Sample container carrier, laboratory sample distribution system and laboratory automation system

Information

  • Patent Grant
  • 10564170
  • Patent Number
    10,564,170
  • Date Filed
    Wednesday, January 3, 2018
    7 years ago
  • Date Issued
    Tuesday, February 18, 2020
    5 years ago
Abstract
A sample container carrier for a laboratory sample distribution system is presented. The sample container carrier comprises a magnetic element that is arranged such that a magnetic move force applied to the sample container carrier depends on an angularity. A laboratory sample distribution system comprising such a sample container carrier and a laboratory automation system comprising such a sample distribution system are also presented.
Description
BACKGROUND

The present disclosure relates to a sample container carrier for a laboratory sample distribution system, to a laboratory sample distribution system comprising such a sample container carrier, and to a laboratory automation system comprising such a laboratory sample distribution system.


Laboratory sample distribution systems comprising sample container carriers are typically used for laboratory automation systems. Such laboratory automation systems may comprise laboratory stations like pre-analytical, analytical and/or post-analytical stations.


An example for such a laboratory sample distribution system comprises a transport plane and a plurality of electro-magnetic actuators positioned below the transport plane. It further comprises a number of sample container carriers being adapted to carry sample containers. Such sample containers can, for example, be tubes made of transparent material.


However, there is a need for a sample container carrier having improved movement characteristics.


SUMMARY

According to the present disclosure, a sample container carrier for a laboratory sample distribution system is presented. The sample container carrier can be adapted to carry one or more sample containers. The sample container carrier can be adapted to be moved over a horizontal transport plane of the laboratory sample distribution system. The sample container carrier can comprise a magnetic element. The magnetic element can be adapted to interact with a magnetic field generated by the laboratory sample distribution system such that a magnetic move force is applied to the sample container carrier. The magnetic element can be arranged such that the magnetic move force can depend on an angularity of the sample container carrier placed on the transport plane.


In accordance with one embodiment of the present disclosure, a laboratory sample distribution system is presented. The laboratory sample distribution system can comprise a number of above sample container carriers, a transport plane adapted to support the sample container carriers, a number of electro-magnetic actuators stationary arranged below the transport plane, the electro-magnetic actuators adapted to generate a magnetic field to move the sample container carriers on top of the transport plane, and a control device configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths.


Accordingly, it is a feature of the embodiments of the present disclosure to provide for a sample container carrier having improved movement characteristics. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:



FIG. 1 illustrates a part of a sample container according to an embodiment of the present disclosure.



FIG. 2 illustrates the part of FIG. 1 in a different perspective according to an embodiment of the present disclosure.



FIG. 3 illustrates a sample container comprising the part of FIGS. 1 and 2 according to an embodiment of the present disclosure.



FIG. 4 illustrates a laboratory sample distribution system according to an embodiment of the present disclosure.



FIG. 5 illustrates a sliding member of a sample container at a step according to an embodiment of the present disclosure.



FIG. 6 illustrates a sample container according to another embodiment of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.


A sample container carrier for a laboratory sample distribution system is presented. The sample container carrier can be adapted to carry one or more sample containers, e.g. in form of conventional sample tubes.


The sample container carrier can be adapted to be moved over a horizontal transport plane of the laboratory sample distribution system. The sample container carrier can comprise a magnetic element. The magnetic element can be adapted to interact with a magnetic field generated by the laboratory sample distribution system such that a magnetic move force can be applied to the sample container carrier.


The magnetic element can be arranged such that the magnetic move force, for example amount and/or angle of the magnetic move force, can depend from an angularity of the sample container carrier being placed on, or moved over, the transport plane.


By use of a sample container carrier, it can be possible to introduce preferred directions in a sample container carrier. Compared to the prior art, which uses sample container carriers without preferred directions, effects like involuntary rotation of sample container carriers can be prevented. This can, for example, save energy and stabilize movement.


The term that the magnetic move force depends from an angularity may imply that the magnetic move force, for example the amount of the magnetic move force, can depend from an orientation of the sample container carrier relative to an external magnetic field. For example, if the sample container carrier is rotated by a certain amount around a vertical axis, the magnetic move force may have another amount or may point in another direction, although the sample container carrier is observed at the same position.


According to an embodiment, the magnetic element comprises a magnetically active device, especially in form of a permanent magnet. The magnetically active device can have a horizontal cross-section of a regular polygon. Preferably, it has a square cross-section.


By use of such a magnetic element, preferred directions can be introduced in a magnetic field generated by the magnetically active device. This can ascertain the dependence of the angularity of the magnetic move force, because the magnetic move force, in such a case, can typically depend on an angle between a respective preferred direction and an external magnetic field. For example, a preferred direction in which a magnetic field generated by the magnetically active device has a specifically high amount can be perpendicular to a side of the polygon.


