This invention generally relates methods and devices for introducing a sample into a cartridge for processing.
Many laboratory and clinical procedures involve processing a sample to separate a target from the sample for subsequent identification and analysis of the target. Such processes are commonly used to detect of wide range of targets, including biological entities such as cells, viruses, proteins, bacterium, nucleic acids, etc. and have applications in clinical diagnostics, biohazard screenings, and forensic analyses.
Often there is an immediate need to identify the target, whether to determine the proper course of treatment or to develop response protocol for biohazard threat. For example, blood-borne pathogens are a significant healthcare problem because a delayed or improper diagnosis can lead to sepsis. Sepsis, a severe inflammatory response to infection, is a leading cause of death in the United States. Early detection of the blood-borne pathogens underlying the infection is crucial to preventing the onset of sepsis. With early detection, the pathogen's drug/antibiotic resistant profile can be obtained which allows the clinician to determine the appropriate anti-microbial therapy for a quicker and more effective treatment.
One method of isolating a pathogen or target from a sample is performing a detection assay on a processing cartridge or lab-on-chip, which are typically microfluidic. A problem with identifying targets in sample using the cartridge is the inability to transfer the entire sample from the sample container. Typically, sample is introduced into a cartridge via pipetting or tubing, which often leaves sample in the sample container and/or loses sample during the transfer process. The failure to transfer the entire sample can lead to loss of critically relevant sample (i.e. sample with sufficient levels of targets for capture) and can result in a failure to isolate a target/pathogen simply because a portion of sample that contained the target was left in the sample container or lost during sample transfer. This need to transfer the entire sample is of critical importance when there is little sample, as often the case for forensic analysis, or when there is a small concentration of targets per ML (e.g. 1 CFU/mL), as in the case of pathogens during active blood-borne infection or after antibiotic treatment.
One solution to processing samples with low concentrations of targets per mL is to enrich the sample prior to introducing the sample for processing to increase the pathogen or target levels. By increasing concentration of targets per mL of sample, the likelihood that a small portion of the sample contains the target increases. This reduces risk of a failing to process clinically relevant sample simply because the sample was not entirely transferred. However, these enrichment steps require a significant amount of time and can potentially compromise test sensitivity by killing some of the cells sought to be measured. In certain cases, a full week may be necessary to reach the desired levels of target, such as a sepsis causing pathogen. Unfortunately, the time needed for enrichment is often not an option for a septic patient.
Because the failure to rapidly isolate a target may be linked to a failure to transfer clinically relevant sample into a processing device, there is a need to develop a method and device for maximizing the amount of sample transferred from a sample container into a cartridge for subsequent processing.
The invention generally relates to devices and methods for maximizing the amount of sample transferred from a collection vessel into a cartridge, including microfluidic cartridges, for processing. Devices and methods of the invention ensure that substantially all clinically relevant sample is transferred into the cartridge and processed. Because the devices and methods of the invention transfer substantially the entire sample, the invention advantageously reduces the need to enrich a sample prior introducing the sample into a cartridge for processing. In addition, the invention prevents failures to isolate or detect a target during cartridge processing simply because the clinically relevant portion of a sample was left in the sample container or lost during sample transfer.
Methods of the invention involve introducing a sample into a cartridge for processing. A vessel containing a sample is coupled to a cartridge for processing the sample. The cartridge includes an interface for providing communication between the sample and the cartridge. Once coupled, a fluid from the cartridge is introduced into the vessel. A particular advantage of introducing a fluid from the cartridge and into the vessel is that the fluid is able to rinse the vessel to ensure full drainage of the sample into the cartridge. In addition, air may be introduced from the cartridge and into the vessel to force any remaining sample and fluid in the vessel into the cartridge. Moreover, the fluid may be essential to the processes of the cartridge, and introducing the fluid directly into the sample allows for the fluid to engage with the entire sample and facilitates mixing of the sample and fluid. The fluid and the sample may be transferred from the vessel and into the cartridge for processing.
Cartridges used in methods of the invention include a cartridge/vessel interface. The cartridge/vessel interface places the vessel containing the sample in two-way communication with the cartridge. The communication between the vessel and the cartridge can be pneumatic, fluidic, or both. In certain embodiments, the cartridge/vessel interface can include an input member and an output member. The output member introduces fluids, gases, and substances from the cartridge into the vessel and the input member transfers the sample and any introduced fluids, gases, and substances from vessel into the cartridge. Typically, the input and output members define a lumen and include a penetrating tip. The input and output members may be designed to penetrate and extend into the vessel.
A drive mechanism operably coupled to the cartridge may provide the force or pressure to drive the fluid, sample, substances or gas between the cartridge and vessel. The drive mechanism can be a part of the cartridge or a part of an instrument operably associated with the cartridge. In one embodiment, the output member is positioned within the vessel such that when the drive mechanism transfers the fluid from the cartridge via the output member and into the vessel, the fluid hits a top portion of the vessel and rinses down at least one side of the vessel. The input member may be positioned to maximize drainage of the vessel contents, e.g. positioned even with or below the bottom of the vessel.
Any cartridge for processing a sample is suitable for use with the methods of the invention and can include the cartridge/vessel interface of the invention. The cartridge may be a microfluidic or macrofluidic device and the cartridge may be for use in conjunction with an instrument. The cartridge may process a sample to isolate or detect a target within the sample. In certain embodiments, the cartridge/vessel interface is part of a target capture system for isolating a target from a sample using magnetic particles having binding moieties specific to a target and a plurality of magnetic traps.
Preferably, the vessel is enclosed except for the communication with the cartridge. In this embodiment, fluid is introduced to a top portion of the vessel such that the fluid rinses down at least one side of the vessel. The fluid is able to rinse sample that may have collected or aggregated on the sides of the vessel to ensure it is transferred from the vessel and into the cartridge. In addition, air, or any other gas, can be introduced into the vessel to force transfer of any remaining sample, fluid, or both in the vessel into the cartridge.
Any fluid that does not interfere with cartridge processing is suitable for use. Preferably, the fluid is chosen because the fluid is essential to the cartridge processes. In certain embodiments, the fluid contains a plurality of capture particles, in which each particle is conjugated to a binding moiety specific to a target. The fluid may be chosen because the fluid facilitates binding of one or more particles to a target within the sample. In one aspect, the fluid is a buffer. By introducing capture particles into the sample, methods of the invention ensure that the entirety of the sample is exposed to potential capture events. In direct contrast, when delivering the sample into the cartridge and then exposing the sample to capture particles, only the sample transferred into the cartridge is exposed to the particles for capture. In one embodiment, the capture particles are magnetic particles and processing may include exposing the magnetic particles to a magnetic field to separate the magnetic particles from the rest of the sample.
The sample may be a biological sample, such as body fluid. Methods of the invention may be designed to isolate targets from the sample, such as pathogens, fungi, viruses, ligands, receptors, nucleic acids, and any molecule known in the art.
In certain embodiments, the fluid is introduced into the vessel at the same time the vessel contents (including sample and/or fluid) is transferred into the cartridge. Alternatively, the sample is at least partially transferred from the vessel into the cartridge prior to introducing the fluid from the cartridge into the vessel.
The invention generally relates to devices and methods for maximizing the amount of sample transferred from a collection vessel into a cartridge, including microfluidic cartridges, for processing. In certain aspects, methods of the invention involve coupling a vessel containing a sample to a cartridge configured to process a sample at an interface. The interface provides communication between the sample and the cartridge. Once coupled, a fluid from the cartridge is introduced into the vessel. The fluid and sample may be transferred from the vessel and into the cartridge for processing. In addition, air may be introduced from the cartridge and into the vessel to force any remaining sample and fluid within the vessel into the cartridge.
