those skilled in the art upon examination of the following examples thereof, which are not intended to be limiting.


Methods and Materials.


RNA preparation. In one exemplary method, a 94 nucleotide construct consisting of the sequence for the SAM riboswitch from the metF-metH2 operon of T. tencongensis was constructed by PCR using overlapping DNA oligonucleotides (Integrated DNA Technologies). The resulting fragment contained site for the restriction enzymes EcoRI and NgoMIV and was ligated into plasmid vector pRAV12, which is designed for either native or denaturing purification of RNA. The cloned sequence was verified by sequencing. Transcription template was prepared by PCR using primers directed against the T7 promoter (SEQ ID NO:1 5′, GCGCGCGAATTCTAATACGACTCACTATAG) and the HδV ribozyme in the vector. Because the HδV sequence in the vector is mutated to be active only in the presence of imidazole, the primer used contained the single-base correction required for wild-type activity. RNA was transcribed in a 12.5 mL reaction containing 30 mM Tris-HCl (pH 8.0), 10 mM DTT, 0.1% Triton X-100, 0.1 mM spermidine-HCl, 4 mM each NTP, 24 mM MgCl2, 0.25 mg/mL T7 RNA polymerase, 1 mL of 0.5 μM template, and 0.32 unit/mL inorganic pyrophosphatase to suppress formation of insoluble magnesium pyrophosphate. The transcription reaction was allowed to proceed for two hours at 37° C., supplemented with an addition 20 mM MgCl2 and incubated at 60° C. for 15 minutes to enhance cleavage of the HδV ribozyme at the 3′ end of the riboswitch construct. RNA was then ethanol precipitated at −20° C. overnight, purified by denaturing PAGE (12% polyacrylamide, 1× TBE, 8 M urea). The band of interest was visualized by UV shadowing, excised, and electroeluted overnight in 1× TBE to extract RNA from the gel. The eluted fraction was exchanged three times into 10 mM Na-MES at pH 6.0 using a 10,000 MWCO centrifugal filter, then refolded by heating to 95° C. for three minutes followed by snap cooling. The refolded RNA was exchanged once into 10 mM Na-MES pH 6.0, 2 mM MgCl2. The final yield was ˜500 μL of RNA at a concentration of 400 μM as judged by absorbance at 260 nm and the calculated extinction coefficient. RNA was stored at −20° C.


Crystallization. In another example, SAM was added to RNA stock right before the RNA was set-up for crystallization by directly pipetting a predetermined amount of 100 mM SAM stock into the RNA solution. Final concentration of SAM in the RNA was approximately 5 mM. Bound RNA was crystallized by the hanging drop vapor diffusion method. RNA was mixed 1:1 with a solution consisting of 8 mM iridium hexammine, 100 mM KCl, 5 mM MgCl2, 10% MPD, 0 mM Na-cacodylate pH 7.0, and 6 mM spermine HCl. The drop was seeded with seed-stock grown in 27 mM spermine, 34 mM Na-cacodylate, 17 mM BaCl2, 8.5% MPD, and 34 mM KCl. Crystals grew in a diamond morphology to their maximum size (˜0.3 mm on the edge) in 48 hours at 30° C. and were cryoprotected by soaking the crystals for at least 5 minutes in 50 mL of a solution consisting of the motherliquor plus 15% ethylene glycol. Crystals were then flash-frozen in liquid nitrogen. Data was collected on beamline 8.2.1 at the Advanced Light Source in Berkeley, Calif. using an inverse beam experiment at two wavelengths. Data was indexed, integrated, and scaled using D*TREK. The crystals belong to the P43212 space group (a=62.90 Å, b=62.90 Å, c=158.97 Å, α=β=γ=90°) and have one molecule per asymmetric unit. All the data used in this example phasing and refining came from one crystal (see FIG. 6 and Table 3).


Preparation of iridium hexaammine.


The iridium hexaammine was prepared according to methods outlined in the literature. Two grams iridium chloride (IrCl3) (Aldrich) and 35 mL ammonium hydroxide were added to a heavy-walled ACE pressure tube (Aldrich). The tube was then sealed and incubated in a 150° C. silicone oil bath for four days. The reaction was then allowed to completely cool and incubated on slushy ice. The clear, light brown solution was then filtered and evaporated to dryness under vacuum. While evaporating, the solution was heated to 50° C. using a waterbath. The resulting solid was then resuspended in 5 mL of water and transferred to a 50 mL conical tube. Two mL of concentrated HCl was then added to the solution. Precipitate was spun down in a centrifuge and the light yellow supernatant was discarded. Pellet was washed three times with 10 mL of a 2:1 (v/v) water:conc. HCl solution by vigorous vortexing followed by centrifugation. Supernatant was discarded after each wash. Pellet was then washed three times in absolute ethanol, air-dried and resuspended in ˜3 mL ddH2O. Solution was centrifuged one more time to remove insoluble material. The resulting supernatant should show a clear absorbance maxima at 251 nm and concentration can be calculated using the extinction coefficient 92 M−1cm−1 at 251 nm. Typical yield is 50%. Supernatant was then aliquoted into fresh Eppendorf tubes and stored at −20° C.


Phasing and structure determination. Phases were determined by multi-wavelength anomalous diffraction (MAD) using data that extended to 2.8 Å. The peak and inflection wavelength datasets were merged and scaled in CNS and Patterson maps were then calculated for both space groups P41212 and P43212. From the maps it was determined that there were four possible iridium sites within the unit cell, although most if not all had less than full occupancy. A CNS heavy-atom search for four possible sites was then carried out in both space groups, and both space groups yielded 94 possible solutions. The best of these were used to calculate predicted Patterson maps, which showed peaks that correlated very well with those seen in the original maps in all four Harker sections. The best solution sites were used to calculate phases in CNS. The resulting density map for P41212 was uninterpretable, whereas the map for P43212 clearly showed features that were macromolecular, such as RNA helix backbones and base-stacking. The phasing solution found by CNS had a figure of merit of 0.6332 which was further improved to 0.8846 following a round of density modification with the solvent level set to 0.46. The phasing power at the peak wavelength was 3.3 with a Rcullis of 0.39 (acentric).


Using methods known in the art, the model was built in O and refined in CNS in iterative rounds. The RNA nucleotides were placed in the first round, the iridium hexaammines were placed in the second round, and then in the third round two magnesium ions were placed based on their position in the density with respect to the sugar-phosphate backbone of the RNA. Once the ions were in place the SAM was built. Structure, parameter, and topology files for iridium hexaammine and SAM were downloaded from HIC-Up (Hetero-compound Information Centre-Uppsala); the parameters for Mg2+ ions were already loaded into CNS. The compact conformation of the SAM molecule was chosen to fit the density seen in the binding pocket, and in order to get the model molecule to fit the density the energy parameters in the SAM parameter file downloaded from HIC-Up had to be changed. This was followed by one round of water-picking carried out by CNS. Waters were chosen based on peak size in an anomalous difference map. The minimum was set to 2.5σ with the additional parameters that the B-factor could be no greater than 200, and the peak must be within hydrogen bonding distance of the oxygens and nitrogens in the RNA. Each round of model-building was followed by a simulated annealing run and B-factor refinement using CNS. Rfree was monitored in each round to ensure that it was dropping. Sugar puckers were restrained in most cases to C3′ endo, except for residues A9, A14, A33, A51, U63, and G74 which were restrained to C2′ endo. Some of the figures were prepared using Ribbons 3.0 and Pymol.

TABLE 1Data collection, phasing and refinement statisticsIridium hexamineData collectionSpace groupP43212Cell dimensionsa, b, c (Å)62.90, 62.90, 158.97α, β, γ (°)90, 90, 90PeakInflectionWavelength1.10532 Å1.10573 ÅResolutionb (Å) 50-2.8 (2.9-2.8) 50-2.8 (2.9-2.8)Rmerge0.072 (0.426)0.073 (0.446)I/δI18.2 (4.3) Completeness (%)99.6 (99.9)99.4 (100) Redundancy14.64 (11.74)14.68 (11.92)RefinementResolutionb (Å)50-2.9 (3.0-2.9)No. reflections13415 (99.3%) Rwork/Rfree0.2730 (0.4662)/0.2830 (0.4286)No. atoms2174RNA2029Ligand/Ions27/30Water88B-factors70.2578RNA70.1875Ligand/Ions59.9444/79.5450Water80.6735R.m.s deviationsBond lengths (Å)0.006976Bond angles (°)1.37319
* Data collected on one crystal.

*Highest resolution shell is shown in parenthesis.









TABLE 2








Nucleotides important for formation of tertiary interactions


(global architecture) and ligand recognition.



















Nucleotide*
Contact
Conservation





Tertiary contacts
G11
C44
>97%, >97%



A12
G43-C59 pair
>97%, >90%



G13
C41 (Watson-Crick)
>75%, >75%



A24
A85
>90%, >75%



C25
G68 (Watson-Crick)
>75%, >75%



U26
U67
Not cons.



G27
C66
>90%, >90%



G28
C65
>90%, >90%



A46
C47
>90%, >97%



A61
G22-C30 pair
>90%, >75%



A62
G23-C29 pair
>75%, >97%



U64
A85
>75%, >75%



U88
G58
>97%, >97%



G89
U57, C47
>97% all



A90
G56
>75%, >97%














RNA nt.
SAM moiety
Conservation





Ligand recognition
A6
Ribose sugar
>97%



U6
Ribose sugar, sulfur
>97%



G11
Methionine side chain
>97%



A45
Adenine moiety
>97%



C47
Adenine moiety
>97%



U57
Adenine moiety
>97%



G58
Methionine side chain
>97%



A86
Ribose sugar
>97%



U87
Ribose sugar
>97%







*Nucleotide numbering consistent with that used in the RNA crystallized.






Conservation based upon alignment of ˜100 SAM-I sequences (Rfam database, http://www.sanger.ac.uk/Software/Rfam/)














TABLE 3










REMARK coordinates from simulated annealing refinement


REMARK refinement resolution: 50-2.9 A








REMARK starting
r= 0.2651 free_r= 0.2890


REMARK final
r= 0.2667 free_r= 0.2879







REMARK rmsd bonds= 0.009579 rmsd angles= 1.64239


REMARK wa= 4


REMARK target= mlhl md-method= torsion annealing schedule= slowcool


REMARK starting temperature= 4000 total md steps= 80 * 6


REMARK sg= P4(3)2(1)2 a= 62.901 b= 62.901 c= 158.967 alpha= 90 beta= 90


gamma= 90


REMARK parameter file 1 : CNS_TOPPAR: dna-rna_rep.param


REMARK parameter file 2 : sam3.param


REMARK parameter file 3 : CNS_TOPPAR: water_rep.param


REMARK parameter file 5 : ion2.param


REMARK molecular structure file: samrnaZ.mtf


REMARK input coordinates: minimizeZ_B2.pdb


REMARK anomalous f′ f″ library: fp_fdp_groupA6.lib


REMARK reflection file= scaleMAD.cv


REMARK reflection file= mad_phaseIRMADBP43212.hkl


REMARK additional restraints file: dna-rna_restraintsE.def


REMARK ncs= none


REMARK B-correction resolution: 6.0-2.9


REMARK initial B-factor correction applied to f_w1:


REMARK B11= −11.957 B22= −11.957 B33= 23.914


REMARK B12=  0.000 B13=  0.000 B23=  0.000


REMARK B-factor correction applied to coordinate array B:  −0.634


REMARK bulk solvent: density level= 0.8529 e/A{circumflex over ( )}3, B-factor= 300 A{circumflex over ( )}2


REMARK reflections with |Fobs|/sigma_F <0.0 rejected


REMARK reflections with |Fobs| >10000 * rms(Fobs) rejected


REMARK anomalous diffraction data was input









REMARK theoretical total number of refl. in resol. range:
13511
(100.0%)


REMARK number of unobserved reflections (no entry or |F|=0):
96
( 0.7%)


REMARK number of reflections rejected:
0
( 0.0%)


REMARK total number of reflections used:
13415
( 99.3%)


REMARK number of reflections in working set:
12416
( 91.9%)


REMARK number of reflections in test set:
999
( 7.4%)







CRYST1  62.901  62.901  158.967  90.00  90.00  90.00 P 43 21 2


REMARK FILENAME=“annealZ_B4_1.pdb”