According to an embodiment, the magnetic element can comprise a ferromagnetic, or ferromagnetic, guiding device. For example, the guiding device may be made of or comprise ferromagnetic or ferrimagnetic material.


The guiding device may be formed as a cover covering the magnetically active device at least partially, or completely. This can be used in order to easily implement preferred directions of a magnetic field generated by the magnetically active device using such a cover.


It can be understood that a guiding device in the sense as used here can be a guiding device for magnetic field lines. For example, such a guiding device can introduce preferred directions or can otherwise cause a deviation of the magnetic field generated by the magnetically active device from a state that would be present without such a guiding device.


According to an embodiment, the guiding device can have a horizontal cross-section comprising a number of sectors such as, for example, arms, wherein the sectors can be distant from each other and can be each originating at a common central part of the guiding device. These sectors can, for example, be used in order to guide the magnetic field generated by the magnetically active device. For example, each sector can correspond to a preferred direction. The sectors may be arranged to form a cross. This can, for example, be used in order to introduce four preferred directions having respective angles of about 90° between them.


The guiding device may be made of or comprise a material having a relative permeability μr larger than 1. In one embodiment, the relative permeability μr can be larger than 10. In another embodiment, the relative permeability μr can be larger than 100. In yet another embodiment, the relative permeability μr can be larger than 1,000. In still another embodiment, the relative permeability μr can be larger than 10,000.


The guiding device may be made of or comprise a magnetically soft material such as, for example construction steel. This material has been proven to show suitable properties for the intended use and is cheap and easily available.


According to an embodiment, the guiding device can comprise a plate positioned above the magnetically active device, wherein the plate can extend laterally beyond the magnetically active device.


According to an embodiment, laterally surrounding portions of the guiding device can be distant from the magnetically active device.


According to an embodiment, laterally surrounding portions of the guiding device and/or portions of the guiding device positioned above the magnetically active device can have a thickness adapted to prevent magnetic saturation at typical magnetic fields induced by the magnetically active device. Such typical magnetic fields can, for example, have a value of about 0.7 T. Saturation can lead to a decreased capability of the guiding device to bend or guide the magnetic field lines as intended.


Portions of the guiding device positioned above the magnetically active device may at least partially abut the magnetically active device. The guiding device may have the form of a cap imposed on the magnetically active device. The guiding device and the magnetically active device together may have the form of a mushroom. The magnetically active device can form the post. Such implementations have been proven useful for typical applications.


According to an embodiment, the sample container carrier can comprise a sliding member. The sliding member can be adapted to be in contact with the transport plane if the sample container carrier is placed on the transport plane. Such a sliding member can, for example, be used in order to adapt friction between the transport plane and the sample container carrier.


The sliding member may have a horizontal cross-section comprising a number of arms extending from a central part. The sliding member may have a concave horizontal cross-section between the arms. Such a configuration can especially increase stability of the sample container carrier when driving along an edge or a step in the transport plane.


The guiding device and the sliding member may define a cavity. The magnetically active device can be arranged inside the cavity. The guiding device may have an opening in the direction of the sliding member and the guiding device can at least partially laterally surround the magnetically active device. According to an implementation, it can surround the magnetically active device completely.


According to an embodiment, the sliding member can comprise a number of lower edges or borders, the lower edges surrounding a portion of the sliding member can be adapted to be in contact with the transport plane. The lower edges can be at least partially beveled. The beveling of the lower edges can increase from center to horizontal outer parts of the sliding member. Such an embodiment has especially been proven suitable for cases where the sample container carrier pass across a step in the transport plane.


According to an embodiment, the sliding member can have a centrally located recess not in contact with the transport plane. The recess can be surrounded by a portion of the sliding member adapted to be in contact with the transport plane. Such an embodiment has been proven useful to reduce friction between the sample container carrier and the transport plane and to stabilize the sample container carrier during movement.


A laboratory sample distribution system is also presented. The laboratory sample distribution system can comprise a number of sample container carriers. With regard to the sample container carriers, all discussed implementations, variations and embodiments can be used. The laboratory sample distribution system can further comprise a transport plane adapted to support the sample container carriers.


The laboratory sample distribution system can further comprise a number of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators can be adapted to generate a magnetic field to move the sample container carriers on top of the transport plane.


The laboratory sample distribution system can further comprise a control device configured to control the movement of the sample container carrier on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths.