The methods of the invention and the cartridge/vessel interface of the invention are described herein as part of a target capture system for isolating a target from a sample. However, it is understood that methods of the invention can be used in combination with any cartridge devices for processing a sample (including microfluidic and macrofluidic devices) and the cartridge/vessel interface of the invention can employed on any cartridge devices for processing a sample (including microfluidic and macrofluidic devices).
Target capture systems of the invention are configured to carry out the processes necessary to isolate a target from a sample without the need for sample preparation or manual operation. The target capture systems generally include a cartridge and an instrument. The cartridge includes components such as channels, reaction chambers, reservoirs, and traps to perform processes for isolating a target from a sample. The cartridge interfaces with an instrument having one or more assemblies or subsystems, such as mechanical, magnetic, pneumatic, and fluidic assemblies, that interact with the cartridge to assist/drive the processes performed on the cartridge. The target capture systems of the invention are fully integrated to perform several processes on a sample inputted into the cartridge to achieve a final result, such as live cell capture or isolated nucleic acids from a target cell, without user manipulation.
Various embodiments of the target capture system including the cartridge and the instrument and processes performed by the target capture system are described in detail below.
In certain aspects, the processes performed by the target capture systems generally include introducing a plurality of magnetic particles, in which each particle includes at least one binding moiety specific to a target, into a sample to form at least one target/particle complex and applying a magnetic field to isolate the magnetic particle/target complexes from the sample. The process starts at inputting a sample and ends at delivering a capture target (or nucleic acids of the target) into a container for further analysis.
Sample
In certain aspects, the target capture system is designed to isolate targets from biological samples including, for example, blood, serum, plasma, buffy coat, saliva, wound exudates, pus, lung and other respiratory aspirates, nasal aspirates and washes, sinus drainage, bronchial lavage fluids, sputum, medial and inner ear aspirates, cyst aspirates, cerebral spinal fluid, stool, diarrheal fluid, urine, tears, mammary secretions, ovarian contents, ascites fluid, mucous, gastric fluid, gastrointestinal contents, urethral discharge, synovial fluid, peritoneal fluid, meconium, vaginal fluid or discharge, amniotic fluid, penile discharge, or the like may be tested. In addition, fluidic samples formed from swabs or lavages representative of mucosal secretions and epithelia are acceptable, for example mucosal swabs of the throat, tonsils, gingival, nasal passages, vagina, urethra, rectum, lower colon, and eyes, as are homogenates, lysates and digests of tissue specimens of all sorts. In addition to biological samples, samples of water, industrial discharges, food products, milk, air filtrates, and so forth are suitable for use with the target capture system. These include food, environmental and industrial samples. In certain embodiments, fluidization of a generally solid sample may be required and is a process that can readily be accomplished off-cartridge.
In certain aspects, the target capture system can process macro-scale and micro-scale volumes of fluid. Macro-scale volumes are considered volumes above 1 mL and micro-scale volumes are considered volumes below 1 mL (below 1000 μL). The cartridge of the target capture system may be designed to directly couple to a vessel containing the sample. Vessels suitable for use with the target capture system can have a macrofluidic or macrofluidic volume. For example, the target capture system can process a sample fluid having a volume of 1 mL to 100 mL, preferably around 5 mL to 20 mL. In one aspect, the cartridge of the target capture system is designed to couple to a 10 mL collection tube, such as a blood collection tube (e.g., VACUTAINER,(test tube specifically designed for venipuncture, commercially available from Becton, Dickinson and company)). Preferably, the vessel is an enclosed collection tube with a top that is configured to directly couple to an interface on the cartridge. The vessel and vessel/cartridge interface are described in more detail hereinafter.
Targets
The target capture system of the invention can be used to isolate any target from the sample. The target refers to the substance in the sample that will be captured and isolated by the target capture system. The target may be bacteria, fungi, a protein, a cell (such as a cancer cell, a white blood cell a virally infected cell, or a fetal cell circulating in maternal circulation), a virus, a nucleic acid (e.g., DNA or RNA), a receptor, a ligand, a hormone, a drug, a chemical substance, or any molecule known in the art. In certain embodiments, the target is a pathogenic bacterium. In other embodiments, the target is a gram positive or gram negative bacteria. Exemplary bacterial species that may be captured and isolated by methods of the invention include E. coli, Listeria, Clostridium, Mycobacterium, Shigella, Borrelia, Campylobacter, Bacillus, Salmonella, Staphylococcus, Enterococcus, Pneumococcus, Streptococcus, and a combination thereof.
Magnetic Particles
In certain aspects, the target capture system may use magnetic particles to isolate a target from the sample. Any type of magnetic particles can be used in conjunction with the target capture system. Production of magnetic particles and particles for use with the invention are known in the art. See for example Giaever (U.S. Pat. No. 3,970,518), Senyi et al. (U.S. Pat. No. 4,230,685), Dodin et al. (U.S. Pat. No. 4,677,055), Whitehead et al. (U.S. Pat. No. 4,695,393), Benjamin et al. (U.S. Pat. No. 5,695,946), Giaever (U.S. Pat. No. 4,018,886), Rembaum (U.S. Pat. No. 4,267,234), Molday (U.S. Pat. No. 4,452,773), Whitehead et al. (U.S. Pat. No. 4,554,088), Forrest (U.S. Pat. No. 4,659,678), Liberti et al. (U.S. Pat. No. 5,186,827), Own et al. (U.S. Pat. No. 4,795,698), and Liberti et al. (WO 91/02811), the content of each of which is incorporated by reference herein in its entirety.
Magnetic particles generally fall into two broad categories. The first category includes particles that are permanently magnetizable, or ferromagnetic; and the second category includes particles that demonstrate bulk magnetic behavior only when subjected to a magnetic field. The latter are referred to as magnetically responsive particles. Materials displaying magnetically responsive behavior are sometimes described as superparamagnetic. However, materials exhibiting bulk ferromagnetic properties, e.g., magnetic iron oxide, may be characterized as superparamagnetic when provided in crystals of about 30 nm or less in diameter. Larger crystals of ferromagnetic materials, by contrast, retain permanent magnet characteristics after exposure to a magnetic field and tend to aggregate thereafter due to strong particle-particle interaction. In certain embodiments, the particles are superparamagnetic particles. In certain embodiments, the magnetic particle is an iron containing magnetic particle. In other embodiments, the magnetic particle includes iron oxide or iron platinum.
In certain embodiments, the magnetic particles include at least about 10% superparamagnetic particles by weight, at least about 20% superparamagnetic particles by weight, at least about 30% superparamagnetic particles by weight, at least about 40% superparamagnetic particles by weight, at least about 50% superparamagnetic particles by weight, at least about 60% superparamagnetic particles by weight, at least about 70% superparamagnetic particles by weight, at least about 80% superparamagnetic particles by weight, at least about 90% superparamagnetic particles by weight, at least about 95% superparamagnetic particles by weight, or at least about 99% superparamagnetic particles by weight. In a particular embodiment, the magnetic particles include at least about 70% superparamagnetic particles by weight.
In certain embodiments, the superparamagnetic particles are less than 100 nm in diameter. In other embodiments, the superparamagnetic particles are about 150 nm in diameter, are about 200 nm in diameter, are about 250 nm in diameter, are about 300 nm in diameter, are about 350 nm in diameter, are about 400 nm in diameter, are about 500 nm in diameter, or are about 1000 nm in diameter. In a particular embodiment, the superparamagnetic particles are from about 100 nm to about 250 nm in diameter.