REMARK DATE: 8-Feb-06  04:28:37     created by user: montangr


REMARK VERSION: 1.1

















ATOM
1
O5T
GUA
1
66.683
54.256
31.032
1.00
83.68



ATOM
2
P
GUA
1
66.835
54.687
32.502
1.00
83.36


ATOM
3
O1P
GUA
1
67.821
55.847
32.631
1.00
83.57


ATOM
4
O2P
GUA
1
65.490
54.992
33.172
1.00
81.66


ATOM
5
O5′
GUA
1
67.506
53.445
33.341
1.00
79.16


ATOM
6
C5′
GUA
1
68.808
52.929
32.997
1.00
72.71


ATOM
7
C4′
GUA
1
69.342
52.033
34.100
1.00
69.78


ATOM
8
O4′
GUA
1
69.939
52.838
35.158
1.00
66.22


ATOM
9
C1′
GUA
1
69.690
52.242
36.422
1.00
63.61


ATOM
10
N9
GUA
1
68.769
53.113
37.142
1.00
59.52


ATOM
11
C4
GUA
1
68.410
53.068
38.479
1.00
56.49


ATOM
12
N3
GUA
1
68.874
52.213
39.404
1.00
55.16


ATOM
13
C2
GUA
1
68.286
52.395
40.583
1.00
54.45


ATOM
14
N2
GUA
1
68.607
51.617
41.626
1.00
54.23


ATOM
15
N1
GUA
1
67.338
53.345
40.827
1.00
52.87


ATOM
16
C6
GUA
1
66.852
54.236
39.883
1.00
54.26


ATOM
17
O6
GUA
1
65.983
55.064
40.201
1.00
55.11


ATOM
18
C5
GUA
1
67.458
54.048
38.629
1.00
55.33


ATOM
19
N7
GUA
1
67.246
54.714
37.435
1.00
57.56


ATOM
20
C8
GUA
1
68.047
54.131
36.587
1.00
58.84


ATOM
21
C2′
GUA
1
69.048
50.883
36.141
1.00
66.60


ATOM
22
O2′
GUA
1
70.070
49.922
35.982
1.00
66.97


ATOM
23
C3′
GUA
1
68.334
51.149
34.821
1.00
68.51


ATOM
24
O3′
GUA
1
68.102
49.938
34.106
1.00
68.62


ATOM
25
P
GUA
2
66.687
49.177
34.246
1.00
68.94


ATOM
26
O1P
GUA
2
65.559
50.138
34.075
1.00
68.40


ATOM
27
O2P
GUA
2
66.770
47.973
33.393
1.00
69.33


ATOM
28
O5′
GUA
2
66.653
48.669
35.751
1.00
67.96


ATOM
29
C5′
GUA
2
67.438
47.559
36.151
1.00
64.12


ATOM
30
C4′
GUA
2
67.352
47.376
37.641
1.00
61.63


ATOM
31
O4′
GUA
2
67.613
48.663
38.266
1.00
58.76


ATOM
32
C1′
GUA
2
66.860
48.777
39.450
1.00
55.68


ATOM
33
N9
GUA
2
66.027
49.953
39.350
1.00
51.79


ATOM
34
C4
GUA
2
65.271
50.512
40.361
1.00
51.24


ATOM
35
N3
GUA
2
65.152
50.043
41.624
1.00
50.23


ATOM
36
C2
GUA
2
64.362
50.803
42.352
1.00
49.82


ATOM
37
N2
GUA
2
64.105
50.482
43.616
1.00
50.74


ATOM
38
N1
GUA
2
63.753
51.935
41.896
1.00
49.79


ATOM
39
C6
GUA
2
63.858
52.430
40.608
1.00
50.39


ATOM
40
O6
GUA
2
63.254
53.465
40.297
1.00
52.03


ATOM
41
C5
GUA
2
64.692
51.623
39.808
1.00
49.54


ATOM
42
N7
GUA
2
65.063
51.758
38.484
1.00
51.39


ATOM
43
C8
GUA
2
65.851
50.736
38.256
1.00
51.53


ATOM
44
C2′
GUA
2
66.046
47.504
39.600
1.00
58.61


ATOM
45
O2′
GUA
2
66.858
46.649
40.371
1.00
60.16


ATOM
46
C3′
GUA
2
65.961
47.048
38.152
1.00
61.12


ATOM
47
O3′
GUA
2
65.637
45.672
38.004
1.00
62.40


ATOM
48
P
CYT
3
64.094
45.227
38.067
1.00
62.75


ATOM
49
O1P
CYT
3
63.308
46.272
37.367
1.00
63.25


ATOM
50
O2P
CYT
3
63.952
43.798
37.682
1.00
61.96


ATOM
51
O5′
CYT
3
63.702
45.427
39.599
1.00
62.40


ATOM
52
C5′
CYT
3
63.835
44.384
40.556
1.00
57.45


ATOM
53
C4′
CYT
3
63.166
44.797
41.852
1.00
54.88


ATOM
54
O4′
CYT
3
63.552
46.167
42.136
1.00
53.77


ATOM
55
C1′
CYT
3
62.501
46.841
42.816
1.00
51.14


ATOM
56
N1
CYT
3
62.106
48.038
42.074
1.00
48.09


ATOM
57
C6
CYT
3
62.565
48.279
40.819
1.00
47.60


ATOM
58
C2
CYT
3
61.224
48.927
42.684
1.00
47.83


ATOM
59
O2
CYT
3
60.828
48.670
43.813
1.00
49.37


ATOM
60
N3
CYT
3
60.819
50.034
42.025
1.00
45.85


ATOM
61
C4
CYT
3
61.265
50.257
40.793
1.00
46.99


ATOM
62
N4
CYT
3
60.849
51.345
40.166
1.00
46.92


ATOM
63
C5
CYT
3
62.169
49.366
40.145
1.00
47.49


ATOM
64
C2′
CYT
3
61.350
45.867
42.930
1.00
52.31


ATOM
65
O2′
CYT
3
61.454
45.180
44.153
1.00
53.02


ATOM
66
C3′
CYT
3
61.657
44.936
41.784
1.00
53.89


ATOM
67
O3′
CYT
3
60.969
43.748
42.011
1.00
55.88


ATOM
68
P
URI
4
59.519
43.568
41.365
1.00
58.28


ATOM
69
O1P
URI
4
59.598
44.203
40.021
1.00
59.11


ATOM
70
O2P
URI
4
59.288
42.087
41.473
1.00
58.24


ATOM
71
O5′
URI
4
58.511
44.452
42.253
1.00
52.46


ATOM
72
C5′
URI
4
58.201
44.075
43.573
1.00
51.73


ATOM
73
C4′
URI
4
57.233
45.044
44.190
1.00
53.93


ATOM
74
O4′
URI
4
57.799
46.375
44.177
1.00
54.83


ATOM
75
C1′
URI
4
56.772
47.338
43.970
1.00
51.88


ATOM
76
N1
URI
4
57.043
48.043
42.715
1.00
47.56


ATOM
77
C6
URI
4
57.915
47.533
41.803
1.00
45.74


ATOM
78
C2
URI
4
56.418
49.246
42.509
1.00
45.12


ATOM
79
O2
URI
4
55.601
49.699
43.263
1.00
45.46


ATOM
80
N3
URI
4
56.780
49.897
41.376
1.00
44.07


ATOM
81
C4
URI
4
57.673
49.459
40.434
1.00
45.80


ATOM
82
O4
URI
4
57.901
50.160
39.446
1.00
48.12


ATOM
83
C5
URI
4
58.248
48.183
40.699
1.00
44.89


ATOM
84
C2′
URI
4
55.460
46.585
43.945
1.00
53.84


ATOM
85
O2′
URI
4
55.049
46.526
45.291
1.00
55.89


ATOM
86
C3′
URI
4
55.928
45.227
43.447
1.00
56.50


ATOM
87
O3′
URI
4
55.033
44.179
43.762
1.00
60.61


ATOM
88
P
URI
5
54.151
43.529
42.600
1.00
60.54


ATOM
89
O1P
URI
5
54.965
43.431
41.367
1.00
60.22


ATOM
90
O2P
URI
5
53.623
42.287
43.225
1.00
61.03


ATOM
91
O5′
URI
5
53.013
44.623
42.389
1.00
57.24


ATOM
92
C5′
URI
5
52.117
44.909
43.441
1.00
56.41


ATOM
93
C4′
URI
5
51.412
46.192
43.165
1.00
56.25


ATOM
94
O4′
URI
5
52.393
47.243
43.070
1.00
56.34


ATOM
95
C1′
URI
5
52.002
48.171
42.068
1.00
54.84


ATOM
96
N1
URI
5
53.033
48.162
41.030
1.00
50.95


ATOM
97
C6
URI
5
53.904
47.111
40.940
1.00
49.39


ATOM
98
C2
URI
5
53.102
49.244
40.165
1.00
49.65


ATOM
99
O2
URI
5
52.318
50.188
40.200
1.00
49.20


ATOM
100
N3
URI
5
54.113
49.177
39.255
1.00
47.87


ATOM
101
C4
URI
5
55.025
48.154
39.116
1.00
50.19


ATOM
102
O4
URI
5
55.877
48.217
38.216
1.00
53.52


ATOM
103
C5
URI
5
54.869
47.069
40.043
1.00
49.42


ATOM
104
C2′
URI
5
50.646
47.722
41.541
1.00
56.19


ATOM
105
O2′
URI
5
49.666
48.386
42.297
1.00
58.79


ATOM
106
C3′
URI
5
50.698
46.231
41.837
1.00
57.01


ATOM
107
O3′
URI
5
49.405
45.691
41.984
1.00
59.04


ATOM
108
P
ADE
6
48.680
45.048
40.716
1.00
61.15


ATOM
109
O1P
ADE
6
49.746
44.338
39.944
1.00
60.00


ATOM
110
O2P
ADE
6
47.517
44.282
41.222
1.00
62.58


ATOM
111
O5′
ADE
6
48.118
46.322
39.943
1.00
58.46


ATOM
112
C5′
ADE
6
47.075
47.089
40.511
1.00
54.84


ATOM
113
C4′
ADE
6
46.878
48.367
39.732
1.00
56.15


ATOM
114
O4′
ADE
6
48.103
49.137
39.782
1.00
55.83


ATOM
115
C1′
ADE
6
48.288
49.847
38.565
1.00
53.94


ATOM
116
N9
ADE
6
49.550
49.441
37.944
1.00
51.65


ATOM
117
C4
ADE
6
50.293
50.222
37.098
1.00
48.72


ATOM
118
N3
ADE
6
50.023
51.476
36.711
1.00
49.61


ATOM
119
C2
ADE
6
50.949
51.909
35.860
1.00
48.98


ATOM
120
N1
ADE
6
52.033
51.280
35.405
1.00
48.66


ATOM
121
C6
ADE
6
52.271
50.019
35.837
1.00
48.40


ATOM
122
N6
ADE
6
53.357
49.386
35.415
1.00
47.84


ATOM
123
C5
ADE
6
51.365
49.449
36.713
1.00
47.62


ATOM
124
N7
ADE
6
51.322
48.202
37.312
1.00
49.62


ATOM
125
C8
ADE
6
50.226
48.246
38.040
1.00
51.71


ATOM
126
C2′
ADE
6
47.082
49.557
37.691
1.00
55.35


ATOM
127
O2′
ADE
6
46.167
50.586
37.959
1.00
56.32


ATOM
128
C3′
ADE
6
46.643
48.207
38.241
1.00
57.62


ATOM
129
O3′
ADE
6
45.298
47.873
37.934
1.00
60.36


ATOM
130
P
URI
7
45.013
46.815
36.761
1.00
62.82


ATOM
131
O1P
URI
7
46.169
45.870
36.681
1.00
61.91


ATOM
132
O2P
URI
7
43.638
46.278
36.972
1.00
63.73


ATOM
133
O5′
URI
7
45.037
47.731
35.464
1.00
60.87


ATOM
134
C5′
URI
7
44.309
48.943
35.451
1.00
59.43


ATOM
135
C4′
URI
7
44.805
49.828
34.343
1.00
59.36


ATOM
136
O4′
URI
7
46.136
50.328
34.653
1.00
57.66


ATOM
137
C1′
URI
7
46.887
50.433
33.470
1.00
55.50


ATOM
138
N1
URI
7
48.051
49.565
33.611
1.00
52.89


ATOM
139
C6
URI
7
48.080
48.541
34.527
1.00
52.24


ATOM
140
C2
URI
7
49.110
49.813
32.772
1.00
51.74


ATOM
141
O2
URI
7
49.081
50.708
31.942
1.00
54.38


ATOM
142
N3
URI
7
50.187
48.976
32.926
1.00
48.76


ATOM
143
C4
URI
7
50.292
47.913
33.822
1.00
49.78


ATOM
144
O4
URI
7
51.321
47.233
33.844
1.00
48.52


ATOM
145
C5
URI
7
49.140
47.714
34.655
1.00
49.80


ATOM
146
C2′
URI
7
45.991
49.967
32.323
1.00
57.47


ATOM
147
O2′
URI
7
45.309
51.065
31.766
1.00
58.56


ATOM
148
C3′
URI
7
45.014
49.073
33.057
1.00
58.82


ATOM
149
O3′
URI
7
43.790
48.929
32.393
1.00
60.27


ATOM
150
P
CYT
8
43.577
47.678
31.430
1.00
61.88


ATOM
151
O1P
CYT
8
44.175
46.480
32.039
1.00
61.56


ATOM
152
O2P
CYT
8
42.136
47.693
31.094
1.00
62.68


ATOM
153
O5′
CYT
8
44.444
48.053
30.152
1.00
60.23


ATOM
154
C5′
CYT
8
44.186
49.260
29.471
1.00
58.67


ATOM
155
C4′
CYT
8
45.158
49.439
28.352
1.00
59.10


ATOM
156
O4′
CYT
8
46.464
49.751
28.899
1.00
58.92


ATOM
157
C1′
CYT
8
47.471
49.201
28.067
1.00
55.81


ATOM
158
N1
CYT
8
48.330
48.336
28.875
1.00
52.92


ATOM
159
C6
CYT
8
47.831
47.612
29.919
1.00
51.12


ATOM
160
C2
CYT
8
49.671
48.249
28.542
1.00
51.33


ATOM
161
O2
CYT
8
50.092
48.952
27.622
1.00
54.13


ATOM
162
N3
CYT
8
50.477
47.416
29.227
1.00
47.49


ATOM
163
C4
CYT
8
49.983
46.705
30.233
1.00
46.29


ATOM
164
N4
CYT
8
50.796
45.904
30.870
1.00
44.40


ATOM
165
C5
CYT
8
48.622
46.791
30.623
1.00
47.07


ATOM
166
C2′
CYT
8
46.769
48.478
26.915
1.00
57.91


ATOM
167
O2′
CYT
8
46.666
49.361
25.801
1.00
57.76


ATOM
168
C3′
CYT
8
45.405
48.187
27.531
1.00
59.65


ATOM
169
O3′
CYT
8
44.383
48.041
26.550
1.00
62.84


ATOM
170
P
ADE
9
44.188
46.633
25.809
1.00
64.18


ATOM
171
O1P
ADE
9
43.435
45.711
26.688
1.00
64.52


ATOM
172
O2P
ADE
9
45.514
46.225
25.309
1.00
64.53


ATOM
173
O5′
ADE
9
43.235
47.012
24.593
1.00
66.69


ATOM
174
C5′
ADE
9
43.669
46.853
23.248
1.00
70.50


ATOM
175
C4′
ADE
9
42.669
47.476
22.294
1.00
73.26


ATOM
176
O4′
ADE
9
41.540
46.599
22.113
1.00
76.14


ATOM
177
C1′
ADE
9
40.403
47.114
22.774
1.00
79.10


ATOM
178
N9
ADE
9
39.929
46.065
23.673
1.00
85.08


ATOM
179
C4
ADE
9
39.483
44.834
23.246
1.00
88.44


ATOM
180
N3
ADE
9
39.407
44.392
21.975
1.00
89.70


ATOM
181
C2
ADE
9
38.931
43.140
21.933
1.00
91.24


ATOM
182
N1
ADE
9
38.552
42.337
22.945
1.00
91.09


ATOM
183
C6
ADE
9
38.644
42.808
24.215
1.00
90.90


ATOM
184
N6
ADE
9
38.275
42.004
25.220
1.00
90.36


ATOM
185
C5
ADE
9
39.134
44.135
24.393
1.00
89.80


ATOM
186
N7
ADE
9
39.355
44.916
25.525
1.00
89.22


ATOM
187
C8
ADE
9
39.826
46.049
25.045
1.00
86.91


ATOM
188
C2′
ADE
9
40.738
48.460
23.424
1.00
75.04


ATOM
189
O2′
ADE
9
39.712
49.379
23.103
1.00
74.28


ATOM
190
C3′
ADE
9
42.090
48.782
22.788
1.00
72.63


ATOM
191
O3′
ADE
9
42.420
49.947
22.028
1.00
69.18


ATOM
192
P
ADE
10
41.580
50.305
20.731
1.00
61.69


ATOM
193
O1P
ADE
10
42.493
50.891
19.750
1.00
66.22


ATOM
194
O2P
ADE
10
40.894
49.052
20.417
1.00
64.95


ATOM
195
O5′
ADE
10
40.583
51.443
21.217
1.00
62.09


ATOM
196
C5′
ADE
10
39.175
51.268
21.154
1.00
61.89


ATOM
197
C4′
ADE
10
38.475
52.489
21.695
1.00
61.53


ATOM
198
O4′
ADE
10
38.512
52.476
23.137
1.00
61.84


ATOM
199
C1′
ADE
10
38.705
53.786
23.612
1.00
60.45


ATOM
200
N9
ADE
10
40.010
53.797
24.229
1.00
61.08


ATOM
201
C4
ADE
10
40.583
54.810
24.948
1.00
63.10


ATOM
202
N3
ADE
10
40.066
56.018
25.209
1.00
64.35


ATOM
203
C2
ADE
10
40.877
56.715
25.980
1.00
63.42


ATOM
204
N1
ADE
10
42.048
56.374
26.490
1.00
63.80


ATOM
205
C6
ADE
10
42.537
55.157
26.220
1.00
63.55


ATOM
206
N6
ADE
10
43.699
54.810
26.764
1.00
65.16


ATOM
207
C5
ADE
10
41.782
54.320
25.392
1.00
63.77


ATOM
208
N7
ADE
10
41.987
53.029
24.917
1.00
63.69


ATOM
209
C8
ADE
10
40.907
52.774
24.234
1.00
61.52


ATOM
210
C2′
ADE
10
38.644
54.723
22.416
1.00
60.15


ATOM
211
O2′
ADE
10
37.326
55.164
22.272
1.00
61.39


ATOM
212
C3′
ADE
10
39.091
53.806
21.296
1.00
60.69


ATOM
213
O3′
ADE
10
38.539
54.212
20.074
1.00
62.08


ATOM
214
P
GUA
11
39.366
55.194
19.127
1.00
64.89


ATOM
215
O1P
GUA
11
40.703
54.583
19.003
1.00
66.34


ATOM
216
O2P
GUA
11
38.590
55.505
17.903
1.00
68.29


ATOM
217
O5′
GUA
11
39.495
56.551
19.946
1.00
65.10


ATOM
218
C5′
GUA
11
38.356
57.343
20.261
1.00
65.30


ATOM
219
C4′
GUA
11
38.799
58.558
21.028
1.00
65.45


ATOM
220
O4′
GUA
11
39.370
58.144
22.284
1.00
64.83


ATOM
221
C1′
GUA
11
40.478
58.955
22.597
1.00
64.44


ATOM
222
N9
GUA
11
41.605
58.050
22.743
1.00
64.53


ATOM
223
C4
GUA
11
42.679
58.165
23.607
1.00
65.59


ATOM
224
N3
GUA
11
42.916
59.179
24.469
1.00
65.73


ATOM
225
C2
GUA
11
44.016
58.976
25.164
1.00
64.82


ATOM
226
N2
GUA
11
44.425
59.871
26.048
1.00
68.42


ATOM
227
N1
GUA
11
44.807
57.883
25.041
1.00
63.97


ATOM
228
C6
GUA
11
44.586
56.835
24.176
1.00
63.42


ATOM
229
O6
GUA
11
45.372
55.897
24.154
1.00
64.36


ATOM
230
C5
GUA
11
43.420
57.027
23.411
1.00
64.27


ATOM
231
N7
GUA
11
42.840
56.226
22.440
1.00
64.47


ATOM
232
C8
GUA
11
41.777
56.877
22.069
1.00
63.23


ATOM
233
C2′
GUA
11
40.606
60.006
21.494
1.00
65.60


ATOM
234
O2′
GUA
11
39.979
61.195
21.889
1.00
68.32


ATOM
235
C3′
GUA
11
39.893
59.331
20.336
1.00
66.11


ATOM
236
O3′
GUA
11
39.257
60.293
19.523
1.00
67.76


ATOM
237
P
ADE
12
39.778
60.539
18.029
1.00
72.60


ATOM
238
O1P
ADE
12
40.480
59.300
17.596
1.00
71.76


ATOM
239
O2P
ADE
12
38.627
61.058
17.237
1.00
72.46


ATOM
240
O5′
ADE
12
40.853
61.714
18.159
1.00
72.51


ATOM
241
C5′
ADE
12
40.499
62.956
18.760
1.00
73.62


ATOM
242
C4′
ADE
12
41.725
63.653
19.274
1.00
74.46


ATOM
243
O4′
ADE
12
42.269
62.918
20.396
1.00
73.15


ATOM
244
C1′
ADE
12
43.689
62.996
20.365
1.00
73.50


ATOM
245
N9
ADE
12
44.226
61.630
20.365
1.00
72.20


ATOM
246
C4
ADE
12
44.994
61.059
21.352
1.00
71.54


ATOM
247
N3
ADE
12
45.449
61.638
22.473
1.00
72.13


ATOM
248
C2
ADE
12
46.133
60.772
23.211
1.00
70.67


ATOM
249
N1
ADE
12
46.386
59.492
22.984
1.00
70.86


ATOM
250
C6
ADE
12
45.908
58.930
21.858
1.00
70.56


ATOM
251
N6
ADE
12
46.130
57.634
21.662
1.00
68.36


ATOM
252
C5
ADE
12
45.184
59.753
20.971
1.00
70.96


ATOM
253
N7
ADE
12
44.589
59.515
19.744
1.00
70.23


ATOM
254
C8
ADE
12
44.044
60.657
19.429
1.00
70.52


ATOM
255
C2′
ADE
12
44.076
63.842
19.150
1.00
74.01


ATOM
256
O2′
ADE
12
44.255
65.189
19.512
1.00
73.01


ATOM
257
C3′
ADE
12
42.853
63.678
18.274
1.00
76.00


ATOM
258
O3′
ADE
12
42.705
64.743
17.364
1.00
82.92


ATOM
259
P
GUA
13
42.849
64.434
15.806
1.00
89.23


ATOM
260
O1P
GUA
13
44.212
63.866
15.598
1.00
87.85


ATOM
261
O2P
GUA
13
41.647
63.662
15.399
1.00
88.87


ATOM
262
O5′
GUA
13
42.835
65.828
15.049
1.00
92.65


ATOM
263
C5′
GUA
13
43.402
65.897
13.742
1.00
99.05


ATOM
264
C4′
GUA
13
43.901
67.285
13.454
1.00
102.86


ATOM
265
O4′
GUA
13
44.513
67.820
14.647
1.00
103.26


ATOM
266
C1′
GUA
13
45.600
68.636
14.278
1.00
103.85


ATOM
267
N9
GUA
13
46.764
68.225
15.052
1.00
103.84


ATOM
268
C4
GUA
13
47.591
69.091
15.711
1.00
103.47


ATOM
269
N3
GUA
13
47.491
70.432
15.678
1.00
103.15


ATOM
270
C2
GUA
13
48.394
71.016
16.429
1.00
103.15


ATOM
271
N2
GUA
13
48.425
72.353
16.471
1.00
102.90


ATOM
272
N1
GUA
13
49.329
70.334
17.183
1.00
102.58


ATOM
273
C6
GUA
13
49.453
68.947
17.245
1.00
102.36


ATOM
274
O6
GUA
13
50.322
68.436
17.977
1.00
100.97


ATOM
275
C5
GUA
13
48.483
68.300
16.406
1.00
103.12


ATOM
276
N7
GUA
13
48.247
66.950
16.146
1.00
103.65


ATOM
277
C8
GUA
13
47.223
66.954
15.326
1.00
103.51


ATOM
278
C2′
GUA
13
45.707
68.642
12.750
1.00
104.40


ATOM
279
O2′
GUA
13
45.031
69.770
12.214
1.00
102.71


ATOM
280
C3′
GUA
13
44.995
67.349
12.398
1.00
104.50


ATOM
281
O3′
GUA
13
44.415
67.468
11.112
1.00
108.89


ATOM
282
P
ADE
14
44.724
66.356
10.001
1.00
112.49


ATOM
283
O1P
ADE
14
43.489
65.535
9.857
1.00
112.37


ATOM
284
O2P
ADE
14
46.003
65.706
10.378
1.00
112.67


ATOM
285
O5′
ADE
14
44.924
67.177
8.642
1.00
114.10


ATOM
286
C5′
ADE
14
46.180
67.784
8.294
1.00
115.83


ATOM
287
C4′
ADE
14
45.953
68.890
7.277
1.00
117.07


ATOM
288
O4′
ADE
14
45.442
68.287
6.059
1.00
118.27


ATOM
289
C1′
ADE
14
44.215
68.886
5.685
1.00
119.02


ATOM
290
N9
ADE
14
43.216
67.811
5.577
1.00
120.22


ATOM
291
C4
ADE
14
42.010
67.819
4.904
1.00
121.47


ATOM
292
N3
ADE
14
41.457
68.832
4.210
1.00
122.68


ATOM
293
C2
ADE
14
40.279
68.463
3.683
1.00
122.61


ATOM
294
N1
ADE
14
39.643
67.285
3.758
1.00
121.89


ATOM
295
C6
ADE
14
40.225
66.284
4.454
1.00
122.02


ATOM
296
N6
ADE
14
39.604
65.100
4.507
1.00
122.32


ATOM
297
C5
ADE
14
41.473
66.551
5.077
1.00
121.82


ATOM
298
N7
ADE
14
42.312
65.766
5.858
1.00
121.29


ATOM
299
C8
ADE
14
43.324
66.557
6.128
1.00
120.40


ATOM
300
C2′
ADE
14
43.866
70.034
6.651
1.00
117.90


ATOM
301
O2′
ADE
14
43.874
71.246
5.920
1.00
117.05


ATOM
302
C3′
ADE
14
44.963
69.962
7.732
1.00
116.80


ATOM
303
O3′
ADE
14
45.602
71.196
8.120
1.00
114.78


ATOM
304
P
GUA
15
46.784
71.177
9.231
1.00
113.16


ATOM
305
O1P
GUA
15
48.093
71.135
8.523
1.00
112.02


ATOM
306
O2P
GUA
15
46.452
70.117
10.221
1.00
113.09


ATOM
307
O5′
GUA
15
46.685
72.580
9.983
1.00
109.53


ATOM
308
C5′
GUA
15
46.922
73.797
9.302
1.00
104.29


ATOM
309
C4′
GUA
15
47.641
74.768
10.205
1.00
101.82


ATOM
310
O4′
GUA
15
47.447
74.354
11.589
1.00
100.71


ATOM
311
C1′
GUA
15
48.608
74.668
12.349
1.00
99.42


ATOM
312
N9
GUA
15
49.190
73.447
12.903
1.00
98.78


ATOM
313
C4
GUA
15
50.201
73.420
13.825
1.00
97.48


ATOM
314
N3
GUA
15
50.778
74.498
14.382
1.00
97.05


ATOM
315
C2
GUA
15
51.734
74.171
15.222
1.00
97.04


ATOM
316
N2
GUA
15
52.404
75.129
15.863
1.00
96.61


ATOM
317
N1
GUA
15
52.104
72.886
15.496
1.00
97.43


ATOM
318
C6
GUA
15
51.531
71.753
14.934
1.00
97.90


ATOM
319
O6
GUA
15
51.956
70.633
15.250
1.00
98.14


ATOM
320
C5
GUA
15
50.487
72.092
14.024
1.00
97.66


ATOM
321
N7
GUA
15
49.655
71.287
13.251
1.00
98.14


ATOM
322
C8
GUA
15
48.895
72.135
12.608
1.00
98.22


ATOM
323
C2′
GUA
15
49.611
75.323
11.403
1.00
99.61


ATOM
324
O2′
GUA
15
49.544
76.727
11.480
1.00
98.50


ATOM
325
C3′
GUA
15
49.152
74.776
10.062
1.00
100.26


ATOM
326
O3′
GUA
15
49.603
75.614
9.019
1.00
99.71


ATOM
327
P
GUA
16
51.122
75.491
8.526
1.00
99.69


ATOM
328
O1P
GUA
16
51.687
74.280
9.172
1.00
99.91


ATOM
329
O2P
GUA
16
51.168
75.611
7.049
1.00
100.43


ATOM
330
O5′
GUA
16
51.857
76.752
9.156
1.00
98.59


ATOM
331
C5′
GUA
16
53.234
76.959
8.897
1.00
98.52


ATOM
332
C4′
GUA
16
53.942
77.398
10.149
1.00
98.91


ATOM
333
O4′
GUA
16
53.336