For example, the laboratory sample distribution system can comprise a number of 1 to 500 sample container carriers. It can also comprise a number of 4 to 1024 electro-magnetic actuators. The transport plane can also be denoted as a transport surface. Supporting the sample container carriers can also be denoted as carrying the sample container carriers. The electro-magnetic actuators of the laboratory sample distribution system may be used in order to generate magnetic fields that drive the sample container carriers over the transport plane. The sample container carriers can be moved in two dimensions, allowing for great flexibility when transporting sample container carriers, for example between laboratory stations. The distance between electro-magnetic actuators in a typical implementation can be about 20 mm or about 20 mm.


According to an embodiment, the electro-magnetic actuators, especially respective magnetic coils, and/or magnetic cores, can have a horizontal cross-section of a regular polygon. In one embodiment, they can have a square cross-section. Such a configuration can be used in order to introduce preferred directions in the magnetic field generated by the electro-magnetic actuators. This can especially be used in order to further direct movement of the sample container carriers on the transport plane along certain orientations or directions.


The transport plane can be made of electroconductive material and can be grounded. The ferromagnetic, or ferromagnetic, guiding device may also be formed of electroconductive material, e.g. iron steel, etc. The guiding device may have a cap-shape or bell-shape. A lower end of the guiding device, defining an opening of the cap or bell, can be adapted to be in direct contact with the transport plane if the sample container carrier is placed on the transport plane. The guiding device and the transport plane can define a cavity if the sample container carrier is placed on the transport plane. The magnetic element can be arranged inside the cavity. The magnetic element can be fixed to the guiding device at an upper end of the guiding device. The guiding device can comprise a holder for a sample container, e.g. placed at an upper end of the guiding device. The holder may e.g. be embodied as a blind hole, e.g. having a circular cross section, adapted to receive the sample container. This embodiment can prevent an electrostatic charging of the transport plane and of the sample container carriers when the sample container carriers move over the transport plane.


A laboratory automation system comprising a number of pre-analytical, analytical and/or post-analytical (laboratory) stations and a laboratory sample distribution system as described above adapted to transport the sample container carriers and/or sample containers between the laboratory stations is also presented. The laboratory stations may be arranged adjacent to the laboratory sample distribution system.


Pre-analytical stations may be adapted to perform any kind of pre-processing of samples, sample containers and/or sample container carriers.


Analytical stations may be adapted to use a sample or part of the sample and a reagent to generate a measuring signal, the measuring signal indicating if and in which concentration, if any, an analyte exists.


Post-analytical stations may be adapted to perform any kind of post-processing of samples, sample containers and/or sample container carriers.


The pre-analytical, analytical and/or post-analytical stations may comprise at least one of a decapping station, a recapping station, an aliquot station, a centrifugation station, an archiving station, a pipetting station, a sorting station, a tube type identification station, and a sample quality determining station.


Referring initially to FIG. 1, FIG. 1 shows a part of a sample container carrier 10. In detail, FIG. 1 shows a bottom part of a sample container carrier 10, i.e. elements of the sample container carrier 10 arranged just below and above a bottom plate 15.


On the bottom plate 15, a magnetic element 20 can be arranged. The magnetic element 20 can comprise a magnetically active device in the form of a permanent magnet 30. The permanent magnet 30 can have a square horizontal cross-section.


The magnetic element 20 can further comprise a guiding device 40 that can be imposed over the permanent magnet 30. The guiding device 40 can comprise a first arm 42, a second arm 44, a third arm 46 and a fourth arm 48. The guiding device 40 can be made of a magnetically highly permeable material.


By the guiding device 40 having arms 42, 44, 46, 48 and a specific shape of the permanent magnet 30, the resulting magnetic field can be specifically tailored, such that four preferred directions can result, namely a first preferred direction 32 oriented along the first arm 42, a second preferred direction 34 oriented along the second arm 44, a third preferred direction 36 oriented along the third arm 46, and a fourth preferred direction 38 oriented along the fourth arm 48. These preferred directions can provide for the effect that a magnetic move force that can be applied to the sample container carrier 10 when an external magnetic field is present can depend from an angularity, i.e. an angular orientation of the sample container carrier 10.


As depicted in FIG. 1, the arms 42, 44, 46, 48 of the guiding device can be arranged to form a total of four sectors that can be arranged to form a cross. In other words, respective angles between the arms 42, 44, 46, 48 or between sectors defined by these arms 42, 44, 46, 48 can have a value of about 90° respectively. It can be noted that an angle between arms or sectors can be typically defined as an angle between respective distinguished directions of the arms or sectors, e.g. directions defining a center and/or symmetry axis.


The arms 42, 44, 46, 48 can respectively originate at a common central part 41 of the guiding device 40. This central part 41 can overlap the permanent magnet 30. By such a configuration, the guiding device 40 can have the form of a cap imposed on the permanent magnet 30.