In certain embodiments, the particles are particles (e.g., nanoparticles) that incorporate magnetic materials, or magnetic materials that have been functionalized, or other configurations as are known in the art. In certain embodiments, nanoparticles may be used that include a polymer material that incorporates magnetic material(s), such as nanometal material(s). When those nanometal material(s) or crystal(s), such as Fe3O4, are superparamagnetic, they may provide advantageous properties, such as being capable of being magnetized by an external magnetic field, and demagnetized when the external magnetic field has been removed. This may be advantageous for facilitating sample transport into and away from an area where the sample is being processed without undue particle aggregation.
One or more or many different nanometal(s) may be employed, such as Fe3O4, FePt, or Fe, in a core-shell configuration to provide stability, and/or various others as may be known in the art. In many applications, it may be advantageous to have a nanometal having as high a saturated moment per volume as possible, as this may maximize gradient related forces, and/or may enhance a signal associated with the presence of the particles. It may also be advantageous to have the volumetric loading in a particle be as high as possible, for the same or similar reason(s). In order to maximize the moment provided by a magnetizable nanometal, a certain saturation field may be provided. For example, for Fe3O4 superparamagnetic particles, this field may be on the order of about 0.3T.
The size of the nanometal containing particle may be optimized for a particular application, for example, maximizing moment loaded upon a target, maximizing the number of particles on a target with an acceptable detectability, maximizing desired force-induced motion, and/or maximizing the difference in attached moment between the labeled target and non-specifically bound targets or particle aggregates or individual particles. While maximizing is referenced by example above, other optimizations or alterations are contemplated, such as minimizing or otherwise desirably affecting conditions.
In an exemplary embodiment, a polymer particle containing 80 wt % Fe3O4 superparamagnetic particles, or for example, 90 wt % or higher superparamagnetic particles, is produced by encapsulating superparamagnetic particles with a polymer coating to produce a particle having a diameter of about 250 nm.
Binding Moiety
Magnetic particles for use with the target capture system can have a target-specific binding moiety that allows for the particles to specifically bind the target of interest in the sample. The target-specific moiety may be any molecule known in the art and will depend on the target to be captured and isolated. Exemplary target-specific binding moieties include nucleic acids, proteins, ligands, antibodies, aptamers, and receptors.
In particular embodiments, the target-specific binding moiety is an antibody, such as an antibody that binds a particular bacterium. General methodologies for antibody production, including criteria to be considered when choosing an animal for the production of antisera, are described in Harlow et al. (Antibodies, Cold Spring Harbor Laboratory, pp. 93-117, 1988). For example, an animal of suitable size such as goats, dogs, sheep, mice, or camels are immunized by administration of an amount of immunogen, such the target bacteria, effective to produce an immune response. An exemplary protocol is as follows. The animal is injected with 100 milligrams of antigen resuspended in adjuvant, for example Freund's complete adjuvant, dependent on the size of the animal, followed three weeks later with a subcutaneous injection of 100 micrograms to 100 milligrams of immunogen with adjuvant dependent on the size of the animal, for example Freund's incomplete adjuvant. Additional subcutaneous or intraperitoneal injections every two weeks with adjuvant, for example Freund's incomplete adjuvant, are administered until a suitable titer of antibody in the animal's blood is achieved. Exemplary titers include a titer of at least about 1:5000 or a titer of 1:100,000 or more, i.e., the dilution having a detectable activity. The antibodies are purified, for example, by affinity purification on columns containing protein G resin or target-specific affinity resin.
The technique of in vitro immunization of human lymphocytes is used to generate monoclonal antibodies. Techniques for in vitro immunization of human lymphocytes are well known to those skilled in the art. See, e.g., Inai, et al., Histochemistry, 99(5):335 362, May 1993; Mulder, et al., Hum. Immunol., 36(3):186 192, 1993; Harada, et al., J. Oral Pathol. Med., 22(4):145 152, 1993; Stauber, et al., J. Immunol. Methods, 161(2):157 168, 1993; and Venkateswaran, et al., Hybridoma, 11(6) 729 739, 1992. These techniques can be used to produce antigen-reactive monoclonal antibodies, including antigen-specific IgG, and IgM monoclonal antibodies.
Any antibody or fragment thereof having affinity and specific for the bacteria of interest is within the scope of the invention provided herein. Immunomagnetic beads against Salmonella are provided in Vermunt et al. (J. Appl. Bact. 72:112, 1992). Immunomagnetic beads against Staphylococcus aureus are provided in Johne et al. (J. Clin. Microbiol. 27:1631, 1989). Immunomagnetic beads against Listeria are provided in Skjerve et al. (Appl. Env. Microbiol. 56:3478, 1990). Immunomagnetic beads against Escherichia coli are provided in Lund et al. (J. Clin. Microbiol. 29:2259, 1991).
Methods for attaching the target-specific binding moiety to the magnetic particle are known in the art. Coating magnetic particles with antibodies is well known in the art, see for example Harlow et al. (Antibodies, Cold Spring Harbor Laboratory, 1988), Hunter et al. (Immunoassays for Clinical Chemistry, pp. 147-162, eds., Churchill Livingston, Edinborough, 1983), and Stanley (Essentials in Immunology and Serology, Delmar, pp. 152-153, 2002). Such methodology can easily be modified by one of skill in the art to bind other types of target-specific binding moieties to the magnetic particles. Certain types of magnetic particles coated with a functional moiety are commercially available from Sigma-Aldrich (St. Louis, Mo.).
In certain aspect, the plurality of magnetic particles includes more than one sets of magnetic particles in which each set has a target-specific binding moiety that allows that set to specifically bind the target of interest in the heterogeneous sample. Because each set of particles is conjugated with antibodies having different specificities for different pathogens, the plurality of magnetic particles may be provided such that each set of antibody conjugated particles is present at a concentration designed for detection of a specific pathogen in the sample. In certain embodiments, all of the sets are provided at the same concentration. Alternatively, the sets are provided at different concentrations. For example, compositions may be designed such that sets that bind gram positive bacteria are added to the sample at a concentration of 2×109 particles per/ml, while sets that bind gram negative bacteria are added to the sample at a concentration of 4×109 particles per/ml. Compositions used with methods of the invention are not affected by antibody cross-reactivity. However, in certain embodiments, sets are specifically designed such that there is no cross-reactivity between different antibodies and different sets.
Reagents and Buffers
The target capture system can employ reagents and buffers for carrying the processes of the target capture system. In certain aspects, the cartridge of the target capture system includes reservoirs for storing the reagents and buffers. The cartridge also includes components such as channels, valves, etc. that provide a means for delivering the reagent and buffers within the cartridge. Accordingly, each of the reagents, buffers, and fluids described below can be stored within the cartridge and delivered into the sample to carry out the various processes of the target capture system.
In certain embodiments, a buffer solution is added to the sample along with the magnetic particles to facilitate binding of the particles to targets within the sample. The buffer can be stored within a reagent reservoir within the cartridge and introduced to the sample during processing. An exemplary buffer includes Tris(hydroximethyl)-aminomethane hydrochloride at a concentration of about 75 mM. It has been found that the buffer composition, mixing parameters (speed, type of mixing, such as rotation, shaking etc., and temperature) influence binding. It is important to maintain osmolality of the final solution (e.g., blood+ buffer) to maintain high label efficiency. In certain embodiments, buffers used in devices and methods of the invention are designed to prevent lysis of blood cells, facilitate efficient binding of targets with magnetic beads and to reduce formation of bead aggregates. It has been found that the buffer solution containing 300 mM NaCl, 75 mM Tris-HCl pH 8.0 and 0.1% Tween 20 meets these design goals.
