1. Field of the Invention
This invention relates generally to sampling systems for downhole use, such as for sampling well fluids in the oil and gas industry, and in particular to carriers for pressure compensated single phase samplers for use in drill stem testing application.
2. Background Art
Fluids may issue from geologic formations into a well at high pressures and temperatures. To raise these fluids to the well surface for sampling without the fluids undergoing phase change, pressure compensated single phase samplers are used. Such samplers typically include a piston-cylinder sampling chamber and a gas reservoir that supplies high pressure gas to maintain the pressure in the sampling chamber at the sample collection pressure. A rupture disk is used to trigger the operation of the sampler. One example of a single phase sampler is described in the United Kingdom Patent GB 2 252 296, filed on Dec. 5, 1991 by inventors Massie et al. and entitled “Fluid sampling systems,” which is incorporated herein by reference. Other samplers are disclosed in U.S. Pat. Nos. 5,609,205 and 5,337,822 issued to Massie et al. and entitled “Well Fluid Sampling Tool,” and U.S. Pat. No. 5,901,788 issued to Brown et al. and entitled “Well Fluid Sampling Tool and Well fluid Sampling Method,” which are all incorporated herein by reference. Such samplers preferably have a small diameter so that they may be used in wireline operations.
Tubular carriers that are arranged for running multiple single phase samplers into a well are known in the art. Such carriers are used, for example, in conjunction with a drill stem test. Typically, a number of slim single phase samplers are circumpositioned about the circumference of the carrier, leaving a clear through-bore for wireline operations. Two or more samplers may be actuated by annulus pressure using a common rupture disk, if desired. By outfitting one or more of the individual single phase carriers with annulus rupture disk actuators having differing burst pressures, multiple well samples may be taken at different flow periods. Examples of such drill stem test carriers for single phase samplers include Schlumberger's Oilphase DBR SCAR Sample Carrier, Expro's Petrotech SmartCarrier, and Halliburton's Simba and Armada carriers.
It is desirable to use existing single phase samplers in a carrier having an arrangement wherein the maximum outer diameter does not exceed five inches so that the drill stem test carrier may be run into seven inch heavy-walled (38 lb/ft, 0.540 inch wall thickness, 5.920 inch inner diameter) well casing. Although the Schlumberger's Oilphase DBR SCAR Sample Carrier is available in both 5.25 inch and 5.5 inch outer diameter models, each carrying up to eight samplers for a combined sample size of 2400 cc, the samplers are partially enclosed by a cylindrical housing, which subjects the samplers to potential mud entrapment around the sampler inlet ports. Mud entrapment can result in the first portion of the sampled volume being compromised with mud/completion fluids. Expro's Petrotech SmartCarrier is available in a 5.0 inch model that includes four samplers for a combined sample size of 2160 cc. The SmartCarrier sacrifices sample volume to achieve its small diameter. Moreover, the SmartCarrier has a full bore inner diameter of 2.0 inches rather than the 2.25 inch, which is less than desirable for wireline operations. Halliburton's Simba carrier is designed for use within seven inch casing and has a 2.25 inch through bore, but it is limited to two samplers for a combined sample volume of 1200 cc. Finally, Halliburton's Armada sampling system includes a carrier having a 5.375 inch outer diameter, 2.25 inch through bore, and can run up to nine one-inch samplers for a combined sample volume of 3600 cc. The Armada achieves this capability by using a common nitrogen section for servicing all of the samplers. For this reason, the Armada is characterized by considerable potential leak paths and is complicated to manufacture, assemble and test.
3. Identification of Objects of the Invention
A primary object of the invention is to provide a carrier for single phase samplers having a maximum outer diameter of 5.0 inches, a through bore of 2.25 inches, an overall length of approximately 39 feet, and a total sample volume of 2400 cc.
Another object of the invention is to provide a carrier for single phase samplers that may carry up to four single phase samplers.
Another object of the invention is to provide a carrier for single phase samplers that allows for simplified manufacturing assembly and testing.
Another object of the invention is to provide a carrier for single phase samplers that removes the need to machine the casing body of the carrier.
Another object of the invention is to provide a carrier for single phase samplers that reduces potential leak paths by minimizing the need for and number of internal seals within the carrier body.
Another object of the invention is to provide a carrier for single phase samplers that incorporates rupture disks in top and bottom subs.
The objects described above and other advantages and features of the invention are incorporated in a single phase sampler carrier arrangement including, according to a first embodiment, a housing having a tubular shape, a crossover sub connected to the carrier housing, and a pair of single phase samplers disposed adjacent to one another and set off from the tool centerline axis thereby providing an offset interspatial through-bore region to support wireline operations.
The pair of single phase samplers are removably disposed between upper and lower positioning inserts having recessed seats formed therein. A first of the positioning inserts includes a conduit fluidly connecting the recessed seats to the exterior of the tool so as to port annulus pressure to the pressure-activated triggering mechanisms of the samplers. Preferably, a rupture disk housing is removably connected to the triggering conduit from an exterior recess in the crossover sub. The other of the positioning inserts includes a clamping mechanism to removably secure the samplers within the carrier. Both the upper and lower positioning inserts include offset through-bores that align with the interspatial through-bore region for supporting wireline operations.