76.758
11.297
1.00
98.89


ATOM
334
C1′
GUA
16
54.341
76.472
12.262
1.00
98.43


ATOM
335
N9
GUA
16
54.286
75.058
12.616
1.00
97.00


ATOM
336
C4
GUA
16
55.091
74.428
13.526
1.00
95.97


ATOM
337
N3
GUA
16
56.084
75.003
14.229
1.00
96.30


ATOM
338
C2
GUA
16
56.674
74.145
15.044
1.00
96.19


ATOM
339
N2
GUA
16
57.679
74.559
15.828
1.00
95.68


ATOM
340
N1
GUA
16
56.316
72.826
15.150
1.00
95.84


ATOM
341
C6
GUA
16
55.294
72.219
14.430
1.00
95.52


ATOM
342
O6
GUA
16
55.047
71.034
14.604
1.00
96.17


ATOM
343
C5
GUA
16
54.657
73.126
13.560
1.00
95.56


ATOM
344
N7
GUA
16
53.606
72.934
12.677
1.00
96.06


ATOM
345
C8
GUA
16
53.423
74.106
12.136
1.00
96.63


ATOM
346
C2′
GUA
16
55.685
76.926
11.695
1.00
98.75


ATOM
347
O2′
GUA
16
56.026
78.179
12.230
1.00
98.82


ATOM
348
C3′
GUA
16
55.392
76.948
10.202
1.00
99.86


ATOM
349
O3′
GUA
16
56.238
77.844
9.497
1.00
102.10


ATOM
350
P
URI
17
57.473
77.262
8.651
1.00
103.81


ATOM
351
O1P
URI
17
56.956
76.105
7.879
1.00
104.45


ATOM
352
O2P
URI
17
58.117
78.383
7.927
1.00
104.70


ATOM
353
O5′
URI
17
58.483
76.767
9.778
1.00
102.87


ATOM
354
C5′
URI
17
59.132
77.720
10.590
1.00
103.52


ATOM
355
C4′
URI
17
60.070
77.052
11.548
1.00
104.73


ATOM
356
O4′
URI
17
59.300
76.292
12.514
1.00
105.61


ATOM
357
C1′
URI
17
60.029
75.135
12.888
1.00
106.42


ATOM
358
N1
URI
17
59.237
73.933
12.608
1.00
107.04


ATOM
359
C6
URI
17
58.117
73.949
11.812
1.00
107.16


ATOM
360
C2
URI
17
59.678
72.769
13.195
1.00
107.75


ATOM
361
O2
URI
17
60.673
72.727
13.899
1.00
107.85


ATOM
362
N3
URI
17
58.920
71.657
12.931
1.00
108.35


ATOM
363
C4
URI
17
57.790
71.590
12.154
1.00
108.47


ATOM
364
O4
URI
17
57.215
70.505
12.019
1.00
108.41


ATOM
365
C5
URI
17
57.393
72.846
11.569
1.00
108.02


ATOM
366
C2′
URI
17
61.344
75.144
12.115
1.00
106.06


ATOM
367
O2′
URI
17
62.345
75.727
12.928
1.00
106.68


ATOM
368
C3′
URI
17
60.973
76.007
10.921
1.00
105.15


ATOM
369
O3′
URI
17
62.113
76.578
10.319
1.00
104.51


ATOM
370
P
GUA
18
62.694
75.923
8.980
1.00
104.43


ATOM
371
O1P
GUA
18
61.537
75.870
8.046
1.00
104.17


ATOM
372
O2P
GUA
18
63.929
76.658
8.594
1.00
105.35


ATOM
373
O5′
GUA
18
63.149
74.463
9.423
1.00
103.10


ATOM
374
C5′
GUA
18
64.238
74.303
10.329
1.00
101.95


ATOM
375
C4′
GUA
18
64.384
72.859
10.737
1.00
100.63


ATOM
376
O4′
GUA
18
63.159
72.422
11.378
1.00
100.46


ATOM
377
C1′
GUA
18
62.892
71.073
11.019
1.00
98.73


ATOM
378
N9
GUA
18
61.652
71.057
10.245
1.00
96.32


ATOM
379
C4
GUA
18
60.768
70.017
10.138
1.00
95.17


ATOM
380
N3
GUA
18
60.890
68.812
10.729
1.00
94.41


ATOM
381
C2
GUA
18
59.883
68.015
10.432
1.00
94.07


ATOM
382
N2
GUA
18
59.854
66.775
10.919
1.00
93.96


ATOM
383
N1
GUA
18
58.830
68.375
9.626
1.00
94.29


ATOM
384
C6
GUA
18
58.685
69.612
9.007
1.00
94.03


ATOM
385
O6
GUA
18
57.704
69.830
8.296
1.00
93.31


ATOM
386
C5
GUA
18
59.763
70.474
9.312
1.00
94.35


ATOM
387
N7
GUA
18
60.014
71.771
8.905
1.00
94.39


ATOM
388
C8
GUA
18
61.142
72.077
9.483
1.00
95.26


ATOM
389
C2′
GUA
18
64.099
70.574
10.219
1.00
98.82


ATOM
390
O2′
GUA
18
65.072
70.028
11.087
1.00
98.17


ATOM
391
C3′
GUA
18
64.597
71.870
9.605
1.00
99.71


ATOM
392
O3′
GUA
18
65.968
71.774
9.292
1.00
99.78


ATOM
393
P
GUA
19
66.506
72.393
7.915
1.00
101.26


ATOM
394
O1P
GUA
19
65.508
72.127
6.848
1.00
100.95


ATOM
395
O2P
GUA
19
66.927
73.798
8.168
1.00
102.13


ATOM
396
O5′
GUA
19
67.802
71.510
7.635
1.00
99.33


ATOM
397
C5′
GUA
19
67.800
70.520
6.613
1.00
95.99


ATOM
398
C4′
GUA
19
67.089
69.273
7.090
1.00
93.08


ATOM
399
O4′
GUA
19
65.742
69.601
7.482
1.00
91.65


ATOM
400
C1′
GUA
19
64.876
68.547
7.127
1.00
89.98


ATOM
401
N9
GUA
19
63.792
69.122
6.347
1.00
87.52


ATOM
402
C4
GUA
19
62.479
68.735
6.373
1.00
86.63


ATOM
403
N3
GUA
19
61.981
67.668
7.028
1.00
86.22


ATOM
404
C2
GUA
19
60.668
67.587
6.904
1.00
85.72


ATOM
405
N2
GUA
19
60.010
66.575
7.475
1.00
86.95


ATOM
406
N1
GUA
19
59.905
68.489
6.208
1.00
84.37


ATOM
407
C6
GUA
19
60.396
69.594
5.532
1.00
84.59


ATOM
408
O6
GUA
19
59.622
70.345
4.942
1.00
83.20


ATOM
409
C5
GUA
19
61.804
69.686
5.641
1.00
85.73


ATOM
410
N7
GUA
19
62.686
70.617
5.115
1.00
86.01


ATOM
411
C8
GUA
19
63.855
70.225
5.540
1.00
86.60


ATOM
412
C2′
GUA
19
65.719
67.424
6.534
1.00
90.72


ATOM
413
O2′
GUA
19
66.112
66.586
7.585
1.00
93.46


ATOM
414
C3′
GUA
19
66.939
68.178
6.052
1.00
91.41


ATOM
415
O3′
GUA
19
68.052
67.320
6.215
1.00
90.30


ATOM
416
P
ADE
20
68.088
65.930
5.446
1.00
89.56


ATOM
417
O1P
ADE
20
67.295
66.170
4.209
1.00
90.66


ATOM
418
O2P
ADE
20
69.494
65.467
5.355
1.00
89.16


ATOM
419
O5′
ADE
20
67.277
64.927
6.372
1.00
87.56


ATOM
420
C5′
ADE
20
67.937
64.034
7.276
1.00
85.09


ATOM
421
C4′
ADE
20
67.165
62.728
7.364
1.00
83.03


ATOM
422
O4′
ADE
20
65.756
63.006
7.576
1.00
81.17


ATOM
423
C1′
ADE
20
64.976
62.065
6.872
1.00
79.87


ATOM
424
N9
ADE
20
63.977
62.779
6.088
1.00
76.79


ATOM
425
C4
ADE
20
62.704
62.339
5.857
1.00
75.65


ATOM
426
N3
ADE
20
62.167
61.172
6.249
1.00
75.21


ATOM
427
C2
ADE
20
60.897
61.098
5.872
1.00
74.62


ATOM
428
N1
ADE
20
60.158
61.992
5.203
1.00
73.56


ATOM
429
C6
ADE
20
60.732
63.154
4.829
1.00
74.39


ATOM
430
N6
ADE
20
59.997
64.044
4.163
1.00
74.60


ATOM
431
C5
ADE
20
62.074
63.353
5.167
1.00
74.84


ATOM
432
N7
ADE
20
62.943
64.405
4.942
1.00
74.84


ATOM
433
C8
ADE
20
64.061
64.009
5.496
1.00
76.44


ATOM
434
C2′
ADE
20
65.910
61.114
6.136
1.00
81.05


ATOM
435
O2′
ADE
20
65.938
59.911
6.829
1.00
83.85


ATOM
436
C3′
ADE
20
67.204
61.912
6.091
1.00
82.02


ATOM
437
O3′
ADE
20
68.413
61.139
6.142
1.00
83.54


ATOM
438
P
GUA
21
68.486
59.743
6.975
1.00
84.20


ATOM
439
O1P
GUA
21
67.696
58.730
6.208
1.00
85.71


ATOM
440
O2P
GUA
21
69.900
59.436
7.321
1.00
83.20


ATOM
441
O5′
GUA
21
67.740
60.043
8.348
1.00
80.61


ATOM
442
C5′
GUA
21
67.351
58.974
9.203
1.00
77.25


ATOM
443
C4′
GUA
21
66.008
59.279
9.810
1.00
76.64


ATOM
444
O4′
GUA
21
65.062
59.565
8.747
1.00
76.78


ATOM
445
C1′
GUA
21
63.798
59.027
9.075
1.00
76.36


ATOM
446
N9
GUA
21
63.594
57.815
8.286
1.00
76.44


ATOM
447
C4
GUA
21
62.405
57.150
8.138
1.00
76.82


ATOM
448
N3
GUA
21
61.229
57.533
8.661
1.00
77.21


ATOM
449
C2
GUA
21
60.264
56.688
8.383
1.00
77.43


ATOM
450
N2
GUA
21
59.038
56.936
8.852
1.00
77.66


ATOM
451
N1
GUA
21
60.431
55.542
7.633
1.00
77.41


ATOM
452
C6
GUA
21
61.631
55.120
7.077
1.00
76.61


ATOM
453
O6
GUA
21
61.665
54.070
6.415
1.00
74.86


ATOM
454
C5
GUA
21
62.693
56.033
7.384
1.00
77.01


ATOM
455
N7
GUA
21
64.041
56.005
7.052
1.00
77.39


ATOM
456
C8
GUA
21
64.532
57.086
7.598
1.00
76.36


ATOM
457
C2′
GUA
21
63.892
58.607
10.537
1.00
75.61


ATOM
458
O2′
GUA
21
63.727
59.739
11.360
1.00
75.68


ATOM
459
C3′
GUA
21
65.337
58.184
10.610
1.00
74.80


ATOM
460
O3′
GUA
21
65.724
58.186
11.942
1.00
73.18


ATOM
461
P
GUA
22
65.505
56.869
12.802
1.00
73.59


ATOM
462
O1P
GUA
22
66.065
55.721
12.034
1.00
72.79


ATOM
463
O2P
GUA
22
66.030
57.189
14.160
1.00
74.63


ATOM
464
O5′
GUA
22
63.921
56.718
12.894
1.00
73.06


ATOM
465
C5′
GUA
22
63.163
57.673
13.612
1.00
71.24


ATOM
466
C4′
GUA
22
61.704
57.319
13.596
1.00
69.22


ATOM
467
O4′
GUA
22
61.263
57.279
12.212
1.00
68.19


ATOM
468
C1′
GUA
22
60.263
56.292
12.065
1.00
68.93


ATOM
469
N9
GUA
22
60.721
55.242
11.161
1.00
68.71


ATOM
470
C4
GUA
22
59.919
54.254
10.632
1.00
68.68


ATOM
471
N3
GUA
22
58.589
54.140
10.812
1.00
68.14


ATOM
472
C2
GUA
22
58.096
53.087
10.209
1.00
67.14


ATOM
473
N2
GUA
22
56.792
52.841
10.287
1.00
65.99


ATOM
474
N1
GUA
22
58.845
52.203
9.487
1.00
67.83


ATOM
475
C6
GUA
22
60.215
52.289
9.291
1.00
67.72


ATOM
476
O6
GUA
22
60.792
51.418
8.635
1.00
68.17


ATOM
477
C5
GUA
22
60.762
53.433
9.929
1.00
68.44


ATOM
478
N7
GUA
22
62.069
53.906
9.985
1.00
69.13


ATOM
479
C8
GUA
22
61.991
54.988
10.718
1.00
68.72


ATOM
480
C2′
GUA
22
60.025
55.692
13.449
1.00
68.69


ATOM
481
O2′
GUA
22
59.026
56.449
14.083
1.00
68.16


ATOM
482
C3′
GUA
22
61.367
55.931
14.107
1.00
68.74


ATOM
483
O3′
GUA
22
61.272
55.844
15.515
1.00
68.59


ATOM
484
P
GUA
23
61.522
54.427
16.236
1.00
67.90


ATOM
485
O1P
GUA
23
62.634
53.778
15.515
1.00
68.57


ATOM
486
O2P
GUA
23
61.648
54.697
17.687
1.00
68.81


ATOM
487
O5′
GUA
23
60.173
53.619
15.992
1.00
67.18


ATOM
488
C5′
GUA
23
58.944
54.283
16.218
1.00
68.07


ATOM
489
C4′
GUA
23
57.746
53.406
15.927
1.00
67.20


ATOM
490
O4′
GUA
23
57.467
53.381
14.501
1.00
67.66


ATOM
491
C1′
GUA
23
56.933
52.122
14.143
1.00
65.47


ATOM
492
N9
GUA
23
57.837
51.462
13.211
1.00
65.19


ATOM
493
C4
GUA
23
57.510
50.400
12.405
1.00
63.86


ATOM
494
N3
GUA
23
56.288
49.857
12.284
1.00
63.26


ATOM
495
C2
GUA
23
56.289
48.816
11.493
1.00
61.70


ATOM
496
N2
GUA
23
55.142
48.160
11.262
1.00
60.99


ATOM
497
N1
GUA
23
57.403
48.343
10.875
1.00
61.92


ATOM
498
C6
GUA
23
58.673
48.881
10.987
1.00
62.91


ATOM
499
O6
GUA
23
59.619
48.354
10.388
1.00
64.21


ATOM
500
C5
GUA
23
58.684
50.006
11.824
1.00
63.63


ATOM
501
N7
GUA
23
59.727
50.841
12.205
1.00
65.20


ATOM
502
C8
GUA
23
59.173
51.702
13.014
1.00
65.06


ATOM
503
C2′
GUA
23
56.785
51.322
15.434
1.00
65.23


ATOM
504
O2′
GUA
23
55.523
51.603
15.988
1.00
63.62


ATOM
505
C3′
GUA
23
57.860
51.948
16.307
1.00
67.14


ATOM
506
O3′
GUA
23
57.584
51.754
17.683
1.00
69.44


ATOM
507
P
ADE
24
58.185
50.479
18.419
1.00
70.19


ATOM
508
O1P
ADE
24
57.107
49.796
19.167
1.00
71.17


ATOM
509
O2P
ADE
24
58.971
49.724
17.418
1.00
72.90


ATOM
510
O5′
ADE
24
59.210
51.099
19.456
1.00
72.19


ATOM
511
C5′
ADE
24
60.399
51.763
19.027
1.00
70.68


ATOM
512
C4′
ADE
24
61.574
51.256
19.829
1.00
68.54


ATOM
513
O4′
ADE
24
61.091
50.862
21.135
1.00
66.35


ATOM
514
C1′
ADE
24
61.790
49.729
21.592
1.00
63.51


ATOM
515
N9
ADE
24
60.810
48.689
21.834
1.00
59.62


ATOM
516
C4
ADE
24
61.001
47.522
22.524
1.00
58.95


ATOM
517
N3
ADE
24
62.140
47.079
23.068
1.00
59.41


ATOM
518
C2
ADE
24
61.931
45.919
23.706
1.00
58.50


ATOM
519
N1
ADE
24
60.797
45.221
23.859
1.00
55.98


ATOM
520
C6
ADE
24
59.675
45.703
23.300
1.00
56.73


ATOM
521
N6
ADE
24
58.541
45.021
23.478
1.00
57.38


ATOM
522
C5
ADE
24
59.767
46.906
22.577
1.00
56.87


ATOM
523
N7
ADE
24
58.830
47.652
21.894
1.00
58.63


ATOM
524
C8
ADE
24
59.505
48.693
21.463
1.00
58.72


ATOM
525
C2′
ADE
24
62.838
49.392
20.543
1.00
67.29


ATOM
526
O2′
ADE
24
64.031
50.065
20.892
1.00
68.64


ATOM
527
C3′
ADE
24
62.208
49.990
19.294
1.00
68.98


ATOM
528
O3′
ADE
24
63.204
50.356
18.348
1.00
71.46


ATOM
529
P
CYT
25
63.593
49.332
17.193
1.00
71.71


ATOM
530
O1P
CYT
25
62.341
49.007
16.470
1.00
74.40


ATOM
531
O2P
CYT
25
64.749
49.850
16.440
1.00
72.40


ATOM
532
O5′
CYT
25
64.023
48.046
18.013
1.00
71.74


ATOM
533
C5′
CYT
25
65.300
47.977
18.595
1.00
72.65


ATOM
534
C4′
CYT
25
65.499
46.633
19.229
1.00
74.27


ATOM
535
O4′
CYT
25
64.462
46.425
20.227
1.00
73.08


ATOM
536
C1′
CYT
25
64.150
45.049
20.290
1.00
72.40


ATOM
537
N1
CYT
25
62.704
44.865
20.212
1.00
71.02


ATOM
538
C6
CYT
25
61.868
45.821
19.708
1.00
69.74


ATOM
539
C2
CYT
25
62.203
43.678
20.678
1.00
70.93


ATOM
540
O2
CYT
25
62.999
42.837
21.094
1.00
73.35


ATOM
541
N3
CYT
25
60.876
43.456
20.663
1.00
70.14


ATOM
542
C4
CYT
25
60.061
44.378
20.184
1.00
69.58


ATOM
543
N4
CYT
25
58.758
44.097
20.194
1.00
70.12


ATOM
544
C5
CYT
25
60.546
45.620
19.677
1.00
68.57


ATOM
545
C2′
CYT
25
64.940
44.326
19.197
1.00
74.57


ATOM
546
O2′
CYT
25
66.064
43.676
19.747
1.00
74.57


ATOM
547
C3′
CYT
25
65.294
45.479
18.264
1.00
75.99


ATOM
548
O3′
CYT
25
66.497
45.229
17.547
1.00
80.43


ATOM
549
P
URI
26
66.445
44.414
16.159
1.00
84.24


ATOM
500
O1P
URI
26
65.626
45.207
15.207
1.00
84.42


ATOM
551
O2P
URI
26
67.846
44.052
15.794
1.00
83.16


ATOM
552
O5′
URI
26
65.660
43.077
16.531
1.00
81.54


ATOM
553
C5′
URI
26
66.343
42.032
17.194
1.00
81.62


ATOM
554
C4′
URI
26
65.695
40.706
16.905
1.00
81.45


ATOM
555
O4′
URI
26
64.533
40.520
17.745
1.00
81.80


ATOM
556
C1′
URI
26
63.547
39.794
17.043
1.00
82.17


ATOM
557
N1
URI
26
62.302
40.574
17.025
1.00
83.08


ATOM
558
C6
URI
26
62.313
41.946
16.936
1.00
83.24


ATOM
559
C2
URI
26
61.107
39.869
17.114
1.00
83.66


ATOM
560
O2
URI
26
61.055
38.644
17.175
1.00
83.04


ATOM
561
N3
URI
26
59.976
40.649
17.131
1.00
84.64


ATOM
562
C4
URI
26
59.917
42.031
17.060
1.00
85.35


ATOM
563
O4
URI
26
58.815
42.592
17.096
1.00
86.24


ATOM
564
C5
URI
26
61.193
42.681
16.950
1.00
83.94


ATOM
565
C2′
URI
26
64.116
39.472
15.664
1.00
81.60


ATOM
566
O2′
URI
26
64.658
38.175
15.730
1.00
81.97


ATOM
567
C3′
URI
26
65.160
40.568
15.502
1.00
80.63


ATOM
568
O3′
URI
26
66.208
40.201
14.639
1.00
79.96


ATOM
569
P
GUA
27
66.076
40.502
13.082
1.00
80.19


ATOM
570
O1P
GUA
27
65.823
41.950
12.916
1.00
81.56


ATOM
571
O2P
GUA
27
67.239
39.905
12.399
1.00
82.09


ATOM
572
O5′
GUA
27
64.772
39.677
12.692
1.00
79.08


ATOM
573
C5′
GUA
27
64.809
38.262
12.628
1.00
76.84


ATOM
574
C4′
GUA
27
63.456
37.710
12.238
1.00
77.25


ATOM
575
O4′
GUA
27
62.532
37.841
13.361
1.00
77.35


ATOM
576
C1′
GUA
27
61.223
38.126
12.871
1.00
75.76


ATOM
577
N9
GUA
27
60.851
39.492
13.263
1.00
74.07


ATOM
578
C4
GUA
27
59.578
39.967
13.524
1.00
72.40


ATOM
579
N3
GUA
27
58.441
39.245
13.512
1.00
71.17


ATOM
580
C2
GUA
27
57.385
39.985
13.779
1.00
69.88


ATOM
581
N2
GUA
27
56.182
39.418
13.811
1.00
69.05


ATOM
582
N1
GUA
27
57.438
41.328
14.034
1.00
69.69


ATOM
583
C6
GUA
27
58.600
42.094
14.055
1.00
70.63


ATOM
584
O6
GUA
27
58.546
43.314
14.302
1.00
70.38


ATOM
585
C5
GUA
27
59.736
41.312
13.774
1.00
71.53


ATOM
586
N7
GUA
27
61.073
41.673
13.700
1.00
72.68


ATOM
587
C8
GUA
27
61.696
40.566
13.401
1.00
73.18


ATOM
588
C2′
GUA
27
61.290
37.994
11.344
1.00
75.53


ATOM
589
O2′
GUA
27
61.054
36.659
10.969
1.00
73.69


ATOM
590
C3′
GUA
27
62.735
38.375
11.065
1.00
75.98


ATOM
591
O3′
GUA
27
63.174
37.862
9.818
1.00
75.44


ATOM
592
P
GUA
28
62.453
38.316
8.446
1.00
76.14


ATOM
593
O1P
GUA
28
63.079
39.549
7.865
1.00
75.21


ATOM
594
O2P
GUA
28
62.400
37.070
7.624
1.00
76.48


ATOM
595
O5′
GUA
28
60.963
38.690
8.867
1.00
75.39


ATOM
596
C5′
GUA
28
60.168
39.575
8.057
1.00
73.20


ATOM
597
C4′
GUA
28
58.703
39.460
8.432
1.00
70.70


ATOM
598
O4′
GUA
28
58.540
39.738
9.850
1.00
69.93


ATOM
599
C1′
GUA
28
57.335
40.450
10.059
1.00
69.50


ATOM
600
N9
GUA
28
57.667
41.791
10.530
1.00
68.49


ATOM
601
C4
GUA
28
56.800
42.695
11.085
1.00
67.50


ATOM
602
N3
GUA
28
55.501
42.484
11.327
1.00
68.00


ATOM
603
C2
GUA
28
54.918
43.541
11.841
1.00
67.16


ATOM
604
N2
GUA
28
53.606
43.497
12.119
1.00
66.54


ATOM
605
N1
GUA
28
55.570
44.709
12.114
1.00
67.40


ATOM
606
C6
GUA
28
56.917
44.947
11.882
1.00
67.49


ATOM
607
O6
GUA
28
57.418
46.043
12.186
1.00
67.56


ATOM
608
C5
GUA
28
57.542
43.825
11.310
1.00
67.56


ATOM
609
N7
GUA
28
58.856
43.634
10.920
1.00
68.23


ATOM
610
C8
GUA
28
58.885
42.410
10.473
1.00
68.51


ATOM
611
C2′
GUA
28
56.599
40.488
8.718
1.00
68.94


ATOM
612
O2′
GUA
28
55.767
39.355
8.647
1.00
68.84


ATOM
613
C3′
GUA
28
57.758
40.420
7.728
1.00
69.46


ATOM
614
O3′
GUA
28
57.341
39.854
6.481
1.00
68.96


ATOM
615
P
CYT
29
57.217
40.775
5.161
1.00
67.04


ATOM
616
O1P
CYT
29
58.399
41.654
5.027
1.00
68.44


ATOM
617
O2P
CYT
29
56.834
39.886
4.050
1.00
69.45


ATOM
618
O5′
CYT
29
55.982
41.723
5.427
1.00
65.84


ATOM
619
C5′
CYT
29
54.705
41.194
5.670
1.00
62.81


ATOM
620
C4′
CYT
29
53.889
42.234
6.364
1.00
62.68


ATOM
621
O4′
CYT
29
54.432
42.442
7.697
1.00
60.72


ATOM
622
C1′
CYT
29
54.326
43.806
8.039
1.00
60.35


ATOM
623
N1
CYT
29
55.668
44.354
8.161
1.00
60.32


ATOM
624
C6
CYT
29
56.759
43.728
7.613
1.00
60.56


ATOM
625
C2
CYT
29
55.811
45.553
8.831
1.00
60.02


ATOM
626
O2
CYT
29
54.815
46.067
9.319
1.00
61.68


ATOM
627
N3
CYT
29
57.024
46.128
8.931
1.00
60.30


ATOM
628
C4
CYT
29
58.089
45.534
8.385
1.00
60.53


ATOM
629
N4
CYT
29
59.263
46.156
8.495
1.00
58.64


ATOM
630
C5
CYT
29
57.986
44.278
7.699
1.00
60.04


ATOM
631
C2′
CYT
29
53.636
44.510
6.878
1.00
61.87


ATOM
632
O2′
CYT
29
52.229
44.511
7.048
1.00
62.92


ATOM
633
C3′
CYT
29
54.016
43.603
5.728
1.00
62.72


ATOM
634
O3′
CYT
29
53.172
43.794
4.608
1.00
64.21


ATOM
635
P
CYT
30
53.207
45.204
3.837
1.00
65.43


ATOM
636
O1P
CYT
30
54.597
45.546
3.412
1.00
63.18


ATOM
637
O2P
CYT
30
52.095
45.220
2.862
1.00
65.26


ATOM
638
O5′
CYT
30
52.832
46.261
4.954
1.00
65.67


ATOM
639
C5′
CYT
30
52.987
47.636
4.693
1.00
64.90


ATOM
640
C4′
CYT
30
52.685
48.420
5.922
1.00
63.34


ATOM
641
O4′
CYT
30
53.471
47.910
7.018
1.00
63.18


ATOM
642
C1′
CYT
30
53.911
48.981
7.813
1.00
62.94


ATOM
643
N1
CYT
30
55.361
49.052
7.623
1.00
63.65


ATOM
644
C6
CYT
30
55.980
48.252
6.705
1.00
64.39


ATOM
645
C2
CYT
30
56.091
49.952
8.365
1.00
64.01


ATOM
646
O2
CYT
30
55.507
50.614
9.217
1.00
65.35


ATOM
647
N3
CYT
30
57.421
50.074
8.142
1.00
63.66


ATOM
648
C4
CYT
30
58.014
49.306
7.231
1.00
63.21


ATOM
649
N4
CYT
30
59.309
49.457
7.042
1.00
64.07


ATOM
650
C5
CYT
30
57.296
48.347
6.479
1.00
63.45


ATOM
651
C2′
CYT
30
53.184
50.229
7.297
1.00
63.31


ATOM
652
O2′
CYT
30
51.896
50.279
7.875
1.00
63.35


ATOM
653
C3′
CYT
30
53.007
49.886
5.833
1.00
62.69


ATOM
654
O3′
CYT
30
51.867
50.520
5.290
1.00
62.32


ATOM
655
P
CYT
31
52.051
51.748
4.283
1.00
63.51


ATOM
656
O1P
CYT
31
53.215
51.463
3.410
1.00
63.63


ATOM
657
O2P
CYT
31
50.736
52.121
3.692
1.00
61.59


ATOM
658
O5′
CYT
31
52.483
52.922
5.242
1.00
63.17


ATOM
659
C5′
CYT
31
51.632
53.306
6.285
1.00
62.30


ATOM
660
C4′
CYT
31
52.314
54.332
7.105
1.00
62.39


ATOM
661
O4′
CYT
31
53.366
53.696
7.876
1.00
63.41


ATOM
662
C1′
CYT
31
54.450
54.591
7.996
1.00
62.48


ATOM
663
N1
CYT
31
55.653
53.959
7.458
1.00
63.75


ATOM
664
C6
CYT
31
55.600
52.796
6.743
1.00
64.90