Without being limited by any particular theory or mechanism of action, it is believed that sodium chloride is mainly responsible for maintaining osmolality of the solution and for the reduction of non-specific binding of magnetic bead through ionic interaction. Tris(hydroximethyl)-aminomethane hydrochloride is a well-established buffer compound frequently used in biology to maintain pH of a solution. It has been found that 75 mM concentration is beneficial and sufficient for high binding efficiency. Likewise, Tween 20 is widely used as a mild detergent to decrease nonspecific attachment due to hydrophobic interactions. Various assays use Tween 20 at concentrations ranging from 0.01% to 1%. The 0.1% concentration appears to be optimal for the efficient labeling of bacteria, while maintaining blood cells intact.
Additionally, devices and methods of the invention employ wash solutions to reduce particle aggregation and remove unwanted sample, non-specific target entities, and buffer. Exemplary solutions include heparin, Tris-HCl, Tris-borate-EDTA (TBE), Tris-acetate-EDTA (TAE), Tris-cacodylate, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid), PBS (phosphate buffered saline), PIPES (piperazine-N,N′-bis(2-ethanesulfonic acid), MES (2-N-morpholino)ethanesulfonic acid), Tricine (N-(Tri(hydroximethyl)methyl)glycine), and similar buffering agents. In particular embodiments, the wash solution includes heparin. For embodiments in which the body fluid sample is blood, the heparin also reduces probability of clotting of blood components after magnetic capture. These wash solutions can be contained in one or more reagent reservoirs of the cartridge and are typically introduced into a magnetic trap flow through chamber during separation of the magnetic particles.
In certain embodiments, the target capture system includes introducing a solution to invoke cell lysis in capture target cells in order to release the nucleic acid. The solution can be any suitable lysis fluid/buffer capable of lysing the cells and/or particles of interest in the fluid sample. An example of a suitable lysis buffer is 100 mM Tris/HCl, 8 M GuSCN (pH 6.4).
In addition, the target capture system may also utilize an elutant fluid to elute purified nucleic acids from a nucleic acid extraction column. The eluant fluid can be any fluid suitable for eluting purified nucleic acids from the nucleic acid extraction unit. Examples of suitable elution fluids include water and 10 mM Tris/HCl, 1 mM EDTA Na.sub.2 (pH 8).
In addition, a reagent can be used that disrupts the interaction between the particle and the target cell, e.g. disrupts an antibody-antigen reaction. This reagent may be used after capture of the target/magnetic particle complexes to separate isolated whole target cells from the magnetic particles.
Cartridge
The target capture system of the invention includes a cartridge that is a single structure having one or more components (such as reagent reservoirs, magnetic traps, storage reservoirs, flow chambers, etc.) that are formed within the cartridge. These components can be connected via channels formed within the system. As such, there is no need for external tubing or other external attachments to connect the components of the cartridge.
A significant advantage of certain embodiments is that the cartridge includes both macrofluidic and microfluidic components and can process macrofluidic and microfluidic volumes of fluids to isolate a target. This aspect of the invention accounts for the fact that a minute amount of targets (such as pathogens) may be present in a sample having a macrofluidic volume which necessitates processing the entire macrofluidic volume in order to increase the likelihood that the target will be isolated. To isolate targets in a microfluidic device, the entire macrofluidic volume of sample would have to be transferred slowly or in a piecemeal fashion (e.g. via pipetting) into a microfluidic device at microfluidic rate, which undesirably takes a long amount of time and risks losing the target analyte of interest during the transfer. In certain aspects, the cartridge is designed to consolidate a sample of macrofluidic volume into a concentrated microfluidic volume of fluid that contains target cells of interest. The concentrated microfluidic volume is then processed at the microfluidic level.
Generally, microfluidics relates to small sample volumes and small channel pathways. For example, microfluidic volumes are normally below 1 mL, or on the microliter (μL) scale or smaller, for example, nL (nanoliters) and pL(picoliters). As used herein, microfluidic volumes relate to volumes less than 1 mL. In addition, microfluidics relates to small channel pathways on the micrometer scale. As used herein, microfluidic channels within systems of the invention refer to channels that have channel heights and/or widths equal to or less than 500 μm. See “Microfluidics and Nanofluidics: Theory and Selected Applications,” Kleinstruer, C., John Wiley & Sons, 2013, which is incorporated by reference. The channel height or width is defined as the height or width of the path that the sample volume must pass through within the cartridge. Comparatively, macrofluidics volumes relate to volumes greater than the microliter (pL) scale, for example sample volumes on the milliliter (mL) scale. As used herein, macrofluidic volumes are volumes of 1 mL or greater. Macrofluidic channels within systems of the invention are channels having channel heights and/or widths of greater than 500 μm.
Other macrofluidic components are chambers, reservoirs, traps, mixers, etc. Such macrofluidic components are dimensioned to hold 1 mL or more of fluid. For example, the individual volume can range without limitation from about 10 to about 50 mL. Other microfluidic components are chambers, reservoirs, traps, mixers, etc. Such microfluidic components are dimensioned to hold less than 1 mL of fluid. For example, the individual volumes can range without limitation from about 1 μL to about 500 μL.
The cartridge includes channels to facilitate transportation of substances and fluids through into, within, and out of the cartridge. The channel generally will include characteristics that facilitate control over fluid transport, e.g., structural characteristics (an elongated indentation) and/or physical or chemical characteristics (e.g. lined with a solution or substance that prevents or reduces adherence aggregation of sample/particulates) and/or other characteristics that can exert a force (e.g., a containing force) on a sample or fluid. The channels can be independent, connected, and/or networked between components of the cartridge. Some (or all) of the channels may be of a particular size or less, for example, having a dimension perpendicular to the flow of fluid to achieve a desired fluid flow rate out of one component and into another. The channels can be designed to transfer macro and micro scales of fluid.
The channels of the cartridge can connect to and interconnect the components of the cartridge. The cartridge can include one or more of the following components: through holes, slides, foil caps, alignment features, liquid and lyophilized reagent storage chambers, reagent release chambers, pumps, metering chambers, lyophilized cake reconstitution chambers, ultrasonic chambers, joining and mixing chambers, mixing elements such as a mixing paddle and other mixing gear, membrane regions, filtration regions, venting elements, heating elements, magnetic traps/chambers, reaction chambers, waste chambers, membrane regions, thermal transfer regions, anodes, cathodes, and detection regions, drives, plugs, piercing blades, valve lines, valve structures, assembly features such as o-rings, instrument interface regions, cartridge/vessel interfaces, one or more needles associated with the sample interface, optical windows, thermal windows, and detection regions. These components can have macro- or micro-volumes.
The cartridge includes at least one inlet for introducing sample into the cartridge and at least one inlet for allowing the instrument to introduce air pressure, e.g., to drive fluid flow, or to introduce fluids into the cartridge. The cartridge further includes at least one outlet to deliver a final product to the operator, e.g. a captured target or nucleic acids of a captured target into a removable vial for further analysis. In preferred embodiments, the inlet and outlet are associated with the cartridge/vessel interface of the invention described in detail hereinafter.
In one embodiment, the cartridge further includes sensing elements to determine the stage of the processes performed within the cartridge. The sensing elements can be used to gauge the flow within the cartridge and the timing for when certain subsystems of the instrument interact with the cartridge. The sensing elements include, but are not limited to, optical sensors (e.g. for monitoring the stage of processing within the chamber), timers (e.g., for determining how long a sample is in a mixing chamber or in a reaction chamber); air displacement sensors (e.g. for determining the volume of fluid within one or more chambers); temperature sensors (e.g. for determining the temperature of a reaction), bubble sensor (e.g. for detecting air and/or volume of fluid within chambers and fluid flow; pressure sensors for determining, e.g., rate of fluid flow.