Multiple assemblies of crossover subs and carrier housing can be connected in tandem.
The invention is described in detail hereinafter on the basis of the embodiments represented in the accompanying figures, in which:
Carrier housings 3, 16 are preferably characterized by 5 inch 18 lb/ft Vam FJL boxes at the upper ends and 5 inch 18 lb/ft Vam FJL pins at the lower ends, although other suitable threads, such as Tenaris Hydril, may be used. Carrier housings 3, 16 are preferably formed of P110 grade material and have an internal diameter of 4.276 inches, which results in a 13,940 psi minimum burst pressure rating, a 13,470 psi minimum collapse pressure rating, and 580,000 pounds minimum yield strength. However, other suitable materials may be used as appropriate. Carrier housings 3, 16 each ideally have a length of 17.5 feet. Although each carrier housing 3, 16 can carry two single phase samplers 11, the arrangement according to one or more embodiments of the invention allows sample carrier 100 to maintain a 2.25 inch diameter through bore 2 to support wireline operations.
A top crossover sub 20 is connected to the top of top carrier housing Likewise a bottom crossover sub 22 is connected to the bottom of bottom carrier housing 16. Top and bottom crossover subs 20, 22 carry the rupture disk housings 5 used to actuate the samplers 11 in the top and bottom carrier housings 3, 16, respectively, as described below. Additionally, top and bottom crossover subs 20, 22 act as fairleads 93 for wireline operations and accordingly may have a larger wall thickness than the adjacent carrier housings.
Like carrier housings 3, 16, crossover subs 20, 22 have no external offsets and are also P110 grade with 5 inch 18 lb/ft Vam FJL boxes at the upper ends and 5 inch 18 lb/ft Vam FJL pins at the lower ends. Crossover subs 20, 22 each have a length of 2.0 feet. Crossover subs 20, 22 each include a 2.25 inch diameter through bore 2 to support wireline operations.
Top and bottom crossover subs 20, 22 each include a groove or other recesses 4 milled or otherwise formed in the exterior wall. The medial end of groove 4 includes a threaded bore 48 for receiving the rupture disk housing 5. The rupture disk housing is received into groove 4 and inserted into bore 48 so that its medial end is received into conduit 10 as described above. A seal 6, such as an o-ring seal, seals between rupture disk housing 5 and its respective crossover sub 20, 22. Threads 19 near the distal end of rupture disk housing 5 secure the rupture disk housing with the threaded bore 48 of the crossover sub 20, 22.
Rupture disk housing 5 includes a replaceable rupture disk. Rupture disks are selected so that the burst pressure corresponds to the annulus pressure at which sampling is desired. In the preferred embodiment, one rupture disk actuates both samplers in each carrier housing, which causes both samplers 11 to sample at sample ports 12 as described in Massie et al. GB 2 252 296. However, individual triggering may be accommodated if desired.
Although the sampler is described using distal positioning inserts 30, other means to longitudinally support the single phase samplers 11 and to communicate actuation pressure from rupture disk housings 5 to the samplers 11 may be used as appropriate. However, the disclosed arrangement has an advantage of minimizing potential leak paths by limiting the seals required within the carrier body to those at the rupture disk housing 5.
Referring back to
Each sampler 11 is characterized by a longitudinal axis 81. Within each carrier housing 3, 16, the two samplers are positioned adjacent to one another, with their longitudinal axes 81 intersecting an imaginary chord 83. More preferably, the pair of sampler longitudinal axes 81 also intersect the circumference of an imaginary circle 84 centered on the tool centerline axis 80 so that samplers 11 are symmetrically positioned along chord 83.
Within the distal positioning inserts 30, the medial positioning inserts 13, 15, and the medial portions of the crossover subs 20, 22, through bore 2 is positioned essentially tangent with samplers 11 and the interior of crossover sub 20, 22. The centerline 86 of through bore 2 preferably lies along an imaginary line 87 that passes through the tool centerline 80 and bisects chord 83.
Referring back primarily to
Although sampler carrier 100 is described as having symmetrical top and bottom halves, if preferred, a carrier having only one carrier housing and crossover sub with a maximum of two single phase samplers may be used according to an alternate embodiment of the invention. Alternatively, a single carrier may be used with top and bottom crossovers. According to another embodiment, more than two carrier housings may be used.
The Abstract of the disclosure is written solely for providing the United States Patent and Trademark Office and the public at large with a way by which to determine quickly from a cursory reading the nature and gist of the technical disclosure, and it represents solely a preferred embodiment and is not indicative of the nature of the invention as a whole.
While some embodiments of the invention have been illustrated in detail, the invention is not limited to the embodiments shown; modifications and adaptations of the above embodiment may occur to those skilled in the art. Such modifications and adaptations are in the spirit and scope of the invention as set forth herein:
This application is based upon provisional application 61/359,276 filed on Jun. 28, 2010, which is incorporated herein by reference and the priority of which is claimed.
Number | Date | Country | |
---|---|---|---|
61359276 | Jun 2010 | US |