On the other side of the bottom plate 15, a sliding member 50 can be arranged. This sliding member 50 is only visible in FIG. 1 with a very small part and will be further explained with reference to FIG. 2.



FIG. 2 shows the part of the sample container carrier 10 of FIG. 1 from another perspective. In detail, a bottom side of the sample container carrier 10 is shown.


The sliding member 50 can comprise four arms 52, 54, 56, 58, which can be arranged with horizontal angles of about 90° in between such that they can form a cross. The arms 52, 54, 56, 58 can each have a cross-section that can be tapering from an inner part 51 to respective outer parts, wherein the outer parts can be round. This configuration can enhance the stability of the sample container carrier 10 especially in those cases when two of three arms 52, 54, 56, 58 are positioned on an upper side of a step formed in a transport plane on which the sample container carrier 10 is moving. In detail, it can be easily recognized that in such a case, two of the arms can be on an upper part and two of the arms can be on a lower part so that the sample container carrier 10 can move without any risk of tilting.


In order to ease climbing of the sample container carrier 10 on a step formed in the transport plane, respective lower edges 70 of the arms 52, 54, 56, 58 can be beveled, wherein the beveling can increase from the central part 51 to respective outer parts of the arms 52, 54, 56, 58. By such beveling, a step in the transport plane on which the sample container carrier 10 is moving can lead to a smooth lifting of the sample container carrier 10 so that it may not bounce against the step.


Centrally in the sliding member 50, a recess 60 can be located. The recess 60 can be surrounded by parts of the sliding member 50 that are in contact with a transport plane when the sample container carrier 10 is moving on the transport plane, but can reduce the total contact area between the sliding member 50 and the transport plane. Thus, friction can be reduced, which can have a positive effect on energy consumption.



FIG. 3 shows a complete sample container carrier 10 in a perspective view. The sample container carrier 10 can comprise the base plate 15 at its lower end with the sliding member 50 positioned below the base plate 15. This can allow the sample container carrier 10 to move on a transport plane of a sample distribution system.


The sample container carrier 10 can comprise a main body 17 that can be positioned above the base plate 15. In the main body 17, a sample container holder 18 can be arranged. The sample container holder 18 can be embodied as a hole in which a sample container can be placed and can be held.



FIG. 4 shows a laboratory automation system 5 having a sample distribution system 100. The laboratory automation system 5 can comprise a first laboratory station 6 and a second laboratory station 7. These are shown for illustrative purposes only. It can be noted that typical laboratory automation systems 5 can comprise a plurality of laboratory stations that can be arranged besides the sample distribution system 100 such that the sample distribution system 100 can be used in order to transport samples or sample containers between the laboratory stations 6, 7.


The laboratory sample distribution system 100 can comprise a transport plane 110 on which sample container carriers 10 can move. For illustrative purposes only, a single sample container carrier 10 according to FIG. 3 is shown on the transport plane 110. The sample container carrier 10 can contain a sample container 12 that can be embodied as a conventional laboratory tube. It can be noted that on typical sample distributions systems 100, a plurality of sample container carriers carrying respective sample containers can be arranged.


The sample distribution system 100 can further comprise a number of electro-magnetic actuators 120 embodied as coils with respective magnetic cores 125. Both the electro-magnetic actuators 120 and the cores 125 can have a square cross shape in a horizontal plane. Thus, they can produce a magnetic field with respective preferred directions substantially perpendicular to edges of the square cross-section. This measure can help in guiding the sample container carrier 10 along a specific path.


On the transport plane 110, there can be arranged a plurality of position sensors 130 that can be adapted to sense a position of a sample container carrier 10 by sensing the magnetic field generated by the permanent magnet 30 of the respective sample container carrier 10. The sample distribution system 100 can further comprise an electronic control unit 150. The electronic control unit 150 can be adapted to control the electro-magnetic actuators 120 and to receive signals from the position sensors 130. Thus, the control unit 150 can actively move a sample container carrier 10 using the electro-magnetic actuators 120. It can also sense the position of the sample container carrier 10 using the position sensors 130. Using this functionality, the electronic control unit 150 can move a respective sample container carrier 10 along a predetermined transport path.


It can be noted that the electronic control unit 150 can generally comprise a processor and a memory, wherein the memory can comprise program code that can cause the processor, when executed, to perform in a certain way, for example to sense a position of a sample container carrier 10 and/or to move the sample container carrier 10 along a transport path.


By the laboratory sample distribution system 5, the task of transporting samples or sample containers between laboratory stations 6, 7 can be performed, wherein rotation of the sample container carrier 10 can be prevented due to the preferred directions of both the sample container carrier 10 and the electro-magnetic actuators 120 with their respective cores 125. This can save energy and lead to straighter transport paths that can improve system throughput.