In certain aspects, fluids and substances are driven into, within, and out the cartridge via one or more drive mechanisms. The drive mechanism can be located on the cartridge itself or located on an instrument in combination with the cartridge. The drive mechanisms provide a means for fluid control within the cartridge and allows for transport of fluid and substances within the cartridge. In addition, the drive mechanisms provide a means for transferring fluids and substances between the cartridge and the vessel at the cartridge/vessel interface. In one embodiment, the drive mechanism is a part of the instrument and is operably associated with the cartridge at one or more cartridge/instrument interface. The cartridge can include a filter at the cartridge/instrument interface to prevent unwanted particles from entering the cartridge from the drive mechanism or instrument. The filter also prevents sample and other fluids from exiting the cartridge at the cartridge/instrument interface. The drive mechanisms of the instrument are discussed in more detail hereinafter.
The cartridge (whether including macrofluidic components, microfluidic components, or both) can be fabricated using a variety of methods, including without limitation, computer numerical control (CNC) techniques, traditional lithographic techniques, soft lithography, laminate technologies, hot embossing patterns, die cutting, polymer molding, combinations thereof, etc. The cartridge can be fabricated from any etchable, machinable or moldable substrate. The term machining as used herein includes, without limitation printing, stamping cutting and laser ablating.
Suitable materials for the cartridge include but are not limited to non-elastomeric polymers, elastomeric polymers, fiberglass, TEFLON (polytetrafluoroethylene, commercially available by the DuPont company), polystyrene and co-polymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polycarbonate, polyurethanes, TEFLON (polytetrafluoroethylene, commercially available by the DuPont company), and derivatives thereof. Preferably, the cartridge and the cartridge components are formed primarily from plastic. Plastics are cost-efficient and allow for the cartridge to be economically manufactured at a large scale. As such, the cartridge can be designed as a single use, disposable cartridge.
There are some components of the cartridge that are not plastic, and these components can be formed from, for example, metals, silicon, quartz, and glass. These components include but are not limited to surfaces, glass ampoules, filters, assembly materials (such as screws and other fasteners), electrode pins, membrane, affinity columns, and collection vials.
The cartridge can also include thin film layers that form structures/interfaces (such as walls and valves) on the cartridge, interfaces between components within the cartridge, and interfaces between the cartridge and the instrument. In one aspect, the thin film layers are for bonding fabricated components together (such as CNC components and lithographic components), sealing components together, providing conduits between components, transferring stimulation between components (e.g. capable of transferring physical or mechanical stimulation from an assembly/system on the instrument to a chamber in the cartridge), supporting elements, covering the channel, functioning as a cap and/or frangible seal for reservoirs or chambers, and performing as a valve. The thin film can be elastomeric or non-elastomeric material. In certain aspects, the thin film is a polymer or thermoplastic polymer. Exemplary polymers or thermoplastic polymers can include, but are not limited to, polymers selected from the group consisting of polymethyl methacrylate (PMMA), polycarbonate (PC), polyvinylacetate (PVAc), polystyrene (PS), polypropylene, polyethylene, polymethyl methacrylate, poly(amides), poly(butylene), poly(pentadiene), polyvinyl chloride, polycarbonate, polybutylene terephthalate, polysulfone, polyimide, cellulose, cellulose acetate, ethylene-propylene copolymer, ethylene-butene-propylene terpolymer, polyoxazoline, polyethylene oxide, polypropylene oxide, polyvinylpyrrolidone, and combinations thereof. In addition, thin film can be an elastomer, polymer blend and copolymer selected from the group consisting of poly-dimethylsiloxane (PDMS), poly(isoprene), poly(butadiene), and combinations thereof. In some embodiments, the thin film includes rubber (including silicone) alone or in combination with a polymer.
In a preferred embodiment, the cartridge is pre-assembled prior to shipment to distributors/customers. The pre-assembled cartridge may also include one or more of reagents, capture particles (including magnetic particles), lysing beads, water, and other substances/fluids pre-loaded into one or more chambers or reservoirs formed within the cartridge. The pre-assembled cartridge may be partially pre-loaded, e.g. loaded with only a portion of the components necessary to isolate a target. If pre-assembled, the cartridge can include reagents and magnetic particles specific certain isolation assays and/or specific to certain target analytes. In addition, the cartridge can include magnetic particles with binding moieties specific to a plurality of different targets to provide for isolation of a target when the suspected target is not known. See co-pending and co-assigned U.S. application Ser. No. 13/091,506 that describes compositions for isolating a target sample from a heterogeneous sample. It is also contemplated that the cartridge is partially-assembled prior to shipment to distributors/customers to allow the individual customer to load the cartridge with reagents, beads, etc. that are tailored to the analysis/identification needs of the customer.
As shown in
Along the top of the cartridge 100 are several drive ports 190 at the instrument interface 45. The drive ports 190 connect various features on the cartridge 100 to the instrument's 200 drive mechanism. As shown in
The inlet port 140a is connected to a channel that directs the contents of the vessel (sample/particle/buffer) into a mixing chamber 170. The mixing chamber 70 can be used to incubate and agitate the sample/particle/buffer mixture. The mixing chamber 70 can include a mixing paddle disposed therein. A portion of the mixing paddle is operably associated with a mechanical drive on the instrument that causes the mixing paddle to move or rotate within the mixing chamber 70.
The mixing chamber 170 is in communication with a first magnetic trap 60 and a magnetic trap overflow 50. The first magnetic trap 60, as shown in
As further shown in
Optionally, a pre-magnetic trap chamber 82 is between the first magnetic trap 60 and the second magnetic trap 80 as shown in
The second magnetic trap 80 is configured to engage with a magnet of the instrument to further separate any remaining sample/buffer from the magnetic particles. The second magnetic trap 80 is a flow through chamber in communication with a second magnetic trap overflow chamber 105. The second magnetic trap overflow chamber 105 is used to store unwanted buffer/sample (waste) from the second magnetic trap 80. The second magnetic trap 80 is in communication with a lysis buffer reservoir 90 and optionally, a lysis buffer drip chamber 107 to control flow of lysis buffer into the second magnetic trap 80. The second magnetic trap 80 is also configured to engage with a sonication device of the instrument. In one embodiment, a wall of the second magnetic trap 80 that interfaces with the instrument has a certain thickness, such as 125 μm, that allows vibrations of the sonication device to invoke cell lysis on targets within the second magnetic trap. The wall interfacing the sonication device can be a MYLAR (general purpose file, commercially available by DuPont) film. The second magnetic trap 80 can optionally include binding moieties specific to the magnetic particles to assist in isolating the magnetic particles.
The second magnetic trap 80 is also in communication with a pre-column mixer 85, which receives the lysate from the second magnetic trap 80. The pre-column mixer 85 is in communication with to a nucleic acid binding buffer reservoir and in communication with a nucleic acid extraction column 110. An output chamber 95 can be included between the pre-column mixer 85 and the nucleic acid extraction member 110. Any nucleic acid extraction member 110 that retains extracted nucleic acid while allowing the other fluids such as lysis debris to flow through the member is suitable for use in the invention. The nucleic acid extraction member 110 can be a filter or a column, such as an affinity column. Examples of nucleic acid extraction members are described in, for example, United States Patent Publication No. 2011/0300609.
One or more column wash reservoirs 65 are connected to the nucleic acid extraction member 110 to direct unwanted sample/buffer/etc. from the column 110 to a waste reservoir. An elution reservoir 55 contains a buffer or fluid that is capable of eluting nucleic acids disposed within the nucleic acid extraction member. The fluid, such as water, is flushed from the elution reservoir 55 through extraction member 110 to elute purified nucleic acids into a collection vial (not shown).