ATOM
665
C2
CYT
31
56.856
54.585
7.677
1.00
63.38


ATOM
666
O2
CYT
31
56.863
55.604
8.351
1.00
64.21


ATOM
667
N3
CYT
31
57.981
54.075
7.162
1.00
63.74


ATOM
668
C4
CYT
31
57.937
52.958
6.458
1.00
64.70


ATOM
669
N4
CYT
31
59.086
52.499
5.969
1.00
66.48


ATOM
670
C5
CYT
31
56.714
52.265
6.224
1.00
65.43


ATOM
671
C2′
CYT
31
54.073
55.861
7.232
1.00
61.19


ATOM
672
O2′
CYT
31
53.439
56.721
8.140
1.00
62.33


ATOM
673
C3′
CYT
31
53.048
55.338
6.252
1.00
60.44


ATOM
674
O3′
CYT
31
52.145
56.337
5.825
1.00
60.08


ATOM
675
P
GUA
32
52.438
57.157
4.466
1.00
61.96


ATOM
676
O1P
GUA
32
52.699
56.227
3.338
1.00
59.37


ATOM
677
O2P
GUA
32
51.401
58.205
4.329
1.00
60.13


ATOM
678
O5′
GUA
32
53.798
57.926
4.772
1.00
62.63


ATOM
679
C5′
GUA
32
53.783
59.103
5.553
1.00
61.55


ATOM
680
C4′
GUA
32
55.153
59.690
5.621
1.00
62.66


ATOM
681
O4′
GUA
32
56.024
58.773
6.331
1.00
64.11


ATOM
682
C1′
GUA
32
57.334
58.848
5.804
1.00
64.32


ATOM
683
N9
GUA
32
57.719
57.539
5.309
1.00
66.27


ATOM
684
C4
GUA
32
58.985
57.147
4.940
1.00
67.79


ATOM
685
N3
GUA
32
60.117
57.881
5.057
1.00
68.93


ATOM
686
C2
GUA
32
61.172
57.242
4.579
1.00
68.89


ATOM
687
N2
GUA
32
62.394
57.793
4.657
1.00
68.43


ATOM
688
N1
GUA
32
61.108
56.010
3.997
1.00
69.08


ATOM
689
C6
GUA
32
59.952
55.259
3.844
1.00
69.01


ATOM
690
O6
GUA
32
59.996
54.192
3.242
1.00
71.45


ATOM
691
C5
GUA
32
58.834
55.895
4.407
1.00
68.37


ATOM
692
N7
GUA
32
57.517
55.469
4.511
1.00
68.89


ATOM
693
C8
GUA
32
56.894
56.477
5.056
1.00
67.91


ATOM
694
C2′
GUA
32
57.290
59.857
4.660
1.00
64.45


ATOM
695
O2′
GUA
32
57.625
61.135
5.150
1.00
64.74


ATOM
696
C3′
GUA
32
55.826
59.816
4.275
1.00
63.92


ATOM
697
O3′
GUA
32
55.448
60.990
3.585
1.00
64.55


ATOM
698
P
ADE
33
55.135
60.897
2.015
1.00
66.33


ATOM
699
O1P
ADE
33
56.000
59.795
1.510
1.00
66.06


ATOM
700
O2P
ADE
33
53.658
60.829
1.819
1.00
64.65


ATOM
701
O5′
ADE
33
55.604
62.294
1.398
1.00
66.86


ATOM
702
C5′
ADE
33
56.921
62.837
1.571
1.00
68.49


ATOM
703
C4′
ADE
33
57.072
64.030
0.642
1.00
70.20


ATOM
704
O4′
ADE
33
58.270
64.788
0.944
1.00
70.84


ATOM
705
C1′
ADE
33
59.229
64.641
−0.090
1.00
70.83


ATOM
706
N9
ADE
33
60.542
64.376
0.506
1.00
70.15


ATOM
707
C4
ADE
33
61.013
63.207
1.054
1.00
70.13


ATOM
708
N3
ADE
33
60.367
62.042
1.169
1.00
69.93


ATOM
709
C2
ADE
33
61.154
61.127
1.755
1.00
70.28


ATOM
710
N1
ADE
33
62.408
61.238
2.200
1.00
68.00


ATOM
711
C6
ADE
33
63.030
62.423
2.068
1.00
69.01


ATOM
712
N6
ADE
33
64.283
62.540
2.511
1.00
69.69


ATOM
713
C5
ADE
33
62.313
63.475
1.466
1.00
70.47


ATOM
714
N7
ADE
33
62.655
64.789
1.185
1.00
70.34


ATOM
715
C8
ADE
33
61.575
65.278
0.617
1.00
70.32


ATOM
716
C2′
ADE
33
58.716
63.653
−1.137
1.00
70.97


ATOM
717
O2′
ADE
33
58.937
64.159
−2.436
1.00
70.72


ATOM
718
C3′
ADE
33
57.236
63.601
−0.802
1.00
70.98


ATOM
719
O3′
ADE
33
56.173
63.738
−1.728
1.00
72.72


ATOM
720
P
URI
34
55.823
65.171
−2.319
1.00
72.54


ATOM
721
O1P
URI
34
54.661
65.082
−3.220
1.00
74.35


ATOM
722
O2P
URI
34
57.080
65.774
−2.790
1.00
76.43


ATOM
723
O5′
URI
34
55.312
65.977
−1.061
1.00
77.55


ATOM
724
C5′
URI
34
54.493
65.351
−0.097
1.00
81.27


ATOM
725
C4′
URI
34
53.054
65.656
−0.363
1.00
83.26


ATOM
726
O4′
URI
34
52.658
65.043
−1.608
1.00
84.96


ATOM
727
C1′
URI
34
51.308
64.631
−1.513
1.00
85.81


ATOM
728
N1
URI
34
51.130
63.311
−2.140
1.00
86.10


ATOM
729
C6
URI
34
52.140
62.719
−2.856
1.00
85.92


ATOM
730
C2
URI
34
49.894
62.702
−2.023
1.00
86.59


ATOM
731
O2
URI
34
48.985
63.180
−1.372
1.00
87.11


ATOM
732
N3
URI
34
49.761
61.507
−2.697
1.00
87.27


ATOM
733
C4
URI
34
50.729
60.861
−3.449
1.00
86.98


ATOM
734
O4
URI
34
50.485
59.753
−3.952
1.00
85.30


ATOM
735
C5
URI
34
51.987
61.552
−3.502
1.00
86.88


ATOM
736
C2′
URI
34
50.831
64.878
−0.085
1.00
85.35


ATOM
737
O2′
URI
34
50.076
66.070
−0.104
1.00
86.00


ATOM
738
C3′
URI
34
52.156
65.005
0.665
1.00
85.08


ATOM
739
O3′
URI
34
52.089
65.930
1.761
1.00
87.15


ATOM
740
P
GUA
35
52.358
65.417
3.259
1.00
86.81


ATOM
741
O1P
GUA
35
51.033
65.254
3.898
1.00
88.42


ATOM
742
O2P
GUA
35
53.292
64.267
3.200
1.00
88.21


ATOM
743
O5′
GUA
35
53.106
66.604
3.992
1.00
84.49


ATOM
744
C5′
GUA
35
53.828
66.337
5.188
1.00
83.94


ATOM
745
C4′
GUA
35
54.971
65.416
4.870
1.00
81.94


ATOM
746
O4′
GUA
35
55.453
65.777
3.566
1.00
82.71


ATOM
747
C1′
GUA
35
56.852
65.624
3.534
1.00
82.73


ATOM
748
N9
GUA
35
57.461
66.837
2.993
1.00
81.62


ATOM
749
C4
GUA
35
58.789
67.194
2.992
1.00
80.29


ATOM
750
N3
GUA
35
59.785
66.571
3.647
1.00
80.23


ATOM
751
C2
GUA
35
60.971
67.082
3.339
1.00
79.25


ATOM
752
N2
GUA
35
62.087
66.580
3.871
1.00
79.19


ATOM
753
N1
GUA
35
61.154
68.118
2.476
1.00
78.99


ATOM
754
C6
GUA
35
60.142
68.772
1.794
1.00
79.91


ATOM
755
O6
GUA
35
60.419
69.675
1.003
1.00
81.27


ATOM
756
C5
GUA
35
58.873
68.250
2.117
1.00
80.38


ATOM
757
N7
GUA
35
57.613
68.626
1.672
1.00
81.32


ATOM
758
C8
GUA
35
56.806
67.783
2.242
1.00
81.05


ATOM
759
C2′
GUA
35
57.291
64.992
4.847
1.00
82.56


ATOM
760
O2′
GUA
35
57.197
63.611
4.577
1.00
85.76


ATOM
761
C3′
GUA
35
56.180
65.440
5.792
1.00
81.33


ATOM
762
O3′
GUA
35
56.002
64.420
6.774
1.00
79.10


ATOM
763
P
ADE
36
56.392
64.687
8.311
1.00
76.10


ATOM
764
O1P
ADE
36
57.292
65.863
8.400
1.00
76.28


ATOM
765
O2P
ADE
36
55.074
64.698
9.002
1.00
75.02


ATOM
766
O5′
ADE
36
57.262
63.427
8.769
1.00
72.44


ATOM
767
C5′
ADE
36
56.689
62.130
8.937
1.00
69.73


ATOM
768
C4′
ADE
36
57.768
61.156
9.349
1.00
68.51


ATOM
769
O4′
ADE
36
58.830
61.193
8.366
1.00
69.29


ATOM
770
C1′
ADE
36
60.093
61.079
9.006
1.00
68.61


ATOM
771
N9
ADE
36
60.786
62.341
8.784
1.00
68.09


ATOM
772
C4
ADE
36
61.960
62.741
9.352
1.00
67.99


ATOM
773
N3
ADE
36
62.718
62.045
10.212
1.00
68.58


ATOM
774
C2
ADE
36
63.780
62.753
10.554
1.00
69.95


ATOM
775
N1
ADE
36
64.139
63.988
10.159
1.00
70.50


ATOM
776
C6
ADE
36
63.343
64.651
9.295
1.00
68.89


ATOM
777
N6
ADE
36
63.689
65.882
8.903
1.00
69.53


ATOM
778
C5
ADE
36
62.198
64.010
8.862
1.00
67.95


ATOM
779
N7
ADE
36
61.198
64.400
7.995
1.00
68.05


ATOM
780
C8
ADE
36
60.384
63.378
7.985
1.00
68.64


ATOM
781
C2′
ADE
36
59.830
60.835
10.492
1.00
68.54


ATOM
782
O2′
ADE
36
59.907
59.465
10.816
1.00
68.62


ATOM
783
C3′
ADE
36
58.455
61.472
10.658
1.00
68.32


ATOM
784
O3′
ADE
36
57.745
60.838
11.688
1.00
67.44


ATOM
785
P
ADE
37
57.575
61.575
13.088
1.00
68.06


ATOM
786
O1P
ADE
37
56.939
62.888
12.815
1.00
66.90


ATOM
787
O2P
ADE
37
56.895
60.606
13.972
1.00
68.46


ATOM
788
O5′
ADE
37
59.070
61.740
13.622
1.00
69.76


ATOM
789
C5′
ADE
37
59.756
60.609
14.156
1.00
72.94


ATOM
790
C4′
ADE
37
61.154
60.964
14.615
1.00
74.87


ATOM
791
O4′
ADE
37
61.892
61.562
13.515
1.00
75.69


ATOM
792
C1′
ADE
37
62.810
62.516
14.016
1.00
76.23


ATOM
793
N9
ADE
37
62.552
63.812
13.406
1.00
77.82


ATOM
794
C4
ADE
37
63.425
64.867
13.432
1.00
79.71


ATOM
795
N3
ADE
37
64.632
64.905
14.019
1.00
81.14


ATOM
796
C2
ADE
37
65.213
66.088
13.817
1.00
82.14


ATOM
797
N1
ADE
37
64.758
67.157
13.146
1.00
82.16


ATOM
798
C6
ADE
37
63.536
67.086
12.576
1.00
81.25


ATOM
799
N6
ADE
37
63.082
68.154
11.911
1.00
81.85


ATOM
800
C5
ADE
37
62.815
65.880
12.720
1.00
80.27


ATOM
801
N7
ADE
37
61.570
65.474
12.269
1.00
79.41


ATOM
802
C8
ADE
37
61.464
64.244
12.706
1.00
78.94


ATOM
803
C2′
ADE
37
62.666
62.539
15.527
1.00
76.07


ATOM
804
O2′
ADE
37
63.633
61.667
16.073
1.00
75.75


ATOM
805
C3′
ADE
37
61.246
62.022
15.695
1.00
76.36


ATOM
806
O3′
ADE
37
61.031
61.494
16.991
1.00
78.92


ATOM
807
P
ADE
38
60.280
62.398
18.086
1.00
80.29


ATOM
808
O1P
ADE
38
58.921
62.691
17.560
1.00
80.62


ATOM
809
O2P
ADE
38
60.431
61.745
19.400
1.00
81.52


ATOM
810
O5′
ADE
38
61.124
63.747
18.122
1.00
80.09


ATOM
811
C5′
ADE
38
62.361
63.800
18.824
1.00
81.98


ATOM
812
C4′
ADE
38
62.969
65.166
18.690
1.00
82.78


ATOM
813
O4′
ADE
38
63.264
65.409
17.291
1.00
82.57


ATOM
814
C1′
ADE
38
62.986
66.757
16.974
1.00
81.80


ATOM
815
N9
ADE
38
61.804
66.759
16.126
1.00
79.54


ATOM
816
C4
ADE
38
61.335
67.816
15.398
1.00
78.28


ATOM
817
N3
ADE
38
61.883
69.036
15.297
1.00
77.95


ATOM
818
C2
ADE
38
61.154
69.807
14.504
1.00
77.50


ATOM
819
N1
ADE
38
60.023
69.520
13.859
1.00
77.53


ATOM
820
C6
ADE
38
59.494
68.287
13.995
1.00
77.42


ATOM
821
N6
ADE
38
58.355
68.011
13.373
1.00
77.75


ATOM
822
C5
ADE
38
60.177
67.373
14.793
1.00
77.73


ATOM
823
N7
ADE
38
59.926
66.053
15.121
1.00
77.91


ATOM
824
C8
ADE
38
60.920
65.734
15.911
1.00
78.96


ATOM
825
C2′
ADE
38
62.667
67.461
18.293
1.00
83.43


ATOM
826
O2′
ADE
38
63.875
67.915
18.871
1.00
84.66


ATOM
827
C3′
ADE
38
62.066
66.314
19.082
1.00
83.66


ATOM
828
O3′
ADE
38
62.046
66.517
20.480
1.00
84.91


ATOM
829
P
CYT
39
60.640
66.801
21.201
1.00
87.62


ATOM
830
O1P
CYT
39
59.568
66.207
20.374
1.00
88.09


ATOM
831
O2P
CYT
39
60.752
66.407
22.625
1.00
88.44


ATOM
832
O5′
CYT
39
60.498
68.381
21.100
1.00
86.44


ATOM
833
C5′
CYT
39
61.569
69.202
21.514
1.00
85.29


ATOM
834
C4′
CYT
39
61.421
70.589
20.957
1.00
85.25


ATOM
835
O4′
CYT
39
61.575
70.540
19.513
1.00
84.10


ATOM
836
C1′
CYT
39
60.739
71.516
18.924
1.00
84.21


ATOM
837
N1
CYT
39
59.716
70.855
18.114
1.00
83.58


ATOM
838
C6
CYT
39
59.324
69.579
18.363
1.00
83.43


ATOM
839
C2
CYT
39
59.136
71.577
17.088
1.00
84.14


ATOM
840
O2
CYT
39
59.526
72.728
16.889
1.00
86.80


ATOM
841
N3
CYT
39
58.174
71.018
16.337
1.00
83.32


ATOM
842
C4
CYT
39
57.793
69.777
16.581
1.00
83.32


ATOM
843
N4
CYT
39
56.847
69.259
15.811
1.00
83.16


ATOM
844
C5
CYT
39
58.372
69.006
17.629
1.00
83.82


ATOM
845
C2′
CYT
39
60.079
72.294
20.057
1.00
84.89


ATOM
846
O2′
CYT
39
60.929
73.367
20.402
1.00
85.96


ATOM
847
C3′
CYT
39
60.064
71.252
21.158
1.00
85.22


ATOM
848
O3′
CYT
39
59.916
71.851
22.443
1.00
86.04


ATOM
849
P
CYT
40
58.478
71.831
23.171
1.00
85.51


ATOM
850
O1P
CYT
40
57.835
70.545
22.831
1.00
86.98


ATOM
851
O2P
CYT
40
58.699
72.174
24.590
1.00
84.93


ATOM
852
O5′
CYT
40
57.661
72.994
22.452
1.00
84.56


ATOM
853
C5′
CYT
40
58.127
74.330
22.513
1.00
85.44


ATOM
854
C4′
CYT
40
57.372
75.208
21.549
1.00
86.80


ATOM
855
O4′
CYT
40
57.599
74.745
20.187
1.00
86.95


ATOM
856
C1′
CYT
40
56.431
74.971
19.409
1.00
87.86


ATOM
857
N1
CYT
40
55.930
73.705
18.837
1.00
88.22


ATOM
858
C6
CYT
40
56.355
72.484
19.285
1.00
87.97


ATOM
859
C2
CYT
40
54.963
73.785
17.825
1.00
88.26


ATOM
860
O2
CYT
40
54.607
74.910
17.423
1.00
87.17


ATOM
861
N3
CYT
40
54.438
72.645
17.316
1.00
87.62


ATOM
862
C4
CYT
40
54.842
71.465
17.773
1.00
86.66


ATOM
863
N4
CYT
40
54.279
70.379
17.247
1.00
85.82


ATOM
864
C5
CYT
40
55.837
71.349
18.789
1.00
87.07


ATOM
865
C2′
CYT
40
55.389
75.610
20.327
1.00
87.81


ATOM
866
O2′
CYT
40
55.432
77.007
20.192
1.00
89.04


ATOM
867
C3′
CYT
40
55.863
75.155
21.695
1.00
87.75


ATOM
868
O3′
CYT
40
55.386
76.022
22.712
1.00
88.67


ATOM
869
P
CYT
41
54.105
75.582
23.587
1.00
91.09


ATOM
870
O1P
CYT
41
54.262
74.119
23.869
1.00
91.72


ATOM
871
O2P
CYT
41
53.947
76.525
24.714
1.00
91.25


ATOM
872
O5′
CYT
41
52.845
75.795
22.632
1.00
89.14


ATOM
873
C5′
CYT
41
52.408
77.101
22.295
1.00
88.71


ATOM
874
C4′
CYT
41
51.492
77.048
21.108
1.00
88.37


ATOM
875
O4′
CYT
41
52.190
76.405
20.008
1.00
89.29


ATOM
876
C1′
CYT
41
51.273
75.626
19.256
1.00
89.60


ATOM
877
N1
CYT
41
51.646
74.205
19.348
1.00
91.04


ATOM
878
C6
CYT
41
52.561
73.747
20.259
1.00
91.58


ATOM
879
C2
CYT
41
50.996
73.321
18.502
1.00
91.43


ATOM
880
O2
CYT
41
50.212
73.784
17.665
1.00
92.37


ATOM
881
N3
CYT
41
51.228
71.995
18.614
1.00
91.74


ATOM
882
C4
CYT
41
52.088
71.545
19.523
1.00
92.37


ATOM
883
N4
CYT
41
52.258
70.220
19.610
1.00
93.52


ATOM
884
C5
CYT
41
52.808
72.431
20.384
1.00
92.23


ATOM
885
C2′
CYT
41
49.890
75.820
19.880
1.00
88.60


ATOM
886
O2′
CYT
41
49.181
76.836
19.219
1.00
88.99


ATOM
887
C3′
CYT
41
50.252
76.197
21.305
1.00
87.64


ATOM
888
O3′
CYT
41
49.207
76.938
21.898
1.00
85.91


ATOM
889
P
GUA
42
48.291
76.244
23.009
1.00
86.55


ATOM
890
O1P
GUA
42
49.233
75.429
23.810
1.00
87.91


ATOM
891
O2P
GUA
42
47.411
77.221
23.689
1.00
88.51


ATOM
892
O5′
GUA
42
47.322
75.299
22.181
1.00
85.77


ATOM
893
C5′
GUA
42
46.572
75.815
21.102
1.00
83.65


ATOM
894
C4′
GUA
42
46.081
74.691
20.219
1.00
83.03


ATOM
895
O4′
GUA
42
47.221
74.023
19.599
1.00
82.47


ATOM
896
C1′
GUA
42
46.940
72.642
19.454
1.00
82.41


ATOM
897
N9
GUA
42
47.944
71.866
20.181
1.00
83.09


ATOM
898
C4
GUA
42
47.988
70.494
20.284
1.00
83.04


ATOM
899
N3
GUA
42
47.132
69.627
19.703
1.00
83.00


ATOM
900
C2
GUA
42
47.418
68.371
20.008
1.00
83.95


ATOM
901
N2
OUA
42
46.672
67.373
19.513
1.00
84.35


ATOM
902
N1
OUA
42
48.457
67.994
20.824
1.00
83.49


ATOM
903
C6
GUA
42
49.349
68.864
21.432
1.00
83.67


ATOM
904
O6
GUA
42
50.245
68.416
22.156
1.00
84.51


ATOM
905
C5
GUA
42
49.061
70.223
21.104
1.00
83.28


ATOM
906
N7
GUA
42
49.697
71.396
21.487
1.00
83.24


ATOM
907
C8
GUA
42
49.005
72.343
20.911
1.00
82.90


ATOM
908
C2′
GUA
42
45.523
72.413
19.980
1.00
81.95


ATOM
909
O2′
GUA
42
44.613
72.545
18.912
1.00
82.94


ATOM
910
C3′
GUA
42
45.366
73.570
20.950
1.00
81.55


ATOM
911
O3′
GUA
42
44.003
73.863
21.197
1.00
79.48


ATOM
912
P
GUA
43
43.311
73.294
22.526
1.00
79.57


ATOM
913
O1P
GUA
43
41.923
73.802
22.627
1.00
81.31


ATOM
914
O2P
GUA
43
44.271
73.553
23.625
1.00
81.40


ATOM
915
O5′
GUA
43
43.199
71.717
22.304
1.00
78.96


ATOM
916
C5′
GUA
43
42.378
71.192
21.269
1.00
75.51


ATOM
917
C4′
GUA
43
42.530
69.691
21.152
1.00
72.80


ATOM
918
O4′
GUA
43
43.922
69.367
20.875
1.00
71.82


ATOM
919
C1′
GUA
43
44.236
68.119
21.463
1.00
71.99


ATOM
920
N9
GUA
43
45.387
68.259
22.340
1.00
73.13


ATOM
921
C4
GUA
43
46.110
67.227
22.889
1.00
74.60


ATOM
922
N3
GUA
43
45.872
65.913
22.714
1.00
75.27


ATOM
923
C2
GUA
43
46.725
65.163
23.384
1.00
75.13


ATOM
924
N2
GUA
43
46.613
63.851
23.342
1.00
74.63


ATOM
925
N1
GUA
43
47.743
65.659
24.150
1.00
75.79


ATOM
926
C6
GUA
43
48.013
67.009
24.338
1.00
75.56


ATOM
927
O6
GUA
43
48.963
67.351
25.045
1.00
76.20


ATOM
928
C5
GUA
43
47.094
67.826
23.638
1.00
75.10


ATOM
929
N7
GUA
43
46.999
69.205
23.557
1.00
75.83


ATOM
930
C8
GUA
43
45.970
69.415
22.777
1.00
74.59


ATOM
931
C2′
GUA
43
42.987
67.605
22.168
1.00
71.18


ATOM
932
O2′
GUA
43
42.315
66.733
21.288
1.00
69.49


ATOM
933
C3′
GUA
43
42.214
68.893
22.409
1.00
70.80


ATOM
934
O3′
GUA
43
40.825
68.605
22.511
1.00
68.71


ATOM
935
P
CYT
44
40.255
67.900
23.839
1.00
68.64


ATOM
936
O1P
CYT
44
40.877
68.613
24.984
1.00
70.66


ATOM
937
O2P
CYT
44
38.783
67.761
23.784
1.00
68.94


ATOM
938
O5′
CYT
44
40.878
66.434
23.823
1.00
68.91


ATOM
939
C5′
CYT
44
40.511
65.476
22.826
1.00
66.80


ATOM
940
C4′
CYT
44
41.134
64.139
23.152
1.00
64.15


ATOM
941
O4′
CYT
44
42.574
64.264
23.119
1.00
62.13


ATOM
942
C1′
CYT
44
43.140
63.469
24.141
1.00
60.43


ATOM
943
N1
CYT
44
43.895
64.367
25.013
1.00
57.90


ATOM
944
C6
CYT
44
43.864
65.707
24.802
1.00
56.91


ATOM
945
C2
CYT
44
44.669
63.833
26.024
1.00
56.80


ATOM
946
O2
CYT
44
44.620
62.625
26.233
1.00
55.50


ATOM
947
N3
CYT
44
45.445
64.643
26.755
1.00
56.80


ATOM
948
C4
CYT
44
45.447
65.944
26.511
1.00
57.82


ATOM
949
N4
CYT
44
46.254
66.709
27.224
1.00
58.48


ATOM
950
C5
CYT
44
44.622
66.522
25.515
1.00
57.76


ATOM
951
C2′
CYT
44
41.998
62.732
24.841
1.00
61.48


ATOM
952
O2′
CYT
44
41.760
61.468
24.271
1.00
61.47


ATOM
953
C3′
CYT
44
40.831
63.644
24.551
1.00
62.54


ATOM
954
O3′
CYT
44
39.684
62.836
24.529
1.00
63.79


ATOM
955
P
ADE
45
39.014
62.409
25.914
1.00
66.89


ATOM
956
O1P
ADE
45
38.560
63.712
26.464
1.00
67.71


ATOM
957
O2P
ADE
45
38.030
61.286
25.740
1.00
65.87


ATOM
958
O5′
ADE
45
40.238
61.881
26.789
1.00
63.98


ATOM
959
C5′
ADE
45
40.614
60.511
26.768
1.00
61.57


ATOM
960
C4′
ADE
45
41.581
60.247
27.876
1.00
60.53


ATOM
961
O4′
ADE
45
42.723
61.117
27.717
1.00
58.99


ATOM
962
C1′
ADE
45
43.162
61.547
28.982
1.00
57.65


ATOM
963
N9
ADE
45
43.051
62.999
28.965
1.00
57.49


ATOM
964
C4
ADE
45
43.876
63.896
29.582
1.00
56.54


ATOM
965
N3
ADE
45
44.931
63.624
30.368
1.00
55.90


ATOM
966
C2
ADE
45
45.513
64.733
30.754
1.00
56.23


ATOM
967
N1
ADE
45
45.180
65.997
30.483
1.00
57.79


ATOM
968
C6
ADE
45
44.101
66.229
29.700
1.00
57.33


ATOM
969
N6
ADE
45
43.739
67.484
29.449
1.00
57.00


ATOM
970
C5
ADE
45
43.419
65.136
29.209
1.00
56.21


ATOM
971
N7
ADE
45
42.316
65.030
28.387
1.00
56.07


ATOM
972
C8
ADE
45
42.128
63.745
28.285
1.00
56.50


ATOM
973
C2′
ADE
45
42.308
60.837
30.039
1.00
58.16


ATOM
974
O2′
ADE
45
42.920
59.643
30.428
1.00
59.75


ATOM
975
C3′
ADE
45
41.042
60.526
29.264
1.00
59.89


ATOM
976
O3′
ADE
45
40.528
59.285
29.711
1.00
62.06


ATOM
977
P
ADE
46
39.615
59.213
31.028
1.00
66.31


ATOM
978
O1P
ADE
46
38.691
60.370
30.946
1.00
65.21


ATOM
979
O2P
ADE
46
39.082
57.826
31.179
1.00
63.84


ATOM
980
O5′
ADE
46
40.600
59.481
32.250
1.00
67.39


ATOM
981
C5′
ADE
46
41.166
58.419
33.024
1.00
66.57


ATOM
982
C4′
ADE
46
42.118
59.027
33.994
1.00
66.83


ATOM
983
O4′
ADE
46
42.721
60.115
33.283
1.00
67.97


ATOM
984
C1′
ADE
46
42.902
61.202
34.150
1.00
66.90


ATOM
985
N9
ADE
46
42.144
62.278
33.562
1.00
63.68


ATOM
986
C4
ADE
46
42.591
63.550
33.366
1.00
63.94


ATOM
987
N3
ADE
46
43.751
64.068
33.779
1.00
64.11


ATOM
988
C2
ADE
46
43.876
65.317
33.351
1.00
63.21


ATOM
989
N1
ADE
46
43.045
66.037
32.616
1.00
63.40


ATOM
990
C6
ADE
46
41.888
65.480
32.222
1.00
63.37


ATOM
991
N6
ADE
46
41.058
66.203
31.479
1.00
65.98


ATOM
992
C5
ADE
46
41.629
64.176
32.610
1.00
63.27


ATOM
993
N7
ADE
46
40.559
63.325
32.377
1.00
64.01


ATOM
994
C8
ADE
46
40.908
62.217
32.987
1.00
63.56


ATOM
995
C2′
ADE
46
42.492
60.746
35.552
1.00
69.88