FIG. 5 shows the transport plane 110 in a case where the transport plane 110 can comprises a step 110c. On the left side of the step 110c, there can be a lower portion 110a of the transport plane 110. On the right side of the step 110c, there can be an upper part 110b of the transport plane 110. For illustrative purposes only, the transport plane 110 is shown in FIG. 5 without the electro-magnetic actuators 120, the magnetic cores 125 and the position sensors 130.


It can be noted that the step 110c as shown in FIG. 5 can, for example, arise at a line at which two modules of the sample distribution system 110 abut each other.


To illustrate the advantageous configuration of the sliding member 50, the sliding member 50 of FIG. 2 is shown separately and schematically without the remaining parts of the sample container carrier 10. As depicted, the first arm 52 and the second arm 54 can extend on the upper part 110b of the transport plane 110, whereas the third arm 56 and the fourth arm 58 can remain on the lower part 110a of the transport plane 110. However, the sliding member 50 can remain in contact with the transport plane 110 at four positions, thus preventing tilting or any other instability that could arise when round sliding members 50 are used.



FIG. 6 shows a sample container carrier 10′ according to a further embodiment in a sectional view. The sample container carrier 10′ can comprise the magnetically active device in the form of a permanent magnet 30 and a bell-shaped guiding device 40′ formed of electroconductive material, e.g. iron steel. A lower portion 49 of the guiding device 40′, defining an opening of the guiding device 40′, can be adapted to be in direct contact with the transport plane 110 if the sample container carrier 10′ is placed on the transport plane 110. The guiding device 40′ and the transport plane 110 can define a cavity if the sample container carrier 10′ is placed on the transport plane 110. The magnetically active device 30 can be arranged inside the cavity. The magnetically active device 30 can be fixed to the guiding device 40′ at an upper end of the guiding device 40′. The guiding device 40′ can comprise a holder 18′ for a sample container. The holder 18′ can be embodied as a blind hole in the guiding device 40′ having a circular cross section, adapted to receive a sample container. The transport plane 110 according to this embodiment can be made of electroconductive material and can be grounded. This embodiment can prevent an electrostatic charging of the transport plane 110 and of the bottom 49 of the sample container carriers 10′, if the sample container carriers 10′ move over the transport plane 110.


It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.


For the purposes of describing and defining the present disclosure, it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.

Claims
  • 1. A laboratory sample distribution system, the laboratory sample distribution system comprising: a number of sample container carriers, wherein the sample container carrier is configured to carry one or more sample containers, wherein the sample container carrier is configured to be moved over a horizontal transport plane of the laboratory sample distribution system, and wherein the sample container carrier comprises a magnetic element, wherein the magnetic element is configured to interact with a magnetic field generated by the laboratory sample distribution system such that a magnetic move force is applied to the sample container carrier and wherein the magnetic element is arranged such that the magnetic move force depends on an angularity of the sample container carrier placed on the transport plane;a transport plane configured to support the sample container carriers;a number of electro-magnetic actuators stationary arranged below the transport plane, the electro-magnetic actuators configured to generate a magnetic field to move the sample container carriers on top of the transport plane; anda control device configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths.
  • 2. The sample container carrier according to claim 1, wherein the magnetic element comprises a magnetically active device and wherein the magnetically active device has a horizontal cross section of a regular polygon.
  • 3. The sample container carrier according to claim 2, wherein the magnetically active device is a permanent magnet.
  • 4. The sample container carrier according to claim 2, wherein the regular polygon is a square.
  • 5. The sample container carrier according to claim 2, wherein the magnetic element comprises a ferromagnetic or ferrimagnetic guiding device.
  • 6. The sample container carrier according to claim 5, wherein the guiding device is formed as a cover covering the magnetically active device at least partially.
  • 7. The sample container carrier according to claim 6, wherein the guiding device has a horizontal cross section comprising a number of sectors and wherein the sectors are distant from each other and are each originating at a common central part of the guiding device.
  • 8. The sample container carrier according to claim 7, wherein the number of sectors are embodied as arms.
  • 9. The sample container carrier according to claim 7, wherein the sectors are arranged to form a cross.
  • 10. The sample container carrier according to claim 1, further comprises a sliding member, wherein the sliding member is configured to be in contact with the transport plane if the sample container carrier is placed on the transport plane.
  • 11. The sample container carrier according to claim 10, wherein the sliding member has a horizontal cross section comprising a number of arms extending from a central part and wherein the sliding member has a concave horizontal cross section between the arms.
  • 12. The sample container carrier according to claim 10, wherein the sliding member comprises a number of lower edges, the lower edges surrounding a portion of the sliding member configured to be in contact with the transport plane and wherein the lower edges are at least partially bevelled.
  • 13. The sample container carrier according to one of claims 10, wherein the sliding member has a centrally located recess in which the sliding member is not in contact with the transport plane, the recess being surrounded by a portion of the sliding member configured to be in contact with the transport plane.
  • 14. The laboratory sample distribution system according to claim 1, wherein the electro-magnetic actuators have a horizontal cross section of a regular polygon.
  • 15. The laboratory sample distribution system according to claim 14, wherein the electro-magnetic actuators are respective magnetic coils.
  • 16. A laboratory automation system, the laboratory automation system comprising: a number of laboratory stations; anda laboratory sample distribution system according to claim 1 adapted to distribute sample container carriers and/or sample containers between the laboratory stations.
  • 17. The laboratory automation system according to claim 16, wherein the number of laboratory stations are in the form of pre-analytical stations, analytical stations and/or post-analytical stations.
Priority Claims (1)
Number Date Country Kind
15177890 Jul 2015 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT/EP2016/067135, filed Jul. 19, 2016, which is based on and claims priority to EP 15177890.9, filed Jul. 22, 2015, which is hereby incorporated by reference.