In one embodiment, the particle chamber 40, the wash buffer 35, the mixing chamber 70, the first magnetic trap 60 and the magnetic trap overflow 50 of the cartridge 100 are all macrofluidic components designed to process a macrofluidic volume of fluid. Because these components are macrofluidic, the entire sample can be subject to the incubation, agitation, and the first magnetic separation step. After the magnetic particles are isolated in the first magnetic trap 60, a wash buffer flows through the first magnetic trap 60 to transport the separated particles to the second magnetic trap 80. The cartridge 100 components after the first magnetic trap 60 are microfluidic, including the second magnetic trap 60, magnetic trap overflow 105, pre-column mixer 80. The second magnetic trap 80 isolates substantially the entire quantity of magnetic particles within a microfluidic volume of fluid from the macrofluidic volume of fluid. The rate of fluid flow between the first and second magnetic traps can be adjusted to allow for the second magnetic trap 80 to isolate all of the magnetic particles. Thus, the macrofluidic volume of sample is concentrated into a microfluidic volume of concentrated clinically relevant sample. The concentrated microfluidic volume of fluid allows for more efficient nucleic acid extraction.
Cartridge and Vessel Interface
For isolation and detection assays conducted on cartridges or chips (whether microfluidic or macrofluidic), it is important to transfer the entire obtained sample from a collection device into the cartridge to increase the efficiency of isolation or detection. Especially in situations where there is little sample, which is often the case in forensic analysis, or when there is a small concentration of targets per mL of sample (e.g. 1 CFU/mL), which is often the case for pathogenic detection. Cartridges of the invention include a cartridge/vessel interface designed to maximize the amount of sample transferred into the vessel and the amount of sample subject to the cartridge processes to avoid loss of clinically relevant within a sample collection device during sample transfer. It is understood that the cartridge/vessel interface can be included on the cartridge of the target capture system and any other cartridge for processing a sample.
The cartridge/vessel interface may include one or more input and/or output members that enter a vessel containing sample to maximize the amount of sample that is transferred from the vessel containing sample into the cartridge for processing. In one embodiment, the cartridge/sample interface includes an inlet member and an outlet member to facilitate communication of fluids and substances out of the cartridge and into the sample vessel and to facilitate communication of fluids and substances (including the sample) out of the vessel and into the cartridge. The outlet member also provides for 1) introducing air to force the sample into the cartridge via the inlet port and/or the inlet member to maximize drainage; 2) introducing a fluid into the vessel to rinse the vessel container to transfer any remaining sample in the vessel into the cartridge; and 3) introducing fluids/substances necessary for cartridge processes directly to the entire sample to ensure the entirety of the sample engages with those fluids/substances. The input member provides for transferring the vessel contents into the cartridge for processing In certain embodiments, the fluid is introduced into the vessel at the same time the vessel contents (including sample and/or fluid) is transferred into the cartridge. Alternatively, the sample is at least partially transferred from the vessel into the cartridge prior to introducing the fluid from the cartridge into the vessel.
In one embodiment, both the inlet member and outlet member define a lumen and include a penetrating tip. For example, the inlet member and the outlet member can be hollow pins or needles. The inlet member and outlet member correspond with inlet and outlet ports on the cartridge. The input member and output member are designed to penetrate the vessel containing the sample to place the vessel (and thus the sample) in communication with the cartridge. The communication between the vessel and the cartridge through the input members and output members may be fluidic, pneumatic, or both. The input and output members can also act to couple the vessel to the cartridge and maintain the position of the vessel on the interface.
In certain embodiments, the input and output members are in communication with a drive mechanism. The drive mechanism can be a part of the cartridge itself or located on an instrument for use with the cartridge. The drive mechanism can apply air pressure or a vacuum force to facilitate transportation between the vessel and cartridge. For example, the drive mechanism can apply air pressure through a channel of the cartridge, out of the output member, and into the vessel to force the vessel contents to drain through the input member. In addition, the drive mechanism can apply a vacuum force to the input member to force the sample to drain into member.
The input member is in communication with one or more components of the cartridge (e.g. a mixing chamber, magnetic trap, storage reservoir, reagent reservoirs, etc.) that process fluids delivered from the vessel into the cartridge. The input member allows for fluids to transfer out of the vessel and into the cartridge for processing.
The output member is in communication with one or more components of the cartridge (e.g. storage reservoir, reagent reservoir, magnetic trap, etc.) to allow delivery of fluids, substances, and/or gases from the cartridge into the vessel container. In one embodiment, fluid from a reagent reservoir is driven through the output member and into the vessel to rinse sides of the vessel. The fluid may contain one or more substances. In one aspect, the fluid includes capture particles having binding moieties specific to one or more suspected targets within the sample. The fluid can be any fluid that does not interfere with the processes of the cartridge. In another embodiment, the fluid is an essential element of the cartridge processes. For example, the fluid can be a buffer that promotes a reaction within the sample, such as promoting target capture. In addition, fluids, substances, and/or gases may be subject to a reaction/process within the cartridge prior to being delivered into the vessel. For example, a buffer may be heated in the cartridge prior to introducing the buffer into the vessel.
In certain embodiments, one or more input members and one or more output members are inserted into the vessel to place the vessel in communication with the cartridge. This allows, for example, the vessel contents to be directed through one or more input member into one or more different channels in the cartridge for processing. In addition, one or more output members may be for delivering different fluids or reagents into the vessel.
The vessel for coupling to the cartridge interface can be an open or closed container. In one embodiment, the vessel is a collection tube, such as a VACUTAINER (test tube specifically designed for venipuncture, commercially available from Becton, Dickinson and company). Ideally, the vessel is enclosed, such as a collection tube enclosed by a stopper or a plug. The stopper or plug can be rubber, silicone, or polymeric material. For coupling the vessel to the sample, the vessel or the vessel plug is pressed against the input and output member until the input and output member are inserted into the vessel. The cartridge interface can also include a vessel holder to properly position the vessel onto the needles and a locking mechanism to lock the vessel in place while coupled to the cartridge. These features provide a snug fit of the cartridge and the vessel.
Vessels suitable for use with the cartridge can be of any volume size. For example, the vessels can range in volumes from 0.1 to 1 mL to 100 mL. In one embodiment, the vessel has a volume of 10 mL. The volume of the vessel may depend on the sample and the suspected target to be detected. That is, the vessel should be of a sufficient volume to contain an amount of sample fluid in which it is more likely than not that a suspected target is present.
In an embodiment, the output member is positioned within the vessel so that the output member delivers a fluid to the top of the vessel. This causes the fluid to run down at least one side of the vessel and rinse any sample that may have collected along the side of the vessel. The drive mechanism can be set to apply a pressure sufficient to deliver the fluid out of the output member so that it hits the top surface of the vessel. In addition, the input member is positioned within the vessel to promote drainage of the vessel contents. For example, the input member is level with or below the bottom of the vessel. In one embodiment, the vessel or the vessel plug is shaped to drain into the input member. For example, the vessel plug is conically-shaped.
In addition, the drive mechanism may provide sufficient pressure to release capture particles out of the output member and into the vessel. For example, pressure from the drive mechanism releases a buffer into a chamber having a plurality of capture particles disposed therein. The buffer/capture particles are then driven from the cartridge through the output member and directly into the vessel. The drive mechanism continues to force the buffer through the particle chamber and into the vessel until all of the capture particles are transferred into the vessel. At the same time, the input member may transfer the sample, buffer, and capture particles out of the vessel and into the cartridge. After substantially all the sample and capture particles are transferred into the cartridge, fluid or the buffer can continue to be introduced into the sample for an additional rinse. In another embodiment, the input member transfers at least a portion of the sample into the cartridge prior to introduction of the capture particles/buffer to provide space within the vessel.