ATOM
996
O2′
ADE
46
43.560
60.131
36.270
1.00
73.70


ATOM
997
C3′
ADE
46
41.508
59.649
35.239
1.00
68.18


ATOM
998
O3′
ADE
46
41.708
58.864
36.418
1.00
68.73


ATOM
999
P
CYT
47
42.593
57.526
36.381
1.00
68.81


ATOM
1000
O1P
CYT
47
42.991
57.200
35.000
1.00
73.24


ATOM
1001
O2P
CYT
47
41.866
56.507
37.171
1.00
71.86


ATOM
1002
O5′
CYT
47
43.938
57.788
37.191
1.00
66.01


ATOM
1003
C5′
CYT
47
44.681
56.630
37.627
1.00
63.86


ATOM
1004
C4′
CYT
47
46.149
56.933
37.891
1.00
62.26


ATOM
1005
O4′
CYT
47
46.832
57.320
36.671
1.00
59.06


ATOM
1006
C1′
CYT
47
47.812
58.288
36.974
1.00
57.28


ATOM
1007
N1
CYT
47
47.478
59.535
36.307
1.00
53.11


ATOM
1008
C6
CYT
47
46.302
59.710
35.657
1.00
52.47


ATOM
1009
C2
CYT
47
48.408
60.533
36.346
1.00
52.47


ATOM
1010
O2
CYT
47
49.457
60.316
36.970
1.00
52.47


ATOM
1011
N3
CYT
47
48.166
61.704
35.714
1.00
51.60


ATOM
1012
C4
CYT
47
47.020
61.869
35.064
1.00
52.29


ATOM
1013
N4
CYT
47
46.810
63.020
34.436
1.00
52.68


ATOM
1014
C5
CYT
47
46.035
60.856
35.024
1.00
52.76


ATOM
1015
C2′
CYT
47
47.832
58.483
38.482
1.00
60.42


ATOM
1016
O2′
CYT
47
48.807
57.640
39.054
1.00
61.21


ATOM
1017
C3′
CYT
47
46.420
58.075
38.850
1.00
63.01


ATOM
1018
O3′
CYT
47
46.354
57.610
40.183
1.00
67.44


ATOM
1019
P
CYT
48
45.836
58.598
41.338
1.00
70.64


ATOM
1020
O1P
CYT
48
44.758
59.475
40.771
1.00
68.91


ATOM
1021
O2P
CYT
48
45.580
57.730
42.529
1.00
67.67


ATOM
1022
O5′
CYT
48
47.079
59.544
41.636
1.00
68.89


ATOM
1023
C5′
CYT
48
48.295
59.005
42.124
1.00
67.09


ATOM
1024
C4′
CYT
48
49.298
60.104
42.249
1.00
66.18


ATOM
1025
O4′
CYT
48
49.580
60.632
40.934
1.00
63.10


ATOM
1026
C1′
CYT
48
49.794
62.024
41.022
1.00
60.73


ATOM
1027
N1
CYT
48
48.827
62.688
40.166
1.00
55.29


ATOM
1028
C6
CYT
48
47.704
62.053
39.734
1.00
54.66


ATOM
1029
C2
CYT
48
49.081
63.987
39.796
1.00
55.37


ATOM
1030
O2
CYT
48
50.105
64.541
40.239
1.00
55.83


ATOM
1031
N3
CYT
48
48.220
64.627
38.976
1.00
54.10


ATOM
1032
C4
CYT
48
47.133
64.000
38.542
1.00
52.48


ATOM
1033
N4
CYT
48
46.329
64.661
37.724
1.00
52.66


ATOM
1034
C5
CYT
48
46.834
62.671
38.925
1.00
53.19


ATOM
1035
C2′
CYT
48
49.611
62.432
42.477
1.00
63.65


ATOM
1036
O2′
CYT
48
50.856
62.453
43.138
1.00
62.87


ATOM
1037
C3′
CYT
48
48.733
61.305
42.970
1.00
66.98


ATOM
1038
O3′
CYT
48
48.794
61.136
44.361
1.00
73.12


ATOM
1039
P
ADE
49
47.598
61.690
45.251
1.00
75.65


ATOM
1040
O1P
ADE
49
46.365
61.403
44.480
1.00
77.90


ATOM
1041
O2P
ADE
49
47.779
61.089
46.598
1.00
77.55


ATOM
1042
O5′
ADE
49
47.879
63.257
45.283
1.00
74.70


ATOM
1043
C5′
ADE
49
48.993
63.739
46.013
1.00
75.40


ATOM
1044
C4′
ADE
49
49.273
65.179
45.679
1.00
76.51


ATOM
1045
O4′
ADE
49
49.405
65.301
44.239
1.00
75.68


ATOM
1046
C1′
ADE
49
48.946
66.576
43.819
1.00
74.51


ATOM
1047
N9
ADE
49
47.844
66.405
42.889
1.00
72.07


ATOM
1048
C4
ADE
49
47.338
67.391
42.089
1.00
70.18


ATOM
1049
N3
ADE
49
47.774
68.651
41.989
1.00
70.59


ATOM
1050
C2
ADE
49
47.019
69.343
41.130
1.00
69.94


ATOM
1051
N1
ADE
49
45.963
68.939
40.423
1.00
69.56


ATOM
1052
C6
ADE
49
45.561
67.655
40.547
1.00
69.78


ATOM
1053
N6
ADE
49
44.520
67.237
39.833
1.00
70.85


ATOM
1054
C5
ADE
49
46.271
66.829
41.421
1.00
69.83


ATOM
1055
N7
ADE
49
46.116
65.496
41.774
1.00
71.24


ATOM
1056
C8
ADE
49
47.082
65.291
42.645
1.00
72.60


ATOM
1057
C2′
ADE
49
48.481
67.317
45.062
1.00
77.53


ATOM
1058
O2′
ADE
49
49.566
68.095
45.519
1.00
79.23


ATOM
1059
C3′
ADE
49
48.150
66.154
45.990
1.00
78.90


ATOM
1060
O3′
ADE
49
48.083
66.512
47.372
1.00
82.77


ATOM
1061
P
GUA
50
46.650
66.553
48.123
1.00
85.23


ATOM
1062
O1P
GUA
50
45.852
65.364
47.697
1.00
85.76


ATOM
1063
O2P
GUA
50
46.903
66.767
49.572
1.00
85.84


ATOM
1064
O5′
GUA
50
45.955
67.859
47.529
1.00
84.97


ATOM
1065
C5′
GUA
50
46.510
69.140
47.766
1.00
85.81


ATOM
1066
C4′
GUA
50
45.665
70.210
47.114
1.00
88.01


ATOM
1067
O4′
GUA
50
45.897
70.193
45.674
1.00
86.37


ATOM
1068
C1′
GUA
50
44.690
70.511
45.000
1.00
84.98


ATOM
1069
N9
GUA
50
44.230
69.333
44.269
1.00
80.72


ATOM
1070
C4
GUA
50
43.404
69.351
43.181
1.00
77.06


ATOM
1071
N3
GUA
50
42.983
70.454
42.541
1.00
75.75


ATOM
1072
C2
GUA
50
42.104
70.175
41.606
1.00
75.87


ATOM
1073
N2
GUA
50
41.559
71.166
40.884
1.00
75.39


ATOM
1074
N1
GUA
50
41.684
68.905
41.313
1.00
76.27


ATOM
1075
C6
GUA
50
42.115
67.747
41.958
1.00
76.59


ATOM
1076
O6
GUA
50
41.647
66.642
41.632
1.00
75.60


ATOM
1077
C5
GUA
50
43.061
68.039
42.961
1.00
76.74


ATOM
1078
N7
GUA
50
43.737
67.196
43.835
1.00
78.03


ATOM
1079
C8
GUA
50
44.439
68.007
44.580
1.00
79.39


ATOM
1080
C2′
GUA
50
43.649
70.870
46.075
1.00
87.27


ATOM
1081
O2′
GUA
50
43.653
72.255
46.365
1.00
87.07


ATOM
1082
C3′
GUA
50
44.152
70.060
47.258
1.00
88.85


ATOM
1083
O3′
GUA
50
43.633
70.550
48.491
1.00
93.34


ATOM
1084
P
ADE
51
42.629
69.621
49.361
1.00
97.97


ATOM
1085
O1P
ADE
51
43.176
68.230
49.407
1.00
97.32


ATOM
1086
O2P
ADE
51
42.329
70.327
50.639
1.00
97.70


ATOM
1087
O5′
ADE
51
41.278
69.550
48.510
1.00
97.11


ATOM
1088
C5′
ADE
51
40.510
68.355
48.515
1.00
96.61


ATOM
1089
C4′
ADE
51
39.028
68.650
48.497
1.00
96.63


ATOM
1090
O4′
ADE
51
38.780
69.801
49.359
1.00
95.02


ATOM
1091
C1′
ADE
51
38.403
70.939
48.591
1.00
93.36


ATOM
1092
N9
ADE
51
39.400
71.986
48.740
1.00
89.82


ATOM
1093
C4
ADE
51
39.221
73.260
48.282
1.00
87.57


ATOM
1094
N3
ADE
51
38.133
73.751
47.682
1.00
86.86


ATOM
1095
C2
ADE
51
38.327
75.016
47.346
1.00
86.96


ATOM
1096
N1
ADE
51
39.395
75.786
47.544
1.00
86.26


ATOM
1097
C6
ADE
51
40.460
75.261
48.177
1.00
86.03


ATOM
1098
N6
ADE
51
41.502
76.045
48.434
1.00
85.56


ATOM
1099
C5
ADE
51
40.394
73.924
48.550
1.00
86.81


ATOM
1100
N7
ADE
51
41.302
73.083
49.169
1.00
87.54


ATOM
1101
C8
ADE
51
40.654
71.952
49.272
1.00
88.45


ATOM
1102
C2′
ADE
51
38.356
70.579
47.113
1.00
96.14


ATOM
1103
O2′
ADE
51
37.152
71.070
46.550
1.00
96.69


ATOM
1104
C3′
ADE
51
38.458
69.067
47.147
1.00
97.18


ATOM
1105
O3′
ADE
51
38.329
68.205
46.023
1.00
99.75


ATOM
1106
P
ADE
52
39.320
68.396
44.761
1.00
100.35


ATOM
1107
O1P
ADE
52
40.277
69.494
45.086
1.00
99.62


ATOM
1108
O2P
ADE
52
39.844
67.045
44.417
1.00
99.86


ATOM
1109
O5′
ADE
52
38.357
68.907
43.597
1.00
100.84


ATOM
1110
C5′
ADE
52
38.859
69.666
42.494
1.00
102.85


ATOM
1111
C4′
ADE
52
38.150
70.995
42.428
1.00
104.05


ATOM
1112
O4′
ADE
52
38.065
71.525
43.772
1.00
102.84


ATOM
1113
C1′
ADE
52
38.253
72.919
43.741
1.00
101.65


ATOM
1114
N9
ADE
52
39.535
73.163
44.380
1.00
98.65


ATOM
1115
C4
ADE
52
40.204
74.352
44.488
1.00
97.34


ATOM
1116
N3
ADE
52
39.809
75.554
44.039
1.00
96.49


ATOM
1117
C2
ADE
52
40.723
76.476
44.314
1.00
95.84


ATOM
1118
N1
ADE
52
41.898
76.344
44.938
1.00
95.33


ATOM
1119
C6
ADE
52
42.262
75.121
45.373
1.00
95.42


ATOM
1120
N6
ADE
52
43.434
74.985
45.988
1.00
95.01


ATOM
1121
C5
ADE
52
41.380
74.059
45.147
1.00
96.50


ATOM
1122
N7
ADE
52
41.444
72.709
45.458
1.00
96.88


ATOM
1123
C8
ADE
52
40.327
72.227
44.986
1.00
97.13


ATOM
1124
C2′
ADE
52
38.218
73.346
42.269
1.00
103.84


ATOM
1125
O2′
ADE
52
36.882
73.625
41.924
1.00
105.50


ATOM
1126
C3′
ADE
52
38.760
72.101
41.571
1.00
105.31


ATOM
1127
O3′
ADE
52
38.309
71.995
40.204
1.00
108.14


ATOM
1128
P
ADE
53
38.813
73.061
39.083
1.00
110.54


ATOM
1129
O1P
ADE
53
40.294
73.062
39.046
1.00
111.14


ATOM
1130
O2P
ADE
53
38.056
72.862
37.814
1.00
110.62


ATOM
1131
O5′
ADE
53
38.371
74.478
39.648
1.00
109.49


ATOM
1132
C5′
ADE
53
37.921
75.495
38.770
1.00
109.51


ATOM
1133
C4′
ADE
53
38.946
76.585
38.708
1.00
109.35


ATOM
1134
O4′
ADE
53
39.349
76.877
40.065
1.00
109.96


ATOM
1135
C1′
ADE
53
40.734
77.159
40.102
1.00
110.06


ATOM
1136
N9
ADE
53
41.369
76.060
40.815
1.00
110.37


ATOM
1137
C4
ADE
53
42.503
76.118
41.575
1.00
110.78


ATOM
1138
N3
ADE
53
43.229
77.209
41.866
1.00
111.45


ATOM
1139
C2
ADE
53
44.278
76.882
42.612
1.00
111.91


ATOM
1140
N1
ADE
53
44.653
75.675
43.063
1.00
112.16


ATOM
1141
C6
ADE
53
43.895
74.599
42.749
1.00
111.85


ATOM
1142
N6
ADE
53
44.267
73.392
43.195
1.00
112.22


ATOM
1143
C5
ADE
53
42.756
74.817
41.968
1.00
111.22


ATOM
1144
N7
ADE
53
41.779
73.960
41.488
1.00
110.82


ATOM
1145
C8
ADE
53
40.978
74.749
40.823
1.00
110.65


ATOM
1146
C2′
ADE
53
41.222
77.187
38.653
1.00
109.58


ATOM
1147
O2′
ADE
53
41.137
78.493
38.120
1.00
109.80


ATOM
1148
C3′
ADE
53
40.239
76.235
37.997
1.00
109.23


ATOM
1149
O3′
ADE
53
40.129
76.528
36.615
1.00
108.59


ATOM
1150
P
URI
54
40.623
75.449
35.539
1.00
108.15


ATOM
1151
O1P
URI
54
39.807
74.218
35.767
1.00
107.91


ATOM
1152
O2P
URI
54
40.603
76.113
34.210
1.00
107.80


ATOM
1153
O5′
URI
54
42.143
75.177
35.945
1.00
105.25


ATOM
1154
C5′
URI
54
43.077
76.252
35.978
1.00
101.05


ATOM
1155
C4′
URI
54
44.203
75.954
36.942
1.00
98.65


ATOM
1156
O4′
URI
54
43.682
75.172
38.049
1.00
97.86


ATOM
1157
C1′
URI
54
44.683
74.286
38.512
1.00
96.38


ATOM
1158
N1
URI
54
44.171
72.920
38.475
1.00
95.06


ATOM
1159
C6
URI
54
43.054
72.589
37.768
1.00
94.41


ATOM
1160
C2
URI
54
44.872
71.983
39.195
1.00
93.98


ATOM
1161
O2
URI
54
45.876
72.260
39.818
1.00
94.41


ATOM
1162
N3
URI
54
44.359
70.721
39.158
1.00
92.88


ATOM
1163
C4
URI
54
43.241
70.316
38.481
1.00
93.41


ATOM
1164
O4
URI
54
42.885
69.149
38.559
1.00
92.87


ATOM
1165
C5
URI
54
42.573
71.350
37.746
1.00
94.51


ATOM
1166
C2′
URI
54
45.913
74.453
37.631
1.00
96.75


ATOM
1167
O2′
URI
54
46.863
75.266
38.270
1.00
98.00


ATOM
1168
C3′
URI
54
45.312
75.078
36.386
1.00
97.07


ATOM
1169
O3′
URI
54
46.310
75.879
35.782
1.00
96.20


ATOM
1170
P
GUA
55
47.320
75.217
34.721
1.00
96.42


ATOM
1171
O1P
GUA
55
46.479
74.245
33.957
1.00
95.73


ATOM
1172
O2P
GUA
55
48.033
76.316
34.001
1.00
95.06


ATOM
1173
O5′
GUA
55
48.387
74.405
35.596
1.00
91.98


ATOM
1174
C5′
GUA
55
49.552
75.058
36.077
1.00
87.15


ATOM
1175
C4′
GUA
55
50.255
74.223
37.117
1.00
83.54


ATOM
1176
O4′
GUA
55
49.265
73.602
37.979
1.00
82.94


ATOM
1177
C1′
GUA
55
49.732
72.331
38.408
1.00
81.80


ATOM
1178
N9
GUA
55
48.795
71.298
37.988
1.00
80.76


ATOM
1179
C4
GUA
55
48.825
69.974
38.368
1.00
78.98


ATOM
1180
N3
GUA
55
49.710
69.412
39.212
1.00
78.76


ATOM
1181
C2
GUA
55
49.487
68.114
39.376
1.00
78.70


ATOM
1182
N2
GUA
55
50.273
67.397
40.186
1.00
78.16


ATOM
1183
N1
GUA
55
48.479
67.422
38.760
1.00
77.70


ATOM
1184
C6
GUA
55
47.558
67.977
37.885
1.00
78.14


ATOM
1185
O6
GUA
55
46.689
67.258
37.378
1.00
76.59


ATOM
1186
C5
GUA
55
47.784
69.379
37.703
1.00
78.66


ATOM
1187
N7
GUA
55
47.103
70.310
36.929
1.00
80.83


ATOM
1188
C8
GUA
55
47.737
71.433
37.133
1.00
80.61


ATOM
1189
C2′
GUA
55
51.086
72.106
37.760
1.00
81.72


ATOM
1190
O2′
GUA
55
52.109
72.472
38.658
1.00
83.00


ATOM
1191
C3′
GUA
55
50.993
73.029
36.565
1.00
81.89


ATOM
1192
O3′
GUA
55
52.279
73.358
36.118
1.00
80.00


ATOM
1193
P
GUA
56
52.965
72.410
35.039
1.00
79.13


ATOM
1194
O1P
GUA
56
51.888
72.211
34.034
1.00
80.68


ATOM
1195
O2P
GUA
56
54.296
72.906
34.610
1.00
78.75


ATOM
1196
O5′
GUA
56
53.176
71.045
35.823
1.00
75.87


ATOM
1197
C5′
GUA
56
53.997
71.011
36.969
1.00
70.12


ATOM
1198
C4′
GUA
56
54.344
69.593
37.318
1.00
65.83


ATOM
1199
O4′
GUA
56
53.193
68.922
37.907
1.00
63.10


ATOM
1200
C1′
GUA
56
53.197
67.558
37.536
1.00
60.13


ATOM
1201
N9
GUA
56
51.936
67.251
36.871
1.00
55.06


ATOM
1202
C4
GUA
56
51.327
66.022
36.782
1.00
51.83


ATOM
1203
N3
GUA
56
51.754
64.884
37.348
1.00
51.62


ATOM
1204
C2
GUA
56
50.954
63.865
37.063
1.00
50.36


ATOM
1205
N2
GUA
56
51.209
62.647
37.558
1.00
48.39


ATOM
1206
N1
GUA
56
49.846
63.971
36.281
1.00
49.12


ATOM
1207
C6
GUA
56
49.404
65.146
35.692
1.00
50.48


ATOM
1208
O6
GUA
56
48.397
65.147
34.996
1.00
52.46


ATOM
1209
C5
GUA
56
50.221
66.218
35.993
1.00
50.95


ATOM
1210
N7
GUA
56
50.110
67.543
35.614
1.00
52.75


ATOM
1211
C8
GUA
56
51.145
68.122
36.168
1.00
55.34


ATOM
1212
C2′
GUA
56
54.419
67.346
36.634
1.00
62.42


ATOM
1213
O2′
GUA
56
55.534
66.895
37.382
1.00
60.97


ATOM
1214
C3′
GUA
56
54.663
68.749
36.111
1.00
63.87


ATOM
1215
O3′
GUA
56
55.999
68.915
35.678
1.00
65.82


ATOM
1216
P
URI
57
56.395
68.420
34.207
1.00
68.32


ATOM
1217
O1P
URI
57
56.238
69.578
33.278
1.00
68.61


ATOM
1218
O2P
URI
57
57.668
67.653
34.247
1.00
67.96


ATOM
1219
O5′
URI
57
55.208
67.424
33.857
1.00
66.91


ATOM
1220
C5′
URI
57
55.323
66.459
32.834
1.00
62.89


ATOM
1221
C4′
URI
57
55.288
65.104
33.448
1.00
61.17


ATOM
1222
O4′
URI
57
54.170
65.037
34.368
1.00
59.64


ATOM
1223
C1′
URI
57
53.624
63.744
34.344
1.00
58.14


ATOM
1224
N1
URI
57
52.299
63.823
33.738
1.00
56.82


ATOM
1225
C6
URI
57
51.839
64.957
33.104
1.00
56.14


ATOM
1226
C2
URI
57
51.549
62.684
33.792
1.00
56.41


ATOM
1227
O2
URI
57
51.938
61.686
34.367
1.00
57.08


ATOM
1228
N3
URI
57
50.341
62.749
33.147
1.00
55.29


ATOM
1229
C4
URI
57
49.828
63.831
32.473
1.00
54.85


ATOM
1230
O4
URI
57
48.742
63.726
31.936
1.00
55.74


ATOM
1231
C5
URI
57
50.656
64.999
32.477
1.00
54.31


ATOM
1232
C2′
URI
57
54.512
62.905
33.425
1.00
60.13


ATOM
1233
O2′
URI
57
55.546
62.312
34.176
1.00
60.94


ATOM
1234
C3′
URI
57
55.056
63.968
32.486
1.00
60.39


ATOM
1235
O3′
URI
57
56.277
63.583
31.890
1.00
60.40


ATOM
1236
P
GUA
58
56.396
63.526
30.290
1.00
62.47


ATOM
1237
O1P
GUA
58
56.106
64.857
29.696
1.00
60.25


ATOM
1238
O2P
GUA
58
57.736
62.892
30.063
1.00
61.70


ATOM
1239
O5′
GUA
58
55.237
62.518
29.860
1.00
58.69


ATOM
1240
C5′
GUA
58
55.253
61.214
30.385
1.00
57.05


ATOM
1241
C4′
GUA
58
53.972
60.492
30.090
1.00
57.02


ATOM
1242
O4′
GUA
58
52.858
61.138
30.768
1.00
57.11


ATOM
1243
C1′
GUA
58
51.683
60.983
29.991
1.00
55.56


ATOM
1244
N9
GUA
58
51.174
62.295
29.627
1.00
54.16


ATOM
1245
C4
GUA
58
49.945
62.577
29.067
1.00
52.78


ATOM
1246
N3
GUA
58
48.966
61.690
28.807
1.00
52.89


ATOM
1247
C2
GUA
58
47.928
62.259
28.237
1.00
51.62


ATOM
1248
N2
GUA
58
46.857
61.517
27.897
1.00
51.78


ATOM
1249
N1
GUA
58
47.862
63.586
27.954
1.00
50.67


ATOM
1250
C6
GUA
58
48.871
64.499
28.202
1.00
51.62


ATOM
1251
O6
GUA
58
48.734
65.672
27.868
1.00
53.68


ATOM
1252
C5
GUA
58
49.966
63.911
28.810
1.00
50.86


ATOM
1253
N7
GUA
58
51.155
64.472
29.223
1.00
52.18


ATOM
1254
C8
GUA
58
51.837
63.479
29.713
1.00
53.06


ATOM
1255
C2′
GUA
58
52.082
60.194
28.744
1.00
55.93


ATOM
1256
O2′
GUA
58
51.952
58.829
29.058
1.00
58.80


ATOM
1257
C3′
GUA
58
53.558
60.509
28.634
1.00
55.57


ATOM
1258
O3′
GUA
58
54.234
59.470
27.970
1.00
55.26


ATOM
1259
P
CYT
59
54.751
59.681
26.472
1.00
53.94


ATOM
1260
O1P
CYT
59
55.211
61.046
26.193
1.00
54.90


ATOM
1261
O2P
CYT
59
55.666
58.558
26.252
1.00
56.83


ATOM
1262
O5′
CYT
59
53.438
59.464
25.606
1.00
54.63


ATOM
1263
C5′
CYT
59
52.726
58.245
25.673
1.00
52.58


ATOM
1264
C4′
CYT
59
51.334
58.456
25.195
1.00
52.85


ATOM
1265
O4′
CYT
59
50.652
59.319
26.131
1.00
53.46


ATOM
1266
C1′
CYT
59
49.757
60.160
25.424
1.00
54.66


ATOM
1267
N1
CYT
59
50.184
61.554
25.547
1.00
55.31


ATOM
1268
C6
CYT
59
51.438
61.893
25.959
1.00
56.35


ATOM
1269
C2
CYT
59
49.285
62.524
25.200
1.00
55.52


ATOM
1270
O2
CYT
59
48.162
62.183
24.871
1.00
57.83


ATOM
1271
N3
CYT
59
49.643
63.806
25.230
1.00
56.12


ATOM
1272
C4
CYT
59
50.859
64.142
25.629
1.00
56.26


ATOM
1273
N4
CYT
59
51.151
65.433
25.671
1.00
57.73


ATOM
1274
C5
CYT
59
51.816
63.173
26.011
1.00
56.41


ATOM
1275
C2′
CYT
59
49.814
59.744
23.958
1.00
54.23


ATOM
1276
O2′
CYT
59
48.881
58.695
23.786
1.00
56.89


ATOM
1277
C3′
CYT
59
51.219
59.185
23.866
1.00
53.82


ATOM
1278
O3′
CYT
59
51.266
58.234
22.823
1.00
56.56


ATOM
1279
P
CYT
60
51.920
58.607
21.413
1.00
57.74


ATOM
1280
O1P
CYT
60
53.056
59.561
21.546
1.00
58.54


ATOM
1281
O2P
CYT
60
52.152
57.283
20.804
1.00
59.23


ATOM
1282
O5′
CYT
60
50.758
59.360
20.636
1.00
57.28


ATOM
1283
C5′
CYT
60
49.558
58.697
20.338
1.00
58.91


ATOM
1284
C4′
CYT
60
48.560
59.664
19.763
1.00
61.15


ATOM
1285
O4′
CYT
60
48.195
60.652
20.764
1.00
62.34


ATOM
1286
C1′
CYT
60
47.967
61.893
20.127
1.00
63.87


ATOM
1287
N1
CYT
60
48.905
62.888
20.642
1.00
65.15


ATOM
1288
C6
CYT
60
50.055
62.533
21.279
1.00
65.50


ATOM
1289
C2
CYT
60
48.589
64.206
20.464
1.00
66.62


ATOM
1290
O2
CYT
60
47.538
64.482
19.868
1.00
69.91


ATOM
1291
N3
CYT
60
49.416
65.156
20.932
1.00
67.60


ATOM
1292
C4
CYT
60
50.535
64.807
21.560
1.00
66.68


ATOM
1293
N4
CYT
60
51.327
65.782
22.015
1.00
67.08


ATOM
1294
C5
CYT
60
50.890
63.454
21.750
1.00
65.37


ATOM
1295
C2′
CYT
60
48.151
61.687
18.629
1.00
63.40


ATOM
1296
O2′
CYT
60
46.888
61.366
18.100
1.00
66.97


ATOM
1297
C3′
CYT
60
49.078
60.485
18.597
1.00
62.26


ATOM
1298
O3′
CYT
60
48.874
59.753
17.401
1.00
63.32


ATOM
1299
P
ADE
61
49.983
59.777
16.237
1.00
61.79


ATOM
1300
O1P
ADE
61
51.206
59.119
16.767
1.00
62.41


ATOM
1301
O2P
ADE
61
50.073
61.159
15.715
1.00
63.18


ATOM
1302
O5′
ADE
61
49.329
58.821
15.144
1.00
59.89


ATOM
1303
C5′
ADE
61
48.968
57.499
15.509
1.00
58.67


ATOM
1304
C4′
ADE
61
48.273
56.771
14.382
1.00
57.11


ATOM
1305
O4′
ADE
61
49.122
56.720
13.202
1.00
57.84


ATOM
1306
C1′
ADE
61
48.930
55.488
12.531
1.00
56.69


ATOM
1307
N9
ADE
61
50.225
54.858
12.327
1.00
56.48


ATOM
1308
C4
ADE
61
50.471
53.836
11.448
1.00
56.23


ATOM
1309
N3
ADE
61
49.588
53.226
10.650
1.00
55.56


ATOM
1310
C2
ADE
61
50.187
52.306
9.918
1.00
55.22


ATOM
1311
N1
ADE
61
51.467
51.954
9.891
1.00
55.55


ATOM
1312
C6
ADE
61
52.328
52.589
10.697
1.00
55.52


ATOM
1313
N6
ADE
61
53.606
52.241
10.654
1.00
55.48


ATOM
1314
C5
ADE
61
51.822
53.582
11.531
1.00
56.34


ATOM
1315
N7
ADE
61
52.422
54.413
12.465
1.00
57.42


ATOM
1316
C8
ADE
61
51.427
55.147
12.914
1.00
57.29


ATOM
1317
C2′
ADE
61
47.986
54.640
13.371
1.00
56.99


ATOM
1318
O2′
ADE
61
46.686
54.700