US Referenced Citations (177)
Number Name Date Kind
3273727 Rogers et al. Sep 1966 A
3653485 Donlon Apr 1972 A
3901656 Durkos et al. Aug 1975 A
4150666 Brush Apr 1979 A
4395164 Beltrop et al. Jul 1983 A
4544068 Cohen Oct 1985 A
4771237 Daley Sep 1988 A
5120506 Saito et al. Jun 1992 A
5295570 Grecksch et al. Mar 1994 A
5309049 Kawada et al. May 1994 A
5350564 Mazza Sep 1994 A
5457368 Jacobsen et al. Oct 1995 A
5523131 Isaacs et al. Jun 1996 A
5530345 Murari et al. Jun 1996 A
5636548 Dunn et al. Jun 1997 A
5641054 Mori et al. Jun 1997 A
5651941 Stark et al. Jul 1997 A
5720377 Lapeus Feb 1998 A
5735387 Polaniec et al. Apr 1998 A
5788929 Nesti Aug 1998 A
6045319 Uchida et al. Apr 2000 A
6062398 Thalmayr May 2000 A
6141602 Igarashi et al. Oct 2000 A
6151535 Ehlers Nov 2000 A
6184596 Ohzeki Feb 2001 B1
6191507 Peltier et al. Feb 2001 B1
6206176 Blonigan et al. Mar 2001 B1
6255614 Yamakawa et al. Jul 2001 B1
6260360 Wheeler Jul 2001 B1
6279728 Jung et al. Aug 2001 B1
6293750 Cohen et al. Sep 2001 B1
6429016 McNeil Aug 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6571934 Thompson Jun 2003 B1
7028831 Veiner Apr 2006 B2
7078082 Adams Jul 2006 B2
7122158 Itoh Oct 2006 B2
7278532 Martin Oct 2007 B2
7326565 Yokoi et al. Feb 2008 B2
7425305 Itoh Sep 2008 B2
7428957 Schaefer Sep 2008 B2
7578383 Itoh Aug 2009 B2
7597187 Bausenwein et al. Oct 2009 B2
7850914 Veiner et al. Dec 2010 B2
7858033 Itoh Dec 2010 B2
7875254 Garton et al. Jan 2011 B2
7939484 Loeffler et al. May 2011 B1
8240460 Bleau et al. Aug 2012 B1
8281888 Bergmann Oct 2012 B2
8502422 Lykkegaard Aug 2013 B2
8796186 Shirazi Aug 2014 B2
8833544 Stoeckle et al. Sep 2014 B2
8973736 Johns et al. Mar 2015 B2
9097691 Onizawa et al. Aug 2015 B2
9187268 Denninger et al. Nov 2015 B2
9211543 Ohga et al. Dec 2015 B2
9239335 Heise et al. Jan 2016 B2
9423410 Buehr Aug 2016 B2
9423411 Riether Aug 2016 B2
9567167 Sinz Feb 2017 B2
9575086 Heise et al. Feb 2017 B2
9593970 Sinz Mar 2017 B2
9598243 Denninger et al. Mar 2017 B2
9618525 Malinowski et al. Apr 2017 B2
9658241 Riether et al. May 2017 B2
9664703 Heise et al. May 2017 B2
9772342 Riether Sep 2017 B2
9791468 Riether et al. Oct 2017 B2
9810706 Riether et al. Nov 2017 B2
10126317 Heise et al. Nov 2018 B2
10197586 Sinz et al. Feb 2019 B2
20020009391 Marquiss et al. Jan 2002 A1
20030092185 Qureshi et al. May 2003 A1
20040050836 Nesbitt et al. Mar 2004 A1
20040084531 Itoh May 2004 A1
20050061622 Martin Mar 2005 A1
20050109580 Thompson May 2005 A1
20050194333 Veiner et al. Sep 2005 A1
20050196320 Veiner et al. Sep 2005 A1
20050226770 Allen et al. Oct 2005 A1
20050242963 Oldham et al. Nov 2005 A1
20050247790 Itoh Nov 2005 A1
20050260101 Nauck et al. Nov 2005 A1
20050271555 Itoh Dec 2005 A1
20060000296 Salter Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060219524 Kelly et al. Oct 2006 A1