Instrument
In certain aspects, the cartridge interfaces with and is used in conjunction with an instrument. The instrument provides, for example, the pneumatic, fluidic, magnetic, mechanical, chemical functions, as necessary to process the sample within the cartridge. In one aspect, the cartridge is inserted into the instrument for processing and the instrument is turned on by an operator to activate sample processing. Once the cartridge is loaded into the instrument, the system does not require further manual technical operations on behalf of the operator.
In one embodiment, the instrument contains drive mechanisms that connect to the cartridge when inserted into the instrument. Any drive mechanism known in the art may be used with target capture system, including pneumatic drive mechanisms, hydraulic drive mechanisms, magnetic drive systems, and fluidic drive systems. The drive mechanism provides a means for fluid control within the cartridge and allows for transport of fluid and substances between chambers. The drive mechanism can be used to initiate and control fluid flow, open valves, form bubbles (e.g. for mixing) and to initiate mechanical/chemical processes within the cartridge.
The drive mechanism can also be operably associated with a controller so that the controller engages the drive mechanism at certain stages in the pathogen capture process. The controller may engage with one or more sensors to determine when and how to activate the drive mechanism during sample processing. In certain aspects, the controller is a computing system. In certain embodiments, drive mechanism is a pneumatic. The pneumatic drive mechanism can include pumps, electromechanical valves, pressure regulators, tubing, pneumatic manifolds, flow and pressure sensors. Pneumatic drive mechanisms use air pressure and air displacement to control the flow of fluids within the cartridge. In certain aspects, the pneumatic drive mechanism is coupled to electronic regulators. When coupled to an electronic regulator, the pneumatic mechanism may be an external compressor with a reservoir for pumping compressed nitrogen, argon or air.
The instrument also includes one or more magnetic assemblies. The magnetic assemblies engage with one or more magnetic traps (typically, flow-through chambers) of the cartridge. The magnetic assemblies can include permanent magnets, removable magnets, electromagnets, or the like, or combinations thereof. The magnet assemblies may have magnets of various shapes, and of varying strengths, depending on the application thereof. If the instrument includes electromagnets, i.e. magnets that produce a magnetic field upon introduction of an electric current, the instrument may also include a current generator to activate the electromagnets. Depending on the stage of processing, the magnetic assembly includes one or magnet that are positioned against the cartridge to facilitate capture of one or more magnetic particles on a surface of a magnetic trap. Alternatively, the electromagnets can be prepositioned next to the cartridge and activated by an electric current to facilitate capture of one or more magnetic particles against the surface of the trap.
The size and strength of the magnet(s) of the magnetic assembly should produce a magnetic field suffice to force the magnetic particles within the sample against a surface of the magnetic trap of the cartridge, either macrofluidic or mircofluidic. For example, the magnetic assembly can include 7 bar NdFeB magnets that can be positioned against a magnetic trap of the cartridge. In another example, the magnet assembly includes a magnet with a magnetic flux of about 0.6 T and a magnetic gradient of about 150 T/m. This magnet's high magnetic gradient of about 150 T/m is capable of isolating a plurality of magnetic particles (for example, 1000 magnetic particles) in on a surface with a micro-scale surface area.
The instrument can also include mechanical, electrical, and thermo-electrical systems. For instance, instrument can include mechanical mechanism for engaging with a paddle mixer disposed within in a mixing chamber of the cartridge. The instrument can also include pistons and plungers to activate one or more push valves located on the cartridge. In addition, the instrument can include a heating system designed to control the temperatures of one or more components of the cartridge. For example, the instrument can include a heating apparatus operably associated with the mixing chamber to heat the chamber and encourage binding of one or more magnetic particles with targets contained within the sample. The instrument may include a control processor or a computing system to activate other subsystems, such as the drive mechanism. The control processor can be keyed into sensors designed to track the process through the cartridge. This allows the control processor to activate certain substances based on the location of the fluid within the cartridge or based upon the stage of processing.
The instrument can also include a lysing mechanism for invoking lysis of cells within the sample. The lysing mechanism can include any sonication device that is well-known in the art. In certain embodiments, the sonication device is the VCX 750 Sonicator sold under the trademark VIBRA-CELL (sonicator, commercially available from Sonics &Materials, Inc.). Generally, the probe of the sonicator is placed into the liquid containing the targets to be lysed. Electrical energy from a power source is transmitted to a piezoelectric transducer within the sonicator converter, where it is changed to mechanical vibrations. The longitudinal vibrations from the converter are intensified by the probe, creating pressure waves in the liquid. These in turn produce microscopic bubbles, which expand during the negative pressure excursion and implode violently during the positive excursion. This phenomenon, referred to as cavitation, creates millions of shock waves and releases high levels of energy into the liquid, thereby lysing the target. In another embodiment, the sonication transducer may be brought in contact with a chamber holding captured complexes by way of a structural interface. The sonication transducer vibrates structural interface, such as a thin film between the magnetic trap and the transducer, until lysis is achieved. In either method, the appropriate intensity and period of sonication can be determined empirically by those skilled in the art.
As shown in
As shown in
In
Once the sample/particle/buffer mixture is transferred from the vessel 10 to the mixing chamber 70 as shown in
After incubation/agitation, the sample/particle/buffer mixture is cycled through the first magnetic trap 60, as shown in
After the final cycle of fluid through the first magnetic trap 60, the remaining fluid (sample/buffer) separated from the captured magnetic particles is moved into the mixing chamber 70 and stored as waste. Alternatively, the remaining fluid can be transferred to a designated waste chamber.
The captured particles within the first magnetic trap 60 are then subject to a wash process as shown in
As shown in
The second magnetic trap 80, as engaged with the magnetic assembly, captures magnetic particles as the fluid flows from the first magnetic trap 60 through the second magnetic trap 80 and into a waste chamber 105. Pressure from the drive mechanism is applied to ensure all the fluid/magnetic particles are transferred into the magnetic trap and to prevent any fluid back flow. The rate of the fluid flow can be controlled to ensure all magnetic particles are capture while the fluid flows through the second magnetic trap 80. In one embodiment, the rate of fluid flow is 1 mL/min. In one aspect, the second magnetic trap 80 has a significantly smaller volume than the first magnetic trap 60 which allows the second magnetic trap 80 to concentrate the substantially the entire quantity of particles initially introduced into the sample into a small volume of fluid. The high concentration of particles in a small volume of fluid provides for easier downstream analysis of or processes performed on targets bound to those particles. That is, the target capture system is able to isolate the clinically relevant portion of a macrofluidic fluid volume in a microfluidic fluid volume. In one embodiment, the first magnetic trap 80 is macrofluidic (volume capacity 1 mL and above) and the second magnetic trap is microfluidic (volume capacity below 1000 μL). For example, the first magnetic trap 60 has a macrofluidic volume for processing 30 mL of fluid to initially capture magnetic particles disposed within the 30 mL of fluid and the second magnetic trap 80 has a microfluidic volume of 500 μL of less.
After the magnetic particles are concentrated in the second magnetic trap 80, the captured particles can be directed to a capture vial or subject to further processing.
After lysis by sonication is complete, the lysate can be forced into a pre-column mixer 85 as shown in
The nucleic acid extraction matrix 95 can then be subject to one or more washes. As shown in
After the washes, the nucleic acid extraction matrix 95 can be eluted with a fluid from the elution reservoir 55. In one embodiment, the fluid is water. The drive mechanism uses high air pressure to force the fluid through the nucleic acid extraction matrix 95 into a nucleic acid capture vial 180. The capture vial 180 can be removed from the cartridge by the operator and subject to further analysis.