12.844
1.00
59.54


ATOM
1319
C3′
ADE
61
48.104
55.309
14.729
1.00
56.42


ATOM
1320
O3′
ADE
61
46.960
55.089
15.529
1.00
54.24


ATOM
1321
P
ADE
62
46.930
53.810
16.468
1.00
52.98


ATOM
1322
O1P
ADE
62
48.242
53.789
17.166
1.00
54.04


ATOM
1323
O2P
ADE
62
45.677
53.754
17.236
1.00
55.70


ATOM
1324
O5′
ADE
62
46.887
52.609
15.447
1.00
53.41


ATOM
1325
C5′
ADE
62
45.728
52.367
14.685
1.00
53.18


ATOM
1326
C4′
ADE
62
45.944
51.154
13.852
1.00
54.12


ATOM
1327
O4′
ADE
62
47.006
51.438
12.906
1.00
53.87


ATOM
1328
C1′
ADE
62
47.788
50.280
12.721
1.00
53.97


ATOM
1329
N9
ADE
62
49.142
50.616
13.151
1.00
53.88


ATOM
1330
C4
ADE
62
50.332
50.184
12.607
1.00
53.44


ATOM
1331
N3
ADE
62
50.506
49.360
11.567
1.00
51.04


ATOM
1332
C2
ADE
62
51.783
49.129
11.372
1.00
51.72


ATOM
1333
N1
ADE
62
52.833
49.589
12.033
1.00
51.73


ATOM
1334
C6
ADE
62
52.629
50.428
13.062
1.00
52.48


ATOM
1335
N6
ADE
62
53.682
50.913
13.718
1.00
51.56


ATOM
1336
C5
ADE
62
51.322
50.748
13.380
1.00
53.29


ATOM
1337
N7
ADE
62
50.777
51.537
14.378
1.00
54.02


ATOM
1338
C8
ADE
62
49.483
51.425
14.196
1.00
53.66


ATOM
1339
C2′
ADE
62
47.142
49.160
13.554
1.00
54.57


ATOM
1340
O2′
ADE
62
46.169
48.467
12.807
1.00
56.26


ATOM
1341
C3′
ADE
62
46.425
49.946
14.634
1.00
53.80


ATOM
1342
O3′
ADE
62
45.288
49.231
15.067
1.00
52.14


ATOM
1343
P
URI
63
45.452
47.764
15.708
1.00
55.62


ATOM
1344
O1P
URI
63
44.126
47.083
15.553
1.00
52.41


ATOM
1345
O2P
URI
63
46.687
47.094
15.199
1.00
53.35


ATOM
1346
O5′
URI
63
45.637
48.055
17.268
1.00
52.50


ATOM
1347
C5′
URI
63
44.645
48.789
17.963
1.00
53.50


ATOM
1348
C4′
URI
63
44.657
48.458
19.435
1.00
53.87


ATOM
1349
O4′
URI
63
44.222
47.097
19.638
1.00
56.21


ATOM
1350
C1′
URI
63
45.292
46.287
20.076
1.00
57.15


ATOM
1351
N1
URI
63
45.310
45.051
19.300
1.00
60.83


ATOM
1352
C6
URI
63
45.528
45.046
17.945
1.00
62.54


ATOM
1353
C2
URI
63
45.115
43.889
19.999
1.00
62.38


ATOM
1354
O2
URI
63
44.870
43.887
21.176
1.00
63.48


ATOM
1355
N3
URI
63
45.195
42.733
19.261
1.00
65.26


ATOM
1356
C4
URI
63
45.426
42.638
17.900
1.00
65.70


ATOM
1357
O4
URI
63
45.482
41.525
17.366
1.00
65.29


ATOM
1358
C5
URI
63
45.591
43.909
17.235
1.00
65.22


ATOM
1359
C2′
URI
63
46.585
47.075
20.007
1.00
54.78


ATOM
1360
O2′
URI
63
47.362
46.660
21.083
1.00
55.60


ATOM
1361
C3′
URI
63
46.057
48.503
19.996
1.00
54.61


ATOM
1362
O3′
URI
63
46.524
49.676
20.668
1.00
52.14


ATOM
1363
P
URI
64
46.495
49.758
22.241
1.00
47.16


ATOM
1364
O1P
URI
64
45.488
48.829
22.728
1.00
50.61


ATOM
1365
O2P
URI
64
46.259
51.175
22.377
1.00
52.89


ATOM
1366
O5′
URI
64
47.974
49.293
22.704
1.00
48.21


ATOM
1367
C5′
URI
64
49.127
50.043
22.295
1.00
49.00


ATOM
1368
C4′
URI
64
50.424
49.215
22.264
1.00
49.69


ATOM
1369
O4′
URI
64
50.752
48.705
23.582
1.00
51.32


ATOM
1370
C1′
URI
64
51.502
47.527
23.425
1.00
48.92


ATOM
1371
N1
URI
64
51.387
46.641
24.575
1.00
46.53


ATOM
1372
C6
URI
64
50.251
46.555
25.329
1.00
47.51


ATOM
1373
C2
URI
64
52.513
45.917
24.883
1.00
45.36


ATOM
1374
O2
URI
64
53.518
45.952
24.191
1.00
41.89


ATOM
1375
N3
URI
64
52.416
45.161
26.021
1.00
44.24


ATOM
1376
C4
URI
64
51.309
45.060
26.850
1.00
46.49


ATOM
1377
O4
URI
64
51.397
44.439
27.899
1.00
49.41


ATOM
1378
C5
URI
64
50.176
45.806
26.434
1.00
45.90


ATOM
1379
C2′
URI
64
51.378
47.023
22.005
1.00
50.53


ATOM
1380
O2′
URI
64
52.586
47.198
21.311
1.00
55.33


ATOM
1381
C3′
URI
64
50.320
47.949
21.432
1.00
51.44


ATOM
1382
O3′
URI
64
50.896
48.097
20.133
1.00
54.21


ATOM
1383
P
CYT
65
51.317
49.531
19.527
1.00
53.17


ATOM
1384
O1P
CYT
65
50.384
50.624
19.859
1.00
55.94


ATOM
1385
O2P
CYT
65
52.765
49.732
19.678
1.00
52.59


ATOM
1386
O5′
CYT
65
50.960
49.263
18.006
1.00
53.37


ATOM
1387
C5′
CYT
65
49.601
48.993
17.681
1.00
53.06


ATOM
1388
C4′
CYT
65
49.485
47.895
16.662
1.00
52.33


ATOM
1389
O4′
CYT
65
50.188
48.278
15.454
1.00
53.26


ATOM
1390
C1′
CYT
65
50.746
47.130
14.856
1.00
51.98


ATOM
1391
N1
CYT
65
52.185
47.288
14.767
1.00
50.86


ATOM
1392
C6
CYT
65
52.860
48.201
15.517
1.00
50.95


ATOM
1393
C2
CYT
65
52.841
46.474
13.912
1.00
50.54


ATOM
1394
O2
CYT
65
52.180
45.668
13.289
1.00
51.03


ATOM
1395
N3
CYT
65
54.176
46.569
13.778
1.00
51.62


ATOM
1396
C4
CYT
65
54.846
47.461
14.496
1.00
51.59


ATOM
1397
N4
CYT
65
56.159
47.552
14.311
1.00
49.49


ATOM
1398
C5
CYT
65
54.190
48.312
15.424
1.00
51.97


ATOM
1399
C2′
CYT
65
50.366
45.930
15.713
1.00
51.84


ATOM
1400
O2′
CYT
65
49.194
45.396
15.175
1.00
53.41


ATOM
1401
C3′
CYT
65
50.108
46.582
17.060
1.00
50.91


ATOM
1402
O3′
CYT
65
49.129
45.857
17.768
1.00
50.92


ATOM
1403
P
CYT
66
49.562
44.593
18.655
1.00
48.98


ATOM
1404
O1P
CYT
66
50.826
44.962
19.331
1.00
51.50


ATOM
1405
O2P
CYT
66
48.390
44.151
19.452
1.00
48.66


ATOM
1406
O5′
CYT
66
49.913
43.489
17.582
1.00
49.32


ATOM
1407
C5′
CYT
66
48.881
42.819
16.869
1.00
49.81


ATOM
1408
C4′
CYT
66
49.493
41.817
15.923
1.00
49.64


ATOM
1409
O4′
CYT
66
50.398
42.503
15.040
1.00
49.04


ATOM
1410
C1′
CYT
66
51.491
41.672
14.748
1.00
49.15


ATOM
1411
N1
CYT
66
52.690
42.355
15.147
1.00
49.29


ATOM
1412
C6
CYT
66
52.670
43.422
15.996
1.00
49.77


ATOM
1413
C2
CYT
66
53.847
41.903
14.628
1.00
49.70


ATOM
1414
O2
CYT
66
53.783
40.941
13.875
1.00
52.12


ATOM
1415
N3
CYT
66
55.005
42.513
14.932
1.00
49.35


ATOM
1416
C4
CYT
66
55.000
43.573
15.723
1.00
49.49


ATOM
1417
N4
CYT
66
56.161
44.176
15.956
1.00
50.87


ATOM
1418
C5
CYT
66
53.800
44.068
16.299
1.00
50.40


ATOM
1419
C2′
CYT
66
51.335
40.391
15.534
1.00
50.40


ATOM
1420
O2′
CYT
66
50.768
39.402
14.712
1.00
55.45


ATOM
1421
C3′
CYT
66
50.401
40.845
16.619
1.00
50.61


ATOM
1422
O3′
CYT
66
49.654
39.771
17.066
1.00
53.83


ATOM
1423
P
URI
67
50.198
38.958
18.309
1.00
60.29


ATOM
1424
O1P
URI
67
50.458
40.026
19.327
1.00
60.61


ATOM
1425
O2P
URI
67
49.233
37.845
18.604
1.00
58.42


ATOM
1426
O5′
URI
67
51.635
38.440
17.831
1.00
57.51


ATOM
1427
C5′
URI
67
51.757
37.391
16.908
1.00
58.65


ATOM
1428
C4′
URI
67
53.201
37.032
16.721
1.00
61.28


ATOM
1429
O4′
URI
67
53.940
38.184
16.235
1.00
61.89


ATOM
1430
C1′
URI
67
55.248
38.167
16.769
1.00
60.63


ATOM
1431
N1
URI
67
55.452
39.449
17.455
1.00
60.26


ATOM
1432
C6
URI
67
54.438
40.042
18.169
1.00
59.35


ATOM
1433
C2
URI
67
56.672
40.067
17.326
1.00
60.95


ATOM
1434
O2
URI
67
57.623
39.546
16.788
1.00
63.34


ATOM
1435
N3
URI
67
56.741
41.323
17.865
1.00
59.53


ATOM
1436
C4
URI
67
55.746
41.990
18.533
1.00
58.08


ATOM
1437
O4
URI
67
55.907
43.170
18.808
1.00
59.78


ATOM
1438
C5
URI
67
54.547
41.258
18.703
1.00
57.16


ATOM
1439
C2′
URI
67
55.367
36.909
17.637
1.00
61.57


ATOM
1440
O2′
URI
67
55.845
35.839
16.881
1.00
62.01


ATOM
1441
C3′
URI
67
53.922
36.616
17.984
1.00
62.55


ATOM
1442
O3′
URI
67
53.727
35.213
18.130
1.00
67.86


ATOM
1443
P
GUA
68
54.264
34.436
19.440
1.00
72.38


ATOM
1444
O1P
GUA
68
53.770
35.152
20.655
1.00
71.00


ATOM
1445
O2P
GUA
68
53.893
33.003
19.254
1.00
71.11


ATOM
1446
O5′
GUA
68
55.852
34.618
19.347
1.00
72.46


ATOM
1447
C5′
GUA
68
56.705
33.576
18.884
1.00
76.11


ATOM
1448
C4′
GUA
68
58.114
33.823
19.375
1.00
80.18


ATOM
1449
O4′
GUA
68
58.509
35.142
18.923
1.00
80.39


ATOM
1450
C1′
GUA
68
59.293
35.770
19.921
1.00
82.59


ATOM
1451
N9
GUA
68
58.629
37.008
20.322
1.00
82.78


ATOM
1452
C4
GUA
68
59.218
38.247
20.382
1.00
82.04


ATOM
1453
N3
GUA
68
60.510
38.512
20.128
1.00
82.48


ATOM
1454
C2
GUA
68
60.783
39.796
20.230
1.00
82.61


ATOM
1455
N2
GUA
68
62.043
40.223
20.024
1.00
82.03


ATOM
1456
N1
GUA
68
59.852
40.750
20.542
1.00
82.74


ATOM
1457
C6
GUA
68
58.517
40.501
20.811
1.00
82.22


ATOM
1458
O6
GUA
68
57.772
41.441
21.085
1.00
83.18


ATOM
1459
C5
GUA
68
58.214
39.117
20.720
1.00
81.67


ATOM
1460
N7
GUA
68
57.018
38.436
20.911
1.00
82.42


ATOM
1461
C8
GUA
68
57.313
37.185
20.674
1.00
82.57


ATOM
1462
C2′
GUA
68
59.497
34.769
21.056
1.00
83.40


ATOM
1463
O2′
GUA
68
60.727
34.088
20.861
1.00
86.48


ATOM
1464
C3′
GUA
68
58.279
33.869
20.893
1.00
82.31


ATOM
1465
O3′
GUA
68
58.587
32.612
21.544
1.00
83.68


ATOM
1466
P
CYT
69
59.369
31.399
20.769
1.00
84.23


ATOM
1467
O1P
CYT
69
58.420
30.647
19.889
1.00
83.58


ATOM
1468
O2P
CYT
69
60.716
31.808
20.230
1.00
80.34


ATOM
1469
O5′
CYT
69
59.625
30.383
21.968
1.00
82.21


ATOM
1470
C5′
CYT
69
60.461
30.737
23.061
1.00
78.76


ATOM
1471
C4′
CYT
69
59.732
30.511
24.355
1.00
76.22


ATOM
1472
O4′
CYT
69
59.054
31.736
24.754
1.00
74.55


ATOM
1473
C1′
CYT
69
57.846
31.403
25.421
1.00
73.25


ATOM
1474
N1
CYT
69
56.716
32.049
24.752
1.00
71.20


ATOM
1475
C6
CYT
69
56.858
32.670
23.547
1.00
69.73


ATOM
1476
C2
CYT
69
55.475
32.026
25.395
1.00
70.95


ATOM
1477
O2
CYT
69
55.374
31.413
26.476
1.00
71.58


ATOM
1478
N3
CYT
69
54.428
32.653
24.830
1.00
68.71


ATOM
1479
C4
CYT
69
54.585
33.273
23.664
1.00
68.96


ATOM
1480
N4
CYT
69
53.533
33.895
23.150
1.00
70.36


ATOM
1481
C5
CYT
69
55.832
33.287
22.973
1.00
68.05


ATOM
1482
C2′
CYT
69
57.716
29.882
25.429
1.00
74.80


ATOM
1483
O2′
CYT
69
58.217
29.348
26.644
1.00
74.46


ATOM
1484
C3′
CYT
69
58.597
29.504
24.251
1.00
75.79


ATOM
1485
O3′
CYT
69
59.017
28.156
24.376
1.00
76.78


ATOM
1486
P
ADE
70
57.989
26.969
23.996
1.00
76.95


ATOM
1487
O1P
ADE
70
57.499
27.272
22.618
1.00
77.97


ATOM
1488
O2P
ADE
70
58.641
25.672
24.283
1.00
76.26


ATOM
1489
O5′
ADE
70
56.782
27.097
25.027
1.00
73.11


ATOM
1490
C5′
ADE
70
56.891
26.459
26.268
1.00
71.25


ATOM
1491
C4′
ADE
70
55.612
26.557
27.033
1.00
70.06


ATOM
1492
O4′
ADE
70
55.235
27.954
27.125
1.00
69.60


ATOM
1493
C1′
ADE
70
53.824
28.065
27.118
1.00
67.58


ATOM
1494
N9
ADE
70
53.424
28.901
25.988
1.00
63.61


ATOM
1495
C4
ADE
70
52.169
29.419
25.812
1.00
60.89


ATOM
1496
N3
ADE
70
51.112
29.286
26.638
1.00
60.32


ATOM
1497
C2
ADE
70
50.036
29.902
26.138
1.00
57.84


ATOM
1498
N1
ADE
70
49.913
30.575
24.998
1.00
57.55


ATOM
1499
C6
ADE
70
51.004
30.702
24.191
1.00
59.94


ATOM
1500
N6
ADE
70
50.888
31.396
23.045
1.00
59.94


ATOM
1501
C5
ADE
70
52.204
30.096
24.611
1.00
60.12


ATOM
1502
N7
ADE
70
53.468
30.028
24.045
1.00
60.62


ATOM
1503
C8
ADE
70
54.156
29.309
24.902
1.00
62.12


ATOM
1504
C2′
ADE
70
53.257
26.645
27.024
1.00
69.11


ATOM
1505
O2′
ADE
70
52.988
26.150
28.313
1.00
68.84


ATOM
1506
C3′
ADE
70
54.417
25.902
26.374
1.00
70.69


ATOM
1507
O3′
ADE
70
54.378
24.499
26.631
1.00
72.73


ATOM
1508
P
GUA
71
53.276
23.580
25.896
1.00
72.87


ATOM
1509
O1P
GUA
71
53.264
23.884
24.445
1.00
75.88


ATOM
1510
O2P
GUA
71
53.442
22.190
26.343
1.00
76.18


ATOM
1511
O5′
GUA
71
51.901
24.057
26.498
1.00
71.48


ATOM
1512
C5′
GUA
71
51.534
23.643
27.776
1.00
71.45


ATOM
1513
C4′
GUA
71
50.139
24.073
28.047
1.00
73.04


ATOM
1514
O4′
GUA
71
50.058
25.500
27.788
1.00
73.17


ATOM
1515
C1′
GUA
71
48.778
25.812
27.260
1.00
73.14


ATOM
1516
N9
GUA
71
48.932
26.515
25.980
1.00
72.35


ATOM
1517
C4
GUA
71
47.928
27.175
25.303
1.00
71.25


ATOM
1518
N3
GUA
71
46.633
27.233
25.678
1.00
71.18


ATOM
1519
C2
GUA
71
45.907
27.970
24.846
1.00
71.64


ATOM
1520
N2
GUA
71
44.587
28.135
25.086
1.00
70.78


ATOM
1521
N1
GUA
71
46.418
28.598
23.728
1.00
70.00


ATOM
1522
C6
GUA
71
47.747
28.545
23.317
1.00
70.90


ATOM
1523
O6
GUA
71
48.099
29.146
22.286
1.00
70.86


ATOM
1524
C5
GUA
71
48.538
27.757
24.206
1.00
70.76


ATOM
1525
N7
GUA
71
49.893
27.443
24.172
1.00
71.38


ATOM
1526
C8
GUA
71
50.081
26.696
25.236
1.00
72.00


ATOM
1527
C2′
GUA
71
47.999
24.500
27.188
1.00
73.72


ATOM
1528
O2′
GUA
71
47.325
24.284
28.417
1.00
72.42


ATOM
1529
C3′
GUA
71
49.135
23.510
27.067
1.00
73.71


ATOM
1530
O3′
GUA
71
48.757
22.183
27.341
1.00
75.61


ATOM
1531
P
CYT
72
48.600
21.161
26.116
1.00
76.77


ATOM
1532
O1P
CYT
72
49.717
21.470
25.171
1.00
76.59


ATOM
1533
O2P
CYT
72
48.454
19.787
26.646
1.00
78.76


ATOM
1534
O5′
CYT
72
47.170
21.529
25.531
1.00
75.72


ATOM
1535
C5′
CYT
72
46.022
21.217
26.299
1.00
74.12


ATOM
1536
C4′
CYT
72
44.819
21.972
25.801
1.00
74.81


ATOM
1537
O4′
CYT
72
45.131
23.392
25.774
1.00
73.56


ATOM
1538
C1′
CYT
72
44.468
24.018
24.682
1.00
69.92


ATOM
1539
N1
CYT
72
45.486
24.530
23.760
1.00
64.17


ATOM
1540
C6
CYT
72
46.773
24.101
23.845
1.00
60.21


ATOM
1541
C2
CYT
72
45.113
25.481
22.790
1.00
61.28


ATOM
1542
O2
CYT
72
43.928
25.861
22.746
1.00
59.77


ATOM
1543
N3
CYT
72
46.047
25.959
21.945
1.00
57.28


ATOM
1544
C4
CYT
72
47.303
25.530
22.044
1.00
57.49


ATOM
1545
N4
CYT
72
48.204
26.015
21.189
1.00
57.41


ATOM
1546
C5
CYT
72
47.702
24.575
23.023
1.00
58.34


ATOM
1547
C2′
CYT
72
43.600
22.952
24.033
1.00
73.14


ATOM
1548
O2′
CYT
72
42.348
22.991
24.703
1.00
73.44


ATOM
1549
C3′
CYT
72
44.407
21.707
24.369
1.00
75.16


ATOM
1550
O3′
CYT
72
43.744
20.475
24.191
1.00
78.26


ATOM
1551
P
GUA
73
44.244
19.510
23.012
1.00
80.74


ATOM
1552
O1P
GUA
73
45.708
19.778
22.826
1.00
79.68


ATOM
1553
O2P
GUA
73
43.777
18.122
23.296
1.00
81.29


ATOM
1554
O5′
GUA
73
43.456
20.082
21.750
1.00
79.14


ATOM
1555
C5′
GUA
73
42.097
20.488
21.888
1.00
76.72


ATOM
1556
C4′
GUA
73
41.706
21.420
20.768
1.00
75.29


ATOM
1557
O4′
GUA
73
42.431
22.676
20.868
1.00
73.14


ATOM
1558
C1′
GUA
73
42.538
23.256
19.582
1.00
70.85


ATOM
1559
N9
GUA
73
43.941
23.537
19.290
1.00
67.16


ATOM
1560
C4
GUA
73
44.378
24.361
18.285
1.00
65.56


ATOM
1561
N3
GUA
73
43.590
25.041
17.437
1.00
65.02


ATOM
1562
C2
GUA
73
44.286
25.733
16.550
1.00
64.36


ATOM
1563
N2
GUA
73
43.631
26.443
15.633
1.00
65.45


ATOM
1564
N1
GUA
73
45.658
25.774
16.493
1.00
61.57


ATOM
1565
C6
GUA
73
46.507
25.096
17.352
1.00
62.56


ATOM
1566
O6
GUA
73
47.741
25.209
17.204
1.00
60.52


ATOM
1567
C5
GUA
73
45.757
24.320
18.336
1.00
64.44


ATOM
1568
N7
GUA
73
46.182
23.487
19.374
1.00
63.69


ATOM
1569
C8
GUA
73
45.068
23.051
19.914
1.00
65.34


ATOM
1570
C2′
GUA
73
41.915
22.260
18.599
1.00
73.56


ATOM
1571
O2′
GUA
73
40.549
22.580
18.423
1.00
73.84


ATOM
1572
C3′
GUA
73
42.066
20.959
19.372
1.00
74.93


ATOM
1573
O3′
GUA
73
41.170
19.956
18.926
1.00
75.65


ATOM
1574
P
GUA
74
41.755
18.537
18.438
1.00
76.59


ATOM
1575
O1P
GUA
74
43.134
18.335
18.985
1.00
74.18


ATOM
1576
O2P
GUA
74
40.680
17.519
18.681
1.00
77.25


ATOM
1577
O5′
GUA
74
41.946
18.711
16.875
1.00
74.44


ATOM
1578
C5′
GUA
74
42.942
19.584
16.384
1.00
72.28


ATOM
1579
C4′
GUA
74
42.523
20.110
15.061
1.00
69.30


ATOM
1580
O4′
GUA
74
42.815
21.529
15.065
1.00
69.43


ATOM
1581
C1′
GUA
74
43.928
21.824
14.235
1.00
66.32


ATOM
1582
N9
GUA
74
45.069
22.121
15.094
1.00
62.89


ATOM
1583
C4
GUA
74
46.252
22.742
14.730
1.00
60.17


ATOM
1584
N3
GUA
74
46.491
23.412
13.584
1.00
58.28


ATOM
1585
C2
GUA
74
47.766
23.777
13.483
1.00
59.10


ATOM
1586
N2
GUA
74
48.213
24.468
12.420
1.00
59.53


ATOM
1587
N1
GUA
74
48.710
23.495
14.416
1.00
59.95


ATOM
1588
C6
GUA
74
48.476
22.811
15.599
1.00
61.04


ATOM
1589
O6
GUA
74
49.401
22.600
16.374
1.00
64.54


ATOM
1590
C5
GUA
74
47.134
22.435
15.733
1.00
60.25


ATOM
1591
N7
GUA
74
46.496
21.764
16.765
1.00
59.39


ATOM
1592
C8
GUA
74
45.261
21.646
16.363
1.00
60.14


ATOM
1593
C2′
GUA
74
44.338
20.550
13.480
1.00
67.90


ATOM
1594
O2′
GUA
74
44.244
20.810
12.091
1.00
67.95


ATOM
1595
C3′
GUA
74
43.274
19.548
13.881
1.00
68.61


ATOM
1596
O3′
GUA
74
42.954
18.335
13.203
1.00
71.06


ATOM
1597
P
ADE
75
43.965
17.056
13.292
1.00
72.54


ATOM
1598
O1P
ADE
75
44.354
16.785
14.697
1.00
73.48


ATOM
1599
O2P
ADE
75
43.315
15.988
12.498
1.00
74.45


ATOM
1600
O5′
ADE
75
45.321
17.464
12.551
1.00
69.45


ATOM
1601
C5′
ADE
75
46.455
16.600
12.592
1.00
66.56


ATOM
1602
C4′
ADE
75
47.390
16.916
11.449
1.00
66.48


ATOM
1603
O4′
ADE
75
46.796
16.534
10.188
1.00
67.66


ATOM
1604
C1′
ADE
75
46.920
17.591
9.249
1.00
65.79


ATOM
1605
N9
ADE
75
45.583
18.117
9.033
1.00
65.93


ATOM
1606
C4
ADE
75
45.142
18.909
8.008
1.00
66.83


ATOM
1607
N3
ADE
75
45.860
19.389
6.984
1.00
69.04


ATOM
1608
C2
ADE
75
45.096
20.123
6.174
1.00
68.75


ATOM
1609
N1
ADE
75
43.793
20.408
6.272
1.00
69.10


ATOM
1610
C6
ADE
75
43.103
19.914
7.317
1.00
67.87


ATOM
1611
N6
ADE
75
41.807
20.224
7.423
1.00
68.55


ATOM
1612
C5
ADE
75
43.799
19.109
8.239
1.00
67.73


ATOM
1613
N7
ADE
75
43.399
18.446
9.392
1.00
68.62


ATOM
1614
C8
ADE
75
44.493
17.883
9.825
1.00
65.84


ATOM
1615
C2′
ADE
75
47.892
18.598
9.836
1.00
65.58


ATOM
1616
O2′
ADE
75
49.202
18.242
9.484
1.00
67.52


ATOM
1617
C3′
ADE
75
47.674
18.393
11.322
1.00
66.29


ATOM
1618
O3′
ADE
75
48.847
18.682
12.037
1.00
64.47


ATOM
1619
P
ADE
76
48.942
20.053
12.823
1.00
63.80


ATOM
1620
O1P
ADE
76
47.615
20.189
13.506
1.00
60.84


ATOM
1621
O2P
ADE
76
50.194
20.075
13.623
1.00
64.05


ATOM
1622
O5′
ADE
76
49.103
21.110
11.638
1.00
62.31


ATOM
1623
C5′
ADE
76
50.353
21.268
10.971
1.00
59.37


ATOM
1624
C4′
ADE
76
50.144
21.990
9.672
1.00
58.58


ATOM
1625
O4′
ADE
76
48.985
21.401
9.022
1.00
58.49


ATOM
1626
C1′
ADE
76
48.264
22.397
8.334
1.00
55.92


ATOM
1627
N9
ADE
76
46.916
22.378
8.865
1.00
54.24


ATOM
1628
C4
ADE
76
45.781
22.771
8.203
1.00
54.53


ATOM
1629
N3
ADE
76
45.704
23.298
6.968
1.00
53.24


ATOM
1630
C2
ADE
76
44.439
23.539
6.649
1.00
53.99


ATOM
1631
N1
ADE
76
43.321
23.317
7.367
1.00
54.54


ATOM
1632
C6
ADE
76
43.439
22.770
8.599
1.00
53.56


ATOM
1633
N6
ADE
76
42.333
22.538
9.301
1.00
53.61


ATOM
1634
C5
ADE
76
44.726
22.482
9.058
1.00
53.52


ATOM
1635
N7
ADE
76
45.194
21.943
10.242
1.00
53.28


ATOM
1636
C8
ADE
76
46.500
21.917
10.084
1.00
53.25


ATOM
1637
C2′
ADE
76
49.020
23.715
8.499
1.00
57.18


ATOM
1638
O2′
ADE
76
49.845
23.921
7.361
1.00
54.08


ATOM
1639
C3′
ADE
76
49.787
23.460
9.797
1.00
57.81


ATOM
1640
O3′
ADE
76
50.988
24.224
9.855
1.00
58.36


ATOM
1641
P
ADE
77
51.005
25.633
10.638
1.00
58.98


ATOM
1642
O1P