20070116611 DeMarco May 2007 A1
20070210090 Sixt et al. Sep 2007 A1
20070248496 Bondioli et al. Oct 2007 A1
20070276558 Kim Nov 2007 A1
20080012511 Ono Jan 2008 A1
20080029368 Komori Feb 2008 A1
20080056328 Rund et al. Mar 2008 A1
20080131961 Crees et al. Jun 2008 A1
20090004732 LaBarre et al. Jan 2009 A1
20090022625 Lee et al. Jan 2009 A1
20090081771 Breidford et al. Mar 2009 A1
20090128139 Drenth et al. May 2009 A1
20090142844 Le Comte Jun 2009 A1
20090180931 Silbert et al. Jul 2009 A1
20090322486 Gerstel Dec 2009 A1
20100000250 Sixt Jan 2010 A1
20100152895 Dai Jun 2010 A1
20100175943 Bergmann Jul 2010 A1
20100186618 King et al. Jul 2010 A1
20100255529 Cocola et al. Oct 2010 A1
20100300831 Pedrazzini Dec 2010 A1
20100312379 Pedrazzini Dec 2010 A1
20110050213 Furukawa Mar 2011 A1
20110124038 Bishop et al. May 2011 A1
20110172128 Davies et al. Jul 2011 A1
20110186406 Kraus et al. Aug 2011 A1
20110287447 Norderhaug et al. Nov 2011 A1
20120037696 Lavi Feb 2012 A1
20120129673 Fukugaki et al. May 2012 A1
20120178170 Van Praet Jul 2012 A1
20120211645 Tullo et al. Aug 2012 A1
20120275885 Furrer et al. Nov 2012 A1
20120282683 Mototsu Nov 2012 A1
20120286535 Murakami Nov 2012 A1
20120310401 Shah Dec 2012 A1
20130153677 Leen et al. Jun 2013 A1
20130180824 Kleinikkink et al. Jul 2013 A1
20130263622 Mullen et al. Oct 2013 A1
20130322992 Pedrazzini Dec 2013 A1
20140170023 Saito et al. Jun 2014 A1
20140234949 Wasson et al. Aug 2014 A1
20150014125 Hecht Jan 2015 A1
20150166265 Pollack et al. Jun 2015 A1
20150241457 Miller Aug 2015 A1
20150273468 Croquette et al. Oct 2015 A1
20150273691 Pollack Oct 2015 A1
20150276775 Mellars et al. Oct 2015 A1
20150276782 Riether Oct 2015 A1
20160003859 Wenczel et al. Jan 2016 A1
20160025756 Pollack et al. Jan 2016 A1
20160054341 Edelmann Feb 2016 A1
20160077120 Riether Mar 2016 A1
20160229565 Margner Aug 2016 A1
20160274137 Baer Sep 2016 A1
20160282378 Malinowski et al. Sep 2016 A1
20160341750 Sinz et al. Nov 2016 A1
20160341751 Huber et al. Nov 2016 A1
20170059599 Riether Mar 2017 A1
20170096307 Mahmudimanesh et al. Apr 2017 A1
20170097372 Heise et al. Apr 2017 A1
20170101277 Malinowski Apr 2017 A1
20170108522 Baer Apr 2017 A1
20170131307 Pedain May 2017 A1
20170131309 Pedain May 2017 A1
20170131310 Volz et al. May 2017 A1
20170138971 Heise et al. May 2017 A1
20170160299 Schneider et al. Jun 2017 A1
20170168079 Sinz Jun 2017 A1
20170174448 Sinz Jun 2017 A1
20170184622 Sinz et al. Jun 2017 A1
20170248623 Kaeppeli et al. Aug 2017 A1
20170248624 Kaeppeli et al. Aug 2017 A1
20170363608 Sinz Dec 2017 A1
20180067141 Mahmudimanesh et al. Mar 2018 A1
20180106821 Vollenweider et al. Apr 2018 A1
20180156835 Hassan Jun 2018 A1
20180188280 Malinowski Jul 2018 A1
20180210000 van Mierlo Jul 2018 A1
20180210001 Reza Jul 2018 A1
20180217174 Malinowski Aug 2018 A1
20180224476 Birrer et al. Aug 2018 A1
20180348244 Ren Dec 2018 A1
20180348245 Schneider et al. Dec 2018 A1
20190018027 Hoehnel Jan 2019 A1
20190076845 Huber et al. Mar 2019 A1
20190076846 Durco et al. Mar 2019 A1
20190086433 Hermann et al. Mar 2019 A1
20190094251 Malinowski Mar 2019 A1
20190094252 Waser et al. Mar 2019 A1
20190101468 Haldar Apr 2019 A1
Foreign Referenced Citations (90)
Number Date Country
201045617 Apr 2008 CN
102109530 Jun 2011 CN
3909786 Sep 1990 DE
102012000665 Aug 2012 DE
102011090044 Jul 2013 DE
0601213 Oct 1992 EP
0775650 May 1997 EP
0916406 May 1999 EP
1122194 Aug 2001 EP
1524525 Apr 2005 EP
2119643 Nov 2009 EP
2148117 Jan 2010 EP
2327646 Jun 2011 EP
2447701 May 2012 EP
2500871 Sep 2012 EP
2502675 Feb 2014 EP
2887071 Jun 2015 EP
2165515 Apr 1986 GB
S56-147209 Nov 1981 JP
60-223481 Nov 1985 JP
61-081323 Apr 1986 JP
S61-069604 Apr 1986 JP
S61-094925 May 1986 JP
S61-174031 Aug 1986 JP
S61-217434 Sep 1986 JP
S62-100161 May 1987 JP
S63-31918 Feb 1988 JP
S63-48169 Feb 1988 JP
S63-82433 May 1988 JP
S63-290101 Nov 1988 JP
1148966 Jun 1989 JP
H01-266860 Oct 1989 JP
H02-87903 Mar 1990 JP
03-112393 May 1991 JP
03-192013 Aug 1991 JP
H03-38704 Aug 1991 JP
H04-127063 Apr 1992 JP
H05-69350 Mar 1993 JP
H05-142232 Jun 1993 JP
H05-180847 Jul 1993 JP
06-26808 Feb 1994 JP
H06-148198 May 1994 JP
06-156730 Jun 1994 JP
06-211306 Aug 1994 JP
07-228345 Aug 1995 JP
07-236838 Sep 1995 JP
H07-301637 Nov 1995 JP
H09-17848 Jan 1997 JP
H11-083865 Mar 1999 JP
H11-264828 Sep 1999 JP
H11-304812 Nov 1999 JP
H11-326336 Nov 1999 JP
2000-105243 Apr 2000 JP
2000-105246 Apr 2000 JP
2001-124786 May 2001 JP
2001-240245 Sep 2001 JP
2005-001055 Jan 2005 JP
2005-249740 Sep 2005 JP
2006-106008 Apr 2006 JP
2007-309675 Nov 2007 JP
2007-314262 Dec 2007 JP
2007-322289 Dec 2007 JP
2009-036643 Feb 2009 JP
2009-062188 Mar 2009 JP
2009-145188 Jul 2009 JP
2009-300402 Dec 2009 JP
2010-243310 Oct 2010 JP
2010-271204 Dec 2010 JP
2013-172009 Feb 2013 JP
2013-190400 Sep 2013 JP
685591 Sep 1979 SU
1996036437 Nov 1996 WO
2003042048 May 2003 WO
2005093433 Oct 2005 WO
2007024540 Mar 2007 WO
2008133708 Nov 2008 WO
2009002358 Dec 2008 WO
2010042722 Apr 2010 WO
2012170636 Jul 2010 WO
2010087303 Aug 2010 WO
2010129715 Nov 2010 WO
2011138448 Nov 2011 WO
2012142250 Oct 2012 WO
2012158541 Nov 2012 WO
2013152089 Oct 2013 WO
2013169778 Nov 2013 WO
2013177163 Nov 2013 WO
2014059134 Apr 2014 WO
2014071214 May 2014 WO
2015104263 Jul 2015 WO
Non-Patent Literature Citations (1)
Entry
International Search Report dated Oct. 17, 2016, in Application No. PCT/EP2016/067135, 4 pp.
Related Publications (1)
Number Date Country
20180128848 A1 May 2018 US
Continuations (1)
Number Date Country
Parent PCT/EP2016/067135 Jul 2016 US
Child 15860750 US