ADE
77
50.449
25.423
12.011
1.00
57.84


ATOM
1643
O2P
ADE
77
52.349
26.222
10.476
1.00
57.35


ATOM
1644
O5′
ADE
77
50.003
26.527
9.774
1.00
59.45


ATOM
1645
C5′
ADE
77
50.461
27.157
8.572
1.00
57.78


ATOM
1646
C4′
ADE
77
49.294
27.665
7.746
1.00
57.17


ATOM
1647
O4′
ADE
77
48.353
26.582
7.507
1.00
57.75


ATOM
1648
C1′
ADE
77
47.031
27.084
7.520
1.00
55.96


ATOM
1649
N9
ADE
77
46.342
26.527
8.686
1.00
54.59


ATOM
1650
C4
ADE
77
44.992
26.301
8.800
1.00
53.65


ATOM
1651
N3
ADE
77
44.048
26.566
7.892
1.00
54.88


ATOM
1652
C2
ADE
77
42.840
26.196
8.343
1.00
55.07


ATOM
1653
N1
ADE
77
42.508
25.637
9.512
1.00
54.24


ATOM
1654
C6
ADE
77
43.491
25.385
10.394
1.00
53.79


ATOM
1655
N6
ADE
77
43.164
24.825
11.537
1.00
55.70


ATOM
1656
C5
ADE
77
44.804
25.727
10.039
1.00
53.30


ATOM
1657
N7
ADE
77
46.011
25.607
10.710
1.00
54.75


ATOM
1658
C8
ADE
77
46.893
26.102
9.867
1.00
54.30


ATOM
1659
C2′
ADE
77
47.157
28.599
7.570
1.00
56.34


ATOM
1660
O2′
ADE
77
47.447
29.027
6.260
1.00
55.87


ATOM
1661
C3′
ADE
77
48.437
28.756
8.352
1.00
56.26


ATOM
1662
O3′
ADE
77
48.989
30.016
8.084
1.00
56.11


ATOM
1663
P
CYT
78
49.363
30.973
9.304
1.00
56.18


ATOM
1664
O1P
CYT
78
50.427
30.316
10.101
1.00
57.36


ATOM
1665
O2P
CYT
78
49.611
32.316
8.727
1.00
54.95


ATOM
1666
O5′
CYT
78
48.044
30.952
10.194
1.00
54.79


ATOM
1667
C5′
CYT
78
46.964
31.806
9.887
1.00
53.51


ATOM
1668
C4′
CYT
78
45.682
31.260
10.453
1.00
52.70


ATOM
1669
O4′
CYT
78
45.756
29.813
10.463
1.00
53.28


ATOM
1670
C1′
CYT
78
45.106
29.301
11.608
1.00
50.29


ATOM
1671
N1
CYT
78
46.149
28.756
12.478
1.00
48.57


ATOM
1672
C6
CYT
78
47.464
29.027
12.241
1.00
47.31


ATOM
1673
C2
CYT
78
45.775
27.947
13.545
1.00
47.01


ATOM
1674
O2
CYT
78
44.578
27.760
13.738
1.00
46.27


ATOM
1675
N3
CYT
78
46.724
27.401
14.337
1.00
46.39


ATOM
1676
C4
CYT
78
48.011
27.651
14.090
1.00
47.75


ATOM
1677
N4
CYT
78
48.935
27.078
14.879
1.00
47.41


ATOM
1678
C5
CYT
78
48.420
28.500
13.013
1.00
48.62


ATOM
1679
C2′
CYT
78
44.421
30.480
12.275
1.00
52.24


ATOM
1680
O2′
CYT
78
43.149
30.633
11.667
1.00
53.32


ATOM
1681
C3′
CYT
78
45.370
31.602
11.888
1.00
52.36


ATOM
1682
O3′
CYT
78
44.767
32.867
11.972
1.00
52.96


ATOM
1683
P
GUA
79
45.055
33.781
13.249
1.00
52.25


ATOM
1684
O1P
GUA
79
46.463
33.556
13.687
1.00
53.81


ATOM
1685
O2P
GUA
79
44.643
35.139
12.850
1.00
54.53


ATOM
1686
O5′
GUA
79
44.035
33.188
14.317
1.00
50.97


ATOM
1687
C5′
GUA
79
42.703
32.922
13.927
1.00
51.93


ATOM
1688
C4′
GUA
79
42.013
32.059
14.939
1.00
52.48


ATOM
1689
O4′
GUA
79
42.658
30.760
14.942
1.00
54.85


ATOM
1690
C1′
GUA
79
42.625
30.222
16.255
1.00
53.92


ATOM
1691
N9
GUA
79
43.974
29.859
16.686
1.00
50.75


ATOM
1692
C4
GUA
79
44.255
29.058
17.761
1.00
49.73


ATOM
1693
N3
GUA
79
43.348
28.483
18.555
1.00
50.01


ATOM
1694
C2
GUA
79
43.907
27.768
19.502
1.00
48.64


ATOM
1695
N2
GUA
79
43.115
27.131
20.374
1.00
52.64


ATOM
1696
N1
GUA
79
45.248
27.624
19.667
1.00
44.22


ATOM
1697
C6
GUA
79
46.212
28.212
18.867
1.00
46.79


ATOM
1698
O6
GUA
79
47.429
28.022
19.114
1.00
46.43


ATOM
1699
C5
GUA
79
45.623
28.987
17.829
1.00
47.92


ATOM
1700
N7
GUA
79
46.204
29.727
16.807
1.00
48.58


ATOM
1701
C8
GUA
79
45.183
30.227
16.152
1.00
49.85


ATOM
1702
C2′
GUA
79
41.945
31.261
17.149
1.00
54.76


ATOM
1703
O2′
GUA
79
40.553
31.024
17.166
1.00
57.98


ATOM
1704
C3′
GUA
79
42.190
32.529
16.366
1.00
54.12


ATOM
1705
O3′
GUA
79
41.254
33.519
16.725
1.00
55.51


ATOM
1706
P
URI
80
41.739
34.747
17.638
1.00
55.85


ATOM
1707
O1P
URI
80
40.670
35.757
17.569
1.00
55.96


ATOM
1708
O2P
URI
80
43.122
35.105
17.248
1.00
53.77


ATOM
1709
O5′
URI
80
41.750
34.105
19.093
1.00
58.51


ATOM
1710
C5′
URI
80
40.581
33.443
19.578
1.00
59.91


ATOM
1711
C4′
URI
80
40.904
32.601
20.786
1.00
60.24


ATOM
1712
O4′
URI
80
41.720
31.463
20.400
1.00
60.36


ATOM
1713
C1′
URI
80
42.612
31.142
21.450
1.00
57.81


ATOM
1714
N1
URI
80
43.974
31.258
20.959
1.00
55.40


ATOM
1715
C6
URI
80
44.318
32.107
19.944
1.00
53.91


ATOM
1716
C2
URI
80
44.898
30.475
21.584
1.00
53.83


ATOM
1717
O2
URI
80
44.601
29.743
22.496
1.00
54.26


ATOM
1718
N3
URI
80
46.176
30.590
21.117
1.00
50.91


ATOM
1719
C4
URI
80
46.599
31.407
20.117
1.00
50.65


ATOM
1720
O4
URI
80
47.786
31.426
19.837
1.00
51.41


ATOM
1721
C5
URI
80
45.573
32.208
19.509
1.00
52.40


ATOM
1722
C2′
URI
80
42.402
32.151
22.563
1.00
59.90


ATOM
1723
O2′
URI
80
41.537
31.574
23.505
1.00
61.19


ATOM
1724
C3′
URI
80
41.775
33.307
21.800
1.00
61.84


ATOM
1725
O3′
URI
80
40.981
34.135
22.620
1.00
65.89


ATOM
1726
P
URI
81
41.688
35.116
23.670
1.00
69.02


ATOM
1727
O1P
URI
81
40.553
35.866
24.272
1.00
69.25


ATOM
1728
O2P
URI
81
42.836
35.848
23.067
1.00
67.08


ATOM
1729
O5′
URI
81
42.298
34.137
24.766
1.00
68.61


ATOM
1730
C5′
URI
81
41.473
33.574
25.778
1.00
68.80


ATOM
1731
C4′
URI
81
42.327
32.807
26.752
1.00
69.26


ATOM
1732
O4′
URI
81
43.045
31.785
26.020
1.00
69.66


ATOM
1733
C1′
URI
81
44.332
31.612
26.584
1.00
68.52


ATOM
1734
N1
URI
81
45.344
31.952
25.589
1.00
66.30


ATOM
1735
C6
URI
81
45.093
32.756
24.508
1.00
66.26


ATOM
1736
C2
URI
81
46.570
31.439
25.810
1.00
65.61


ATOM
1737
O2
URI
81
46.802
30.741
26.772
1.00
66.73


ATOM
1738
N3
URI
81
47.525
31.775
24.886
1.00
63.48


ATOM
1739
C4
URI
81
47.367
32.570
23.801
1.00
61.53


ATOM
1740
O4
URI
81
48.322
32.780
23.082
1.00
60.99


ATOM
1741
C5
URI
81
46.048
33.081
23.625
1.00
64.25


ATOM
1742
C2′
URI
81
44.459
32.566
27.765
1.00
69.95


ATOM
1743
O2′
URI
81
44.201
31.895
28.980
1.00
71.21


ATOM
1744
C3′
URI
81
43.437
33.627
27.389
1.00
70.46


ATOM
1745
O3′
URI
81
42.987
34.354
28.522
1.00
72.50


ATOM
1746
P
GUA
82
43.822
35.626
29.035
1.00
73.86


ATOM
1747
O1P
GUA
82
44.150
36.503
27.883
1.00
75.42


ATOM
1748
O2P
GUA
82
42.997
36.165
30.130
1.00
76.05


ATOM
1749
O5′
GUA
82
45.167
35.004
29.634
1.00
72.13


ATOM
1750
C5′
GUA
82
45.091
34.076
30.713
1.00
72.12


ATOM
1751
C4′
GUA
82
46.454
33.510
31.053
1.00
72.41


ATOM
1752
O4′
GUA
82
46.972
32.715
29.948
1.00
71.27


ATOM
1753
C1′
GUA
82
48.383
32.815
29.918
1.00
69.55


ATOM
1754
N9
GUA
82
48.807
33.207
28.585
1.00
68.11


ATOM
1755
C4
GUA
82
50.035
32.951
27.998
1.00
65.75


ATOM
1756
N3
GUA
82
51.050
32.248
28.542
1.00
64.37


ATOM
1757
C2
GUA
82
52.097
32.209
27.738
1.00
64.74


ATOM
1758
N2
GUA
82
53.207
31.553
28.101
1.00
65.43


ATOM
1759
N1
GUA
82
52.141
32.811
26.512
1.00
63.80


ATOM
1760
C6
GUA
82
51.104
33.530
25.946
1.00
63.80


ATOM
1761
O6
GUA
82
51.244
34.037
24.833
1.00
65.67


ATOM
1762
C5
GUA
82
49.988
33.574
26.781
1.00
64.12


ATOM
1763
N7
GUA
82
48.756
34.179
26.585
1.00
66.32


ATOM
1764
C8
GUA
82
48.086
33.929
27.677
1.00
66.82


ATOM
1765
C2′
GUA
82
48.808
33.809
30.993
1.00
70.32


ATOM
1766
O2′
GUA
82
49.261
33.147
32.142
1.00
70.43


ATOM
1767
O3′
GUA
82
47.518
34.571
31.246
1.00
72.50


ATOM
1768
C3′
GUA
82
47.487
35.070
32.578
1.00
73.64


ATOM
1769
P
ADE
83
48.574
36.151
33.031
1.00
75.34


ATOM
1770
O1P
ADE
83
48.599
37.236
31.999
1.00
75.09


ATOM
1771
O2P
ADE
83
48.310
36.491
34.453
1.00
76.21


ATOM
1772
O5′
ADE
83
49.954
35.355
32.955
1.00
72.44


ATOM
1773
C5′
ADE
83
51.176
36.050
32.898
1.00
70.52


ATOM
1774
C4′
ADE
83
52.288
35.132
32.458
1.00
71.38


ATOM
1775
O4′
ADE
83
51.956
34.480
31.201
1.00
70.99


ATOM
1776
C1′
ADE
83
53.132
34.356
30.409
1.00
69.22


ATOM
1777
N9
ADE
83
52.928
35.064
29.148
1.00
66.75


ATOM
1778
C4
ADE
83
53.887
35.197
28.174
1.00
64.40


ATOM
1779
N3
ADE
83
55.143
34.718
28.202
1.00
63.01


ATOM
1780
C2
ADE
83
55.784
35.031
27.090
1.00
62.65


ATOM
1781
N1
ADE
83
55.347
35.718
26.031
1.00
63.95


ATOM
1782
C6
ADE
83
54.078
36.191
26.043
1.00
64.20


ATOM
1783
N6
ADE
83
53.636
36.884
24.991
1.00
64.73


ATOM
1784
C5
ADE
83
53.296
35.925
27.164
1.00
63.85


ATOM
1785
N7
ADE
83
51.987
36.253
27.490
1.00
64.21


ATOM
1786
C8
ADE
83
51.815
35.718
28.675
1.00
65.25


ATOM
1787
C2′
ADE
83
54.295
34.978
31.185
1.00
70.57


ATOM
1788
O2′
ADE
83
55.115
34.014
31.805
1.00
71.46


ATOM
1789
C3′
ADE
83
53.559
35.895
32.144
1.00
71.71


ATOM
1790
O3′
ADE
83
54.284
36.075
33.334
1.00
73.71


ATOM
1791
P
ADE
84
55.215
37.356
33.492
1.00
75.40


ATOM
1792
O1P
ADE
84
54.328
38.543
33.307
1.00
73.29


ATOM
1793
O2P
ADE
84
55.951
37.177
34.783
1.00
76.08


ATOM
1794
O5′
ADE
84
56.245
37.207
32.277
1.00
72.22


ATOM
1795
C5′
ADE
84
57.266
36.212
32.305
1.00
70.53


ATOM
1796
C4′
ADE
84
58.240
36.441
31.174
1.00
69.60


ATOM
1797
O4′
ADE
84
57.673
35.976
29.932
1.00
68.64


ATOM
1798
C1′
ADE
84
58.025
36.864
28.891
1.00
66.28


ATOM
1799
N9
ADE
84
56.809
37.578
28.538
1.00
62.60


ATOM
1800
C4
ADE
84
56.596
38.297
27.393
1.00
59.58


ATOM
1801
N3
ADE
84
57.456
38.469
26.378
1.00
59.08


ATOM
1802
C2
ADE
84
56.907
39.214
25.437
1.00
58.05


ATOM
1803
N1
ADE
84
55.689
39.767
25.402
1.00
57.22


ATOM
1804
C6
ADE
84
54.860
39.572
26.437
1.00
56.28


ATOM
1805
N6
ADE
84
53.654
40.125
26.387
1.00
56.50


ATOM
1806
C5
ADE
84
55.322
38.801
27.498
1.00
57.61


ATOM
1807
N7
ADE
84
54.741
38.416
28.698
1.00
59.83


ATOM
1808
C8
ADE
84
55.661
37.688
29.273
1.00
60.69


ATOM
1809
C2′
ADE
84
59.040
37.854
29.457
1.00
68.38


ATOM
1810
O2′
ADE
84
60.371
37.436
29.227
1.00
69.05


ATOM
1811
C3′
ADE
84
58.625
37.882
30.918
1.00
69.64


ATOM
1812
O3′
ADE
84
59.694
38.236
31.761
1.00
72.21


ATOM
1813
P
ADE
85
60.055
39.778
31.975
1.00
73.21


ATOM
1814
O1P
ADE
85
58.953
40.467
32.711
1.00
72.97


ATOM
1815
O2P
ADE
85
61.446
39.796
32.522
1.00
74.91


ATOM
1816
O5′
ADE
85
60.106
40.355
30.500
1.00
70.60


ATOM
1817
C5′
ADE
85
61.274
40.229
29.720
1.00
66.97


ATOM
1818
C4′
ADE
85
61.116
41.046
28.465
1.00
66.53


ATOM
1819
O4′
ADE
85
59.958
40.555
27.713
1.00
64.13


ATOM
1820
C1′
ADE
85
59.293
41.639
27.100
1.00
59.44


ATOM
1821
N9
ADE
85
57.997
41.776
27.755
1.00
55.49


ATOM
1822
C4
ADE
85
56.900
42.446
27.263
1.00
52.55


ATOM
1823
N3
ADE
85
56.804
43.102
26.094
1.00
51.73


ATOM
1824
C2
ADE
85
55.612
43.626
25.952
1.00
49.86


ATOM
1825
N1
ADE
85
54.574
43.578
26.770
1.00
50.86


ATOM
1826
C6
ADE
85
54.689
42.902
27.927
1.00
50.76


ATOM
1827
N6
ADE
85
53.624
42.843
28.735
1.00
49.94


ATOM
1828
C5
ADE
85
55.918
42.301
28.205
1.00
50.46


ATOM
1829
N7
ADE
85
56.374
41.549
29.277
1.00
52.22


ATOM
1830
C5
ADE
85
57.613
41.267
28.962
1.00
53.39


ATOM
1831
C2′
ADE
85
60.141
42.877
27.360
1.00
62.75


ATOM
1832
O2′
ADE
85
61.142
42.989
26.361
1.00
63.18


ATOM
1833
C3′
ADE
85
60.781
42.508
28.685
1.00
64.50


ATOM
1834
O3′
ADE
85
61.914
43.304
28.944
1.00
65.50


ATOM
1835
P
GUA
86
61.734
44.672
29.761
1.00
65.91


ATOM
1836
O1P
GUA
86
60.991
44.326
31.009
1.00
64.38


ATOM
1837
O2P
GUA
86
63.074
45.312
29.819
1.00
65.95


ATOM
1838
O5′
GUA
86
60.813
45.582
28.835
1.00
63.79


ATOM
1839
C5′
GUA
86
61.313
46.022
27.588
1.00
59.94


ATOM
1840
C4′
GUA
86
60.239
46.700
26.765
1.00
57.11


ATOM
1841
O4′
GUA
86
59.063
45.841
26.677
1.00
55.61


ATOM
1842
C1′
GUA
86
57.893
46.643
26.583
1.00
52.76


ATOM
1843
N9
GUA
86
56.989
46.244
27.643
1.00
50.33


ATOM
1844
C4
GUA
86
55.706
46.699
27.862
1.00
49.46


ATOM
1845
N3
GUA
86
55.051
47.642
27.144
1.00
48.57


ATOM
1846
C2
GUA
86
53.809
47.831
27.603
1.00
48.63


ATOM
1847
N2
GUA
86
52.995
48.731
27.055
1.00
47.89


ATOM
1848
N1
GUA
86
53.267
47.149
28.650
1.00
50.62


ATOM
1849
C6
GUA
86
53.929
46.186
29.397
1.00
50.83


ATOM
1850
O6
GUA
86
53.347
45.636
30.326
1.00
53.41


ATOM
1851
C5
GUA
86
55.247
45.977
28.940
1.00
49.00


ATOM
1852
N7
GUA
86
56.224
45.112
29.405
1.00
49.65


ATOM
1853
C8
GUA
86
57.242
45.309
28.609
1.00
49.95


ATOM
1854
C2′
GUA
86
58.331
48.102
26.659
1.00
54.64


ATOM
1855
O2′
GUA
86
58.496
48.591
25.342
1.00
53.47


ATOM
1856
C3′
GUA
86
59.668
47.966
27.375
1.00
55.15


ATOM
1857
O3′
GUA
86
60.524
49.074
27.209
1.00
53.47


ATOM
1858
P
ADE
87
60.507
50.233
28.312
1.00
50.30


ATOM
1859
O1P
ADE
87
60.524
49.594
29.626
1.00
52.25


ATOM
1860
O2P
ADE
87
61.527
51.229
27.973
1.00
53.20


ATOM
1861
O5′
ADE
87
59.103
50.927
28.069
1.00
49.73


ATOM
1862
C5′
ADE
87
58.937
51.804
26.969
1.00
46.19


ATOM
1863
C4′
ADE
87
57.523
52.302
26.908
1.00
44.70


ATOM
1864
O4′
ADE
87
56.653
51.165
27.051
1.00
43.85


ATOM
1865
C1′
ADE
87
55.473
51.539
27.742
1.00
42.06


ATOM
1866
N9
ADE
87
55.325
50.642
28.866
1.00
39.42


ATOM
1867
C4
ADE
87
54.185
50.441
29.593
1.00
38.57


ATOM
1868
N3
ADE
87
53.013
51.065
29.438
1.00
39.50


ATOM
1869
C2
ADE
87
52.122
50.598
30.308
1.00
39.89


ATOM
1870
N1
ADE
87
52.267
49.642
31.235
1.00
39.74


ATOM
1871
C6
ADE
87
53.460
49.032
31.343
1.00
37.28


ATOM
1872
N6
ADE
87
53.591
48.076
32.239
1.00
37.66


ATOM
1873
C5
ADE
87
54.480
49.446
30.496
1.00
37.04


ATOM
1874
N7
ADE
87
55.792
49.039
30.354
1.00
40.30


ATOM
1875
C8
ADE
87
56.255
49.791
29.380
1.00
39.46


ATOM
1876
C2′
ADE
87
55.610
52.997
28.129
1.00
45.04


ATOM
1877
O2′
ADE
87
54.977
53.803
27.158
1.00
47.02


ATOM
1878
C3′
ADE
87
57.119
53.140
28.103
1.00
47.03


ATOM
1879
O3′
ADE
87
57.556
54.471
27.997
1.00
48.62


ATOM
1880
P
URI
88
58.202
55.161
29.279
1.00
48.31


ATOM
1881
O1P
URI
88
58.842
54.087
30.082
1.00
47.18


ATOM
1882
O2P
URI
88
59.028
56.264
28.718
1.00
48.10


ATOM
1883
O5′
URI
88
56.903
55.702
30.033
1.00
47.72


ATOM
1884
C5′
URI
88
56.114
56.709
29.417
1.00
48.06


ATOM
1885
C4′
URI
88
54.832
56.909
30.168
1.00
48.17


ATOM
1886
O4′
URI
88
54.061
55.688
30.086
1.00
48.56


ATOM
1887
C1′
URI
88
53.342
55.492
31.285
1.00
46.52


ATOM
1888
N1
URI
88
53.832
54.260
31.899
1.00
44.89


ATOM
1889
C6
URI
88
54.977
53.660
31.480
1.00
44.74


ATOM
1890
C2
URI
88
53.093
53.741
32.918
1.00
45.35


ATOM
1891
O2
URI
88
52.068
54.262
33.292
1.00
48.00


ATOM
1892
N3
URI
88
53.588
52.598
33.487
1.00
43.30


ATOM
1893
C4
URI
88
54.727
51.943
33.127
1.00
44.05


ATOM
1894
O4
URI
88
55.064
50.932
33.743
1.00
46.21


ATOM
1895
C5
URI
88
55.442
52.541
32.040
1.00
44.32


ATOM
1896
C2′
URI
88
53.616
56.705
32.164
1.00
47.51


ATOM
1897
O2′
URI
88
52.731
57.724
31.775
1.00
48.89


ATOM
1898
C3′
URI
88
54.984
57.111
31.661
1.00
48.60


ATOM
1899
O3′
URI
88
55.292
58.445
32.005
1.00
48.21


ATOM
1900
P
GUA
89
56.099
58.726
33.360
1.00
46.62


ATOM
1901
O1P
GUA
89
57.054
57.603
33.470
1.00
43.08


ATOM
1902
O2P
GUA
89
56.593
60.121
33.289
1.00
46.71


ATOM
1903
O5′
GUA
89
54.981
58.579
34.492
1.00
46.33


ATOM
1904
C5′
GUA
89
53.812
59.384
34.464
1.00
46.68


ATOM
1905
C4′
GUA
89
52.835
58.957
35.540
1.00
47.99


ATOM
1906
O4′
GUA
89
52.428
57.576
35.329
1.00
48.45


ATOM
1907
C1′
GUA
89
52.197
56.947
36.589
1.00
45.89


ATOM
1908
N9
GUA
89
53.032
55.754
36.678
1.00
42.60


ATOM
1909
C4
GUA
89
52.803
54.636
37.449
1.00
39.75


ATOM
1910
N3
GUA
89
51.793
54.464
38.301
1.00
41.19


ATOM
1911
C2
GUA
89
51.842
53.263
38.883
1.00
41.82


ATOM
1912
N2
GUA
89
50.904
52.900
39.752
1.00
45.31


ATOM
1913
N1
GUA
89
52.803
52.330
38.658
1.00
38.19


ATOM
1914
C6
GUA
89
53.852
52.493
37.790
1.00
38.45


ATOM
1915
O6
GUA
89
54.667
51.579
37.661
1.00
37.98


ATOM
1916
C5
GUA
89
53.816
53.764
37.148
1.00
38.40


ATOM
1917
N7
GUA
89
54.682
54.326
36.228
1.00
41.24


ATOM
1918
C8
GUA
89
54.183
55.510
35.984
1.00
42.16


ATOM
1919
C2′
GUA
89
52.451
57.991
37.674
1.00
47.11


ATOM
1920
O2′
GUA
89
51.227
58.632
38.023
1.00
44.62


ATOM
1921
C3′
GUA
89
53.394
58.942
36.955
1.00
48.11


ATOM
1922
O3′
GUA
89
53.321
60.237
37.514
1.00
50.91


ATOM
1923
P
ADE
90
54.287
60.635
38.725
1.00
51.44


ATOM
1924
O1P
ADE
90
55.686
60.461
38.300
1.00
52.67


ATOM
1925
O2P
ADE
90
53.807
61.982
39.098
1.00
53.59


ATOM
1926
O5′
ADE
90
53.906
59.593
39.871
1.00
50.44


ATOM
1927
C5′
ADE
90
52.759
59.848
40.687
1.00
49.68


ATOM
1928
C4′
ADE
90
52.605
58.790
41.742
1.00
49.60


ATOM
1929
O4′
ADE
90
52.416
57.527
41.087
1.00
48.50


ATOM
1930
C1′
ADE
90
53.027
56.504
41.831
1.00
46.22


ATOM
1931
N9
ADE
90
54.083
55.930
41.016
1.00
42.57


ATOM
1932
C4
ADE
90
54.525
54.647
41.137
1.00
39.21


ATOM
1933
N3
ADE
90
54.075
53.742
41.992
1.00
39.75


ATOM
1934
C2
ADE
90
54.743
52.614
41.857
1.00
41.35


ATOM
1935
N1
ADE
90
55.733
52.320
41.024
1.00
40.92


ATOM
1936
C6
ADE
90
56.151
53.270
40.172
1.00
40.07


ATOM
1937
N6
ADE
90
57.135
52.976
39.340
1.00
41.92


ATOM
1938
C5
ADE
90
55.527
54.497
40.220
1.00
37.41


ATOM
1939
N7
ADE
90
55.724
55.660
39.515
1.00
39.02


ATOM
1940
C8
ADE
90
54.837
56.492
40.024
1.00
41.35


ATOM
1941
C2′
ADE
90
53.579
57.137
43.095
1.00
50.09


ATOM
1942
O2′
ADE
90
52.574
57.092
44.090
1.00
53.88


ATOM
1943
C3′
ADE
90
53.817
58.550
42.614
1.00
51.43


ATOM
1944
O3′
ADE
90
53.844
59.463
43.690
1.00
55.88


ATOM
1945
P
GUA
91
55.249
59.891
44.330
1.00
58.76


ATOM
1946
O1P
GUA
91
56.324
60.018
43.305
1.00
57.54


ATOM
1947
O2P
GUA
91
54.901
61.084
45.161
1.00
59.32


ATOM
1948
O5′
GUA
91
55.587
58.606
45.211
1.00
56.24


ATOM
1949
C5′
GUA
91
54.654
58.130
46.147
1.00
55.27


ATOM
1950
C4′
GUA
91
55.108
56.813
46.705
1.00
57.42


ATOM
1951
O4′
GUA
91
54.952
55.779
45.701
1.00
57.61


ATOM
1952
C1′
GUA
91
55.996
54.822
45.842
1.00
55.92


ATOM
1953
N9
GUA
91
56.783
54.766
44.621
1.00
50.86


ATOM
1954
C4
GUA
91
57.531
53.698
44.210
1.00
47.48


ATOM
1955
N3
GUA
91
57.643
52.518
44.853
1.00
45.65


ATOM
1956
C2
GUA
91
58.458
51.684
44.217
1.00
45.38


ATOM
1957
N2
GUA
91
58.697
50.459
44.712
1.00
43.63


ATOM
1958
N1
GUA
91
59.095
51.986
43.053
1.00
45.16


ATOM
1959
C6
GUA
91
58.974
53.193
42.372
1.00
47.02


ATOM
1960
O6
GUA
91
59.569
53.361
41.302
1.00
48.12


ATOM
1961
C5
GUA
91
58.123
54.095
43.046
1.00
46.49


ATOM
1962
N7
GUA
91
57.747
55.390
42.716
1.00
47.05


ATOM
1963
C8
GUA
91
56.948
55.748
43.680
1.00
48.36


ATOM
1964
C2′
GUA
91
56.861
55.264
47.009
1.00
57.24


ATOM
1965
O2′
GUA
91
56.321
54.656
48.149
1.00
61.28


ATOM
1966
C3′
GUA
91
56.585
56.752
47.031
1.00
58.70


ATOM
1967
O3′
GUA
91
56.869
57.300
48.297
1.00
61.96


ATOM
1968
P
CYT
92
58.404
57.505
48.726
1.00
66.23


ATOM
1969
O1P
CYT
92
59.060
58.388
47.712
1.00
65.98


ATOM
1970
O2P
CYT
92
58.486
57.865
50.170
1.00
64.76


ATOM
1971
O5′
CYT
92
58.979
56.040
48.553
1.00
61.89


ATOM
1972
C5′
CYT
92
60.213
55.707
49.107
1.00
58.84


ATOM
1973
C4′
CYT
92
60.482
54.271
48.863
1.00
56.69


ATOM
1974
O4′
CYT
92
59.823
53.883
47.652
1.00
56.03


ATOM
1975
C1′
CYT
92
60.657
52.995
46.932
1.00
53.96


ATOM
1976
N1
CYT
92
61.064
53.674
45.704
1.00
51.64


ATOM
1977
C6
CYT
92
60.786
54.990
45.500
1.00
51.38


ATOM
1978
C2
CYT
92
61.729
52.950
44.760
1.00
51.67


ATOM
1979
O2
CYT
92
61.953
51.762
44.983
1.00
54.04


ATOM
1980
N3
CYT
92
62.119
53.537
43.626
1.00
51.70


ATOM
1981
C4
CYT
92
61.842
54.814
43.420
1.00
51.10


ATOM
1982
N4
CYT
92
62.243
55.346
42.283
1.00
51.69


ATOM
1983
C5
CYT
92
61.145
55.592
44.375
1.00
51.24


ATOM
1984
C2′
CYT
92
61.863
52.692
47.811
1.00
54.28


ATOM
1985
O2′
CYT
92
61.568
51.559
48.588
1.00
54.76


ATOM
1986
C3′
CYT
92
61.933
53.965
48.629
1.00
55.63


ATOM
1987
O3′
CYT
92
62.585
53.839
49.868
1.00
56.30


ATOM
1988
P
CYT
93
63.981
54.580
50.073
1.00
56.73


ATOM
1989
O1P
CYT
93
63.923
55.872
49.347
1.00
55.93


ATOM
1990
O2P
CYT
93
64.249
54.575
51.523
1.00
58.16


ATOM
1991
O5′
CYT
93
65.006
53.595
49.360
1.00
55.12


ATOM
1992
C5′
CYT
93
65.172
52.279
49.873
1.00
56.61


ATOM
1993
C4′
CYT
93
66.005
51.466
48.926
1.00
58.55


ATOM
1994
O4′
CYT
93
65.358
51.441
47.624
1.00
57.23


ATOM
1995
C1′
CYT
93
66.341
51.453
46.601
1.00
54.85


ATOM
1996
N1
CYT
93
66.078
52.594
45.719
1.00
50.99


ATOM
1997
C6
CYT
93
65.354
53.668
46.156
1.00
49.07


ATOM
1998
C2
CYT
93
66.548
52.547
44.411
1.00
48.99


ATOM
1999
O2
CYT
93
67.243
51.583
44.060
1.00
48.91


ATOM
2000
N3
CYT
93
66.238
53.548
43.565
1.00
46.69


ATOM
2001
C4
CYT
93
65.501
54.577
43.990
1.00
45.84


ATOM
2002
N4
CYT
93
65.185
55.530
43.108
1.00
47.85


ATOM
2003
C5
CYT
93
65.046
54.673
45.325
1.00
46.14


ATOM
2004
C2′
CYT
93
67.705
51.481
47.274
1.00
57.26


ATOM
2005
O2′
CYT
93
68.148
50.159
47.411
1.00
57.46


ATOM
2006
C3′
CYT
93
67.357
52.080
48.630
1.00
59.82


ATOM
2007
O3′
CYT
93
68.308
51.705
49.612
1.00
62.69


ATOM
2008
P
ADE
94
69.630
52.593
49.789
1.00
65.51


ATOM
2009
O1P
ADE
94
70.404
52.063
50.948
1.00
65.46


ATOM
2010
O2P
ADE
94
69.146
54.011
49.790
1.00
66.18


ATOM
2011
O5′
ADE
94
70.443
52.372
48.430
1.00
64.50


ATOM
2012
C5′
ADE
94
71.228
51.211
48.196
1.00
64.02


ATOM
2013
C4′
ADE
94
72.114
51.432
46.988
1.00
65.24


ATOM
2014
O4′
ADE
94
71.258
51.549
45.833
1.00
64.94


ATOM
2015
C1′
ADE
94
71.789
52.487
44.927
1.00
64.48


ATOM
2016
N9
ADE
94
70.781
53.527
44.738
1.00
62.23


ATOM
2017
C4
ADE
94
70.436
54.140
43.555
1.00
60.89


ATOM
2018
N3
ADE
94
70.939
53.905
42.328
1.00
60.57


ATOM
2019
C2
ADE
94
70.372
54.715
41.425
1.00
60.30


ATOM
2020
N1
ADE
94
69.434
55.653
41.607
1.00
59.12


ATOM
2021
C6
ADE
94
68.963
55.857
42.859
1.00
58.92


ATOM
2022
N6
ADE
94
68.058
56.803
43.063
1.00
59.62


ATOM
2023
C5
ADE
94
69.467
55.069
43.886
1.00
59.56


ATOM
2024
N7
ADE
94
69.185
55.028
45.241
1.00
60.03


ATOM
2025
C8
ADE
94
69.989
54.100
45.701
1.00
61.80


ATOM
2026
C2′
ADE
94
73.128
52.977
45.495
1.00
66.31


ATOM
2027
O2′
ADE
94
74.237
52.248
44.963
1.00
68.43


ATOM
2028
C3′
ADE
94
72.943
52.714
46.979
1.00
65.98


ATOM
2029
O3′
ADE
94
74.226
52.525
47.585
1.00
66.98


ATOM
2030
IR
IRI
201
53.554
56.817
−0.651
1.00
93.89


ATOM
2031
N1
IRI
201
52.182
58.075
−1.938
1.00
93.42


ATOM
2032
N2
IRI
201
53.802
58.505
0.777
1.00
93.21


ATOM
2033
N3
IRI
201
54.908
55.460
0.552
1.00
94.09


ATOM
2034
N4
IRI
201
53.310
55.134
−2.151
1.00
93.69


ATOM
2035
N5
IRI
201
51.753
56.080
0.473
1.00
93.32


ATOM
2036
N6
IRI
201
55.385
57.497
−1.746
1.00
93.59


ATOM
2037
IR
IRI
202
53.625
69.093
10.763
1.00
85.85


ATOM
2038
N1
IRI
202
52.087
70.413
9.778
1.00
85.66


ATOM
2039
N2
IRI
202
53.399
70.206
12.681
1.00
85.98


ATOM
2040
N3
IRI
202
55.160
67.721
11.697
1.00
84.58


ATOM
2041
N4
IRI
202
53.842
67.986
8.809
1.00
85.72


ATOM
2042
N5
IRI
202
51.949
67.717
11.391
1.00
85.26


ATOM
2043
N6
IRI
202
55.268
70.465
10.114
1.00
85.66


ATOM
2044
IR
IRI
203
61.806
45.927
13.616
1.00
88.54


ATOM
2045
N1
IRI
203
61.031
48.049
13.783
1.00
89.40


ATOM
2046
N2
IRI
203
60.336
45.210
15.141
1.00
89.42


ATOM
2047
N3
IRI
203
62.638
43.838
13.368
1.00
89.77


ATOM
2048
N4
IRI
203
63.284
46.635
12.057
1.00
88.78


ATOM
2049
N5
IRI
203
60.295
45.522
11.996
1.00
89.15


ATOM
2050
N6
IRI
203
63.307
46.287
15.236
1.00
89.17


ATOM
2051
IR
IRI
204
58.660
49.443
35.319
1.00
50.78


ATOM
2052
N1
IRI
204
57.805
49.869
33.303
1.00
53.99


ATOM
2053
N2
IRI
204
56.738
49.927
36.321
1.00
52.39


ATOM
2054
N3
IRI
204
59.592
49.024
37.340
1.00
54.34


ATOM
2055
N4
IRI
204
60.565
48.944
34.315
1.00
52.56


ATOM
2056
N5
IRI
204
58.146
47.272
35.175
1.00
53.83


ATOM
2057
N6
IRI
204
59.288
51.571
35.562
1.00
55.19


ATOM
2058
OH2
TIP
485
51.739
71.316
25.471
1.00
46.30


ATOM
2059
MG + 2
MG2
302
44.558
51.948
20.995
1.00
53.79


ATOM
2060
OH2
TIP
486
49.722
29.399
20.192
1.00
54.76


ATOM
2061
OH2
TIP
487
39.670
50.220
26.095
1.00
61.74


ATOM
2062
OH2
TIP
488
65.301
68.258
4.116
1.00
63.32


ATOM
2063
MG + 2
MG2
306
58.035
37.893
33.008
1.00
79.25


ATOM
2064
OH2
TIP
489
48.921
37.182
24.451
1.00
58.02


ATOM
2065
N
SAM
4633
48.978
58.213
29.468
1.00
70.48


ATOM
2066
CA
SAM
4633
49.017
57.559
28.161
1.00
70.71


ATOM
2067
C
SAM
4633
47.811
57.997
27.341
1.00
71.98


ATOM
2068
O
SAM
4633
47.672
57.591
26.201
1.00
74.00


ATOM
2069
OXT
SAM
4633
46.990
58.794
27.797
1.00
72.37


ATOM
2070
CB
SAM
4633
49.007
56.031
28.341
1.00
69.18


ATOM
2071
CG
SAM
4633
50.053
55.658
29.384
1.00
66.96


ATOM
2072
SD
SAM
4633
49.983
53.908
29.936
1.00
67.12


ATOM
2073
CE
SAM
4633
49.248
52.995
28.555
1.00
66.84


ATOM
2074
C5*
SAM
4633
48.609
54.077
31.057
1.00
63.06


ATOM
2075
C4*
SAM
4633
49.089
54.531
32.434
1.00
59.91


ATOM
2076
O4*
SAM
4633
49.681
55.840
32.308
1.00
57.86


ATOM
2077
C3*
SAM
4633
47.842
54.726
33.192
1.00
57.88


ATOM
2078
O3*
SAM
4633
47.612
53.550
33.943
1.00
59.36


ATOM
2079
C2*
SAM
4633
48.163
55.893
34.105
1.00
56.70


ATOM
2080
O2*
SAM
4633
48.495
55.463
35.409
1.00
59.46


ATOM
2081
C1*
SAM
4633
49.391
56.633
33.494
1.00
55.27


ATOM
2082
N9
SAM
4633
49.045
57.972
33.005
1.00
51.63


ATOM
2083
C8
SAM
4633
49.875
59.041
32.964
1.00
49.13


ATOM
2084
N7
SAM
4633
49.251
60.083
32.487
1.00
49.33


ATOM
2085
C5
SAM
4633
47.979
59.734
32.176
1.00
50.31


ATOM
2086
C6
SAM
4633
46.824
60.386
31.629
1.00
49.74


ATOM
2087
N6
SAM
4633
46.816
61.719
31.274
1.00
49.48


ATOM
2088
N1
SAM
4633
45.726
59.668
31.461
1.00
50.34


ATOM
2089
C2
SAM
4633
45.652
58.380
31.789
1.00
49.54


ATOM
2090
N3
SAM
4633
46.671
57.755
32.312
1.00
49.83


ATOM
2091
C4
SAM
4633
47.839
58.372
32.513
1.00
50.25


ATOM
2092
OH2
TIP
401
57.591
67.639
5.524
1.00
67.84
HOH


ATOM
2093
OH2
TIP
402
65.844
60.703
3.699
1.00
95.02
HOH


ATOM
2094
OH2
TIP
403
42.141
28.563
12.608
1.00
71.25
HOH


ATOM
2095
OH2
TIP
404
58.828
32.584
28.726
1.00
76.38
HOH


ATOM
2096
OH2
TIP
405
42.470
78.500
33.938
1.00
65.46
HOH


ATOM
2097
OH2
TIP
406
38.950
52.732
26.905
1.00
50.16
HOH


ATOM
2098
OH2
TIP
407
60.495
26.999
22.724
1.00
49.53
HOH


ATOM
2099
OH2
TIP
408
66.956
61.261
13.329
1.00
70.52
HOH


ATOM
2100
OH2
TIP
409
54.581
44.687
21.836
1.00
48.89
HOH


ATOM
2101
OH2
TIP
410
44.746
72.284
12.109
1.00
55.74
HOH


ATOM
2102
OH2
TIP
411
41.215
64.623
43.219
1.00
73.60
HOH


ATOM
2103
OH2
TIP
412
53.716
40.580
10.559
1.00
59.05
HOH


ATOM
2104
OH2
TIP
413
59.951
37.704
24.777
1.00
66.80
HOH


ATOM
2105
OH2
TIP
415
51.273
54.322
20.276
1.00
63.37
HOH


ATOM
2106
OH2
TIP
416
37.853
76.117
41.745
1.00
99.78
HOH


ATOM
2107
OH2
TIP
417
53.179
38.183
12.315
1.00
73.56
HOH


ATOM
2108
OH2
TIP
418
68.733
75.988
9.076
1.00
92.29
HOH


ATOM
2109
OH2
TIP
419
58.212
36.803
16.351
1.00
58.80
HOH


ATOM
2110
OH2
TIP
420
51.901
53.232
16.541
1.00
55.72
HOH


ATOM
2111
OH2
TIP
421
46.416
42.000
39.001
1.00
74.52
HOH


ATOM
2112
OH2
TIP
422
40.169
47.590
33.707
1.00
84.18
HOH


ATOM
2113
OH2
TIP
423
55.341
30.516
22.476
1.00
156.00
HOH


ATOM
2114
OH2
TIP
424
62.161
39.189
35.898
1.00
90.20
HOH


ATOM
2115
OH2
TIP
425
52.797
29.045
10.246
1.00
70.31
HOH


ATOM
2116
OH2
TIP
426
46.083
72.202
14.724
1.00
89.63
HOH


ATOM
2117
OH2
TIP
427
43.895
24.483
14.003
1.00
94.83
HOH


ATOM
2118
OH2
TIP
428
64.042
51.756
7.838
1.00
94.93
HOH


ATOM
2119
OH2
TIP
429
62.436
42.733
34.126
1.00
64.70
HOH


ATOM
2120
OH2
TIP
430
41.282
42.563
19.692
1.00
87.83
HOH


ATOM
2121
OH2
TIP
431
51.722
28.440
29.839
1.00
84.32
HOH


ATOM
2122
OH2
TIP
432
56.273
41.983
42.811
1.00
75.94
HOH


ATOM
2123
OH2
TIP
433
70.950
70.381
6.009
1.00
107.54
HOH


ATOM
2124
OH2
TIP
434
43.999
36.134
19.108
1.00
59.50
HOH


ATOM
2125
OH2
TIP
435
43.366
79.824
37.802
1.00
91.07
HOH


ATOM
2126
OH2
TIP
436
56.922
36.378
23.973
1.00
61.98
HOH


ATOM
2127
OH2
TIP
437
50.863
54.791
35.358
1.00
99.14
HOH


ATOM
2128
OH2
TIP
438
42.619
37.414
16.099
1.00
97.96
HOH


ATOM
2129
OH2
TIP
439
52.071
24.753
7.814
1.00
76.96
HOH


ATOM
2130
OH2
TIP
440
44.787
70.103
16.931
1.00
60.20
HOH


ATOM
2131
OH2
TIP
441
42.346
49.622
26.359
1.00
72.15
HOH


ATOM
2132
OH2
TIP
442
43.472
46.657
12.316
1.00
90.65
HOH


ATOM
2133
OH2
TIP
443
56.988
56.781
10.994
1.00
57.28
HOH


ATOM
2134
OH2
TIP
444
41.847
29.243
24.223
1.00
70.54
HOH


ATOM
2135
OH2
TIP
445
66.234
68.063
9.499
1.00
99.73
HOH


ATOM
2136
OH2
TIP
446
44.722
44.081
37.578
1.00
62.79
HOH


ATOM
2137
OH2
TIP
447
56.138
29.423
20.395
1.00
86.90
HOH


ATOM
2138
OH2
TIP
448
57.334
59.211
−2.014
1.00
100.61
HOH


ATOM
2139
OH2
TIP
449
59.137
59.655
31.382
1.00
68.16
HOH


ATOM
2140
OH2
TIP
450
42.746
15.877
21.799
1.00
92.93
HOH


ATOM
2141
OH2
TIP
451
42.596
49.176
14.838
1.00
76.32
HOH


ATOM
2142
OH2
TIP
452
70.669
48.131
38.000
1.00
90.22
HOH


ATOM
2143
OH2
TIP
453
61.839
64.252
22.057
1.00
87.42
HOH


ATOM
2144
OH2
TIP
454
47.453
51.753
25.474
1.00
79.75
HOH


ATOM
2145
OH2
TIP
455
54.702
46.214
19.429
1.00
58.14
HOH


ATOM
2146
OH2
TIP
456
38.160
46.739
20.938
1.00
67.56
HOH


ATOM
2147
OH2
TIP
457
61.061
36.001
31.494
1.00
101.80
HOH


ATOM
2148
OH2
TIP
458
44.977
54.138
34.897
1.00
83.87
HOH


ATOM
2149
OH2
TIP
459
60.010
55.418
19.665
1.00
61.11
HOH


ATOM
2150
OH2
TIP
460
40.810
49.621
31.081
1.00
78.05
HOH


ATOM
2151
OH2
TIP
461
48.584
73.015
7.165
1.00
121.06
HOH


ATOM
2152
OH2
TIP
462
39.329
32.085
23.252
1.00
88.90
HOH


ATOM
2153
OH2
TIP
463
44.796
67.103
17.850
1.00
64.87
HOH


ATOM
2154
OH2
TIP
464
60.056
60.238
28.863
1.00
95.98
HOH


ATOM
2155
OH2
TIP
465
47.116
63.996
49.111
1.00
88.59
HOH


ATOM
2156
OH2
TIP
466
41.752
47.571
27.734
1.00
60.60
HOH


ATOM
2157
OH2
TIP
467
55.220
41.411
33.367
1.00
85.36
HOH


ATOM
2158
OH2
TIP
468
46.419
34.729
34.906
1.00
101.53
HOH


ATOM
2159
OH2
TIP
469
50.094
44.653
11.195
1.00
82.72
HOH


ATOM
2160
OH2
TIP
470
54.910
24.423
9.210
1.00
69.52
HOH


ATOM
2161
OH2
TIP
471
59.146
74.355
4.977
1.00
91.07
HOH


ATOM
2162
OH2
TIP
472
51.468
40.328
41.242
1.00
85.30
HOH


ATOM
2163
OH2
TIP
473
66.233
42.338
35.321
1.00
108.12
HOH


ATOM
2164
OH2
TIP
474
55.690
63.785
36.962
1.00
92.70
HOH


ATOM
2165
OH2
TIP
475
57.139
52.985
35.810
1.00
46.44
HOH


ATOM
2166
OH2
TIP
476
48.166
19.757
7.460
1.00
100.21
HOH


ATOM
2167
OH2
TIP
477
61.591
73.629
4.085
1.00
85.16
HOH


ATOM
2168
OH2
TIP
478
57.898
68.572
−1.694
1.00
70.21
HOH


ATOM
2169
OH2
TIP
479
41.290
44.965
20.298
1.00
92.57
HOH


ATOM
2170
OH2
TIP
480
55.825
58.833
22.615
1.00
105.63
HOH


ATOM
2171
OH2
TIP
481
53.569
43.394
45.890
1.00
115.00
HOH


ATOM
2172
OH2
TIP
482
58.863
65.274
17.791
1.00
65.42
HOH


ATOM
2173
OH2
TIP
483
61.288
41.859
40.100
1.00
83.23
HOH


ATOM
2174
OH2
TIP
484
48.702
33.156
17.506
1.00
92.02
HOH


END










The foregoing discussion of the invention has been presented for purposes of illustration and description. The foregoing is not intended to limit the invention to the form or forms disclosed herein. Although the description of the invention has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the invention, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.

Claims
  • 1. A method for identifying a compound that associates with a SAM-I riboswitch comprising: modeling at least a portion of the SAM-I riboswitch atomic structure depicted in at least one of FIG. 2A or FIG. 2B with a test compound; and determining the association between the test compound and the SAM-I riboswitch.
  • 2. The method of claim 1, further comprising identifying the test compound that associates with the SAM-I riboswitch and reduces bacterial gene expression.
  • 3. The method of claim 1, further comprising identifying the test compound that associates with the SAM-I riboswitch and induces bacterial gene expression.
  • 4. The method of claim 1, wherein atomic coordinates of the atomic structure comprise at least a portion of the atomic coordinates listed in Table 1 for atoms depicted in FIG. 2A or 2B.
  • 5. The method of claim 1, wherein said association determination step comprises determining a minimum interaction energy, a binding constant, a dissociation constant, or a combination thereof, for the test compound in the model of the SAM-I riboswitch.
  • 6. The method of claim 1, wherein said association determination step comprises determining the interaction of the test compound with a nucleotide of SAM-I riboswitch comprising A6, U6, G11, A45, C47, U57, G58, A86, U87, or a combination thereof.
  • 7. The method of claim 1, wherein said association determination step comprises determining the interaction of the test compound with a S-adenosyl-methionine moiety comprising a ribose sugar, a methionine side chain, a sulfur, an adenine moiety or combination thereof.
  • 8. The method of claim 1, wherein said association determination step comprises determining the interaction of the test compound with a nucleotide of SAM-I riboswitch comprising A45, G11, C44, G58 and U57 or a combination thereof.
  • 9. The method of claim 1, wherein said association determination step comprises determining the interaction of the test compound with a P3 helix region of the SAM-I riboswitch.
  • 10. The method of claim 1, wherein said association determination step comprises determining the interaction of the test compound within a pocket created between a P1 and P3 helices of the SAM-I riboswitch.
  • 11. The method of claim 1, wherein said association determination step comprises determining the interaction of the test compound with a minor groove faces of a P1 and P3 helices of the SAM-I riboswitch.
  • 12. The method of claim 1, wherein the test compound reduces formation of an antiterminator conformation of the SAM-I riboswitch.
  • 13. A method of regulating gene expression in a cell by modulating an mRNA, said method comprising administering a SAM-I riboswitch modulating compound to the cell to modulate the SAM-I riboswitch activity of the mRNA.
  • 14. The method of claim 13, wherein the gene expression is stimulated.
  • 15. The method of claim 13, wherein the gene expression is inhibited.
  • 16. The method of claim 13, wherein the SAM-I riboswitch modulating compound forms a complex with the SAM-I riboswitch preventing the mRNA from forming an antiterminator element.
  • 17. The method of claim 13, wherein the cell is a bacterial cell.
  • 18. The method of claim 13, wherein the bacterial cell is selected from the group consisting of Staphylococcus spp., Bacillus spp., Listeria spp., Clostridia spp., Streptomyces spp., Thermoanaerobacteria spp. and a combination thereof.
  • 19. A SAM-I riboswitch, wherein one or more of the nucleotides listed in “Tertiary contacts” section of Table 2 is modified.
  • 20. The SAM-I riboswitch of claim 19, wherein one or more modified nucleotides are selected from the group consisting of A45, G11, C44, G58 and U57.
  • 21. The method of claim 19, wherein the modified nucleotide increases gene expression in a cell.
  • 22. The method of claim 19, wherein the modified nucleotide decreases gene expression in a cell.
  • 23. The method of claim 19, wherein the modified nucleotide decreases sulfur production in a cell.
  • 24. A composition comprising a compound that associates with at least a portion of the SAM-I riboswitch atomic structure depicted in at least one of FIG. 2A or FIG. 2B and the association includes at least one of nucleotides A45, G11, C44, G58 and U57, wherein the composition is capable of modifying the SAM-I riboswitch activity of a bacterial organism.
  • 25. The composition of claim 24, wherein the composition further comprises a pharmaceutically acceptable excipient.
  • 26. A composition comprising all of the 80 percent or more conserved nucleotides of the SAM-I riboswitch core depicted in FIG. 1 left and 80% or greater of the nucleotides depicted outside of the conserved region depicted in FIG. 2A or 2B.
  • 27. The composition of claim 26, further comprising the entire atomic structure depicted in FIG. 2A or 2B.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit under 35 U.S.C. §119(e) of provisional U.S. Application No. 60/774,489, filed Feb. 17, 2006 and is hereby incorporated herein by reference in its entirety for all purposes.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Grant No. R-01 GM073850-01 awarded by the National Institutes of Health.

Provisional Applications (1)
Number Date Country
60774489 Feb 2006 US