Detection of Target Cell or Detection of Nucleic Acids
In particular embodiments, the isolated targets or the extracted nucleic acid from the captured targets, as isolated with the target capture system, may be analyzed by a multitude of technologies. These technologies include, for example, miniature NMR, Polymerase Chain Reaction (PCR), mass spectrometry, fluorescent labeling and visualization using microscopic observation, fluorescent in situ hybridization (FISH), growth-based antibiotic sensitivity tests, and variety of other methods that may be conducted with purified target without significant contamination from other sample components.
In one embodiment, isolated bacteria are eluted from the magnetic particles and are lysed with a chaotropic solution, and DNA is bound to DNA extraction resin. After washing of the resin, the bacterial DNA is eluted and used in quantitative RT-PCR to detect the presence of a specific species, and/or, subclasses of bacteria.
In another embodiment, captured bacteria is removed from the magnetic particles to which they are bound and the processed sample is mixed with fluorescent labeled antibodies specific to the bacteria or fluorescent Gram stain. After incubation, the reaction mixture is filtered through 0.2 μm to 1.0 μm filter to capture labeled bacteria while allowing majority of free particles and fluorescent labels to pass through the filter. Bacteria is visualized on the filter using microscopic techniques, e.g. direct microscopic observation, laser scanning or other automated methods of image capture. The presence of bacteria is detected through image analysis. After the positive detection by visual techniques, the bacteria can be further characterized using PCR or genomic methods.
Detection of bacteria of interest can be performed by use of nucleic acid probes following procedures which are known in the art. Suitable procedures for detection of bacteria using nucleic acid probes are described, for example, in Stackebrandt et al. (U.S. Pat. No. 5,089,386), King et al. (WO 90/08841), Foster et al. (WO 92/15883), and Cossart et al. (WO 89/06699), each of which is hereby incorporated by reference.
A suitable nucleic acid probe assay generally includes sample treatment and lysis, hybridization with selected probe(s), hybrid capture, and detection. Lysis of the bacteria is necessary to release the nucleic acid for the probes. The nucleic acid target molecules are released by treatment with any of a number of lysis agents, including alkali (such as NaOH), guanidine salts (such as guanidine thiocyanate), enzymes (such as lysozyme, mutanolysin and proteinase K), and detergents. Lysis of the bacteria, therefore, releases both DNA and RNA, particularly ribosomal RNA and chromosomal DNA both of which can be utilized as the target molecules with appropriate selection of a suitable probe. Use of rRNA as the target molecule(s), may be advantageous because rRNAs constitute a significant component of cellular mass, thereby providing an abundance of target molecules. The use of rRNA probes also enhances specificity for the bacteria of interest, that is, positive detection without undesirable cross-reactivity which can lead to false positives or false detection.
Hybridization includes addition of the specific nucleic acid probes. In general, hybridization is the procedure by which two partially or completely complementary nucleic acids are combined, under defined reaction conditions, in an anti-parallel fashion to form specific and stable hydrogen bonds. The selection or stringency of the hybridization/reaction conditions is defined by the length and base composition of the probe/target duplex, as well as by the level and geometry of mis-pairing between the two nucleic acid strands. Stringency is also governed by such reaction parameters as temperature, types and concentrations of denaturing agents present and the type and concentration of ionic species present in the hybridization solution.
The hybridization phase of the nucleic acid probe assay is performed with a single selected probe or with a combination of two, three or more probes. Probes are selected having sequences which are homologous to unique nucleic acid sequences of the target organism. In general, a first capture probe is utilized to capture formed hybrid molecules. The hybrid molecule is then detected by use of antibody reaction or by use of a second detector probe which may be labelled with a radioisotope (such as phosphorus-32) or a fluorescent label (such as fluorescein) or chemiluminescent label.
Detection of bacteria of interest can also be performed by use of PCR techniques. A suitable PCR technique is described, for example, in Verhoef et al. (WO 92/08805). Such protocols may be applied directly to the bacteria captured on the magnetic particles. The bacteria is combined with a lysis buffer and collected nucleic acid target molecules are then utilized as the template for the PCR reaction. For detection of the selected bacteria by use of antibodies, isolated bacteria are contacted with antibodies specific to the bacteria of interest. As noted above, either polyclonal or monoclonal antibodies can be utilized, but in either case have affinity for the particular bacteria to be detected. These antibodies will adhere/bind to material from the specific target bacteria. With respect to labeling of the antibodies, these are labeled either directly or indirectly with labels used in other known immunoassays. Direct labels may include fluorescent, chemiluminescent, bioluminescent, radioactive, metallic, biotin or enzymatic molecules. Methods of combining these labels to antibodies or other macromolecules are well known to those in the art. Examples include the methods of Hijmans, W. et al. (1969), Clin. Exp. Immunol. 4, 457-, for fluorescein isothiocyanate, the method of Goding, J. W. (1976), J. Immunol. Meth. 13, 215-, for tetramethylrhodamine isothiocyanate, and the method of Ingrall, E. (1980), Meth. in Enzymol. 70, 419-439 for enzymes.
These detector antibodies may also be labeled indirectly. In this case the actual detection molecule is attached to a secondary antibody or other molecule with binding affinity for the anti-bacteria cell surface antibody. If a secondary antibody is used it is preferably a general antibody to a class of antibody (IgG and IgM) from the animal species used to raise the anti-bacteria cell surface antibodies. For example, the second antibody may be conjugated to an enzyme, either alkaline phosphatase or to peroxidase. To detect the label, after the bacteria of interest is contacted with the second antibody and washed, the isolated component of the sample is immersed in a solution containing a chromogenic substrate for either alkaline phosphatase or peroxidase. A chromogenic substrate is a compound that can be cleaved by an enzyme to result in the production of some type of detectable signal which only appears when the substrate is cleaved from the base molecule. The chromogenic substrate is colorless, until it reacts with the enzyme, at which time an intensely colored product is made. Thus, material from the bacteria colonies adhered to the membrane sheet will become an intense blue/purple/black color, or brown/red while material from other colonies will remain colorless. Examples of detection molecules include fluorescent substances, such as 4-methylumbelliferyl phosphate, and chromogenic substances, such as 4-nitrophenylphosphate, 3,3′,5,5′-tetramethylbenzidine and 2,2′-azino-di-[3-ethelbenz-thiazoliane sulfonate (6)]. In addition to alkaline phosphatase and peroxidase, other useful enzymes include β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, α-mannosidase, galactose oxidase, glucose oxidase and hexokinase.
Detection of bacteria of interest using NMR may be accomplished as follows. In the use of NMR as a detection methodology, in which a sample is delivered to a detector coil centered in a magnet, the target of interest, such as a magnetically labeled bacterium, may be delivered by a fluid medium, such as a fluid substantially composed of water. In such a case, the magnetically labeled target may go from a region of very low magnetic field to a region of high magnetic field, for example, a field produced by an about 1 to about 2 Tesla magnet. In this manner, the sample may traverse a magnetic gradient, on the way into the magnet and on the way out of the magnet. As may be seen via equations 1 and 2 below, the target may experience a force pulling into the magnet in the direction of sample flow on the way into the magnet, and a force into the magnet in the opposite direction of flow on the way out of the magnet. The target may experience a retaining force trapping the target in the magnet if flow is not sufficient to overcome the gradient force.
m dot (del B)=F Equation 1
vt=−F/(6*p*n*r) Equation 2
where n is the viscosity, r is the particle diameter, F is the vector force, B is the vector field, and m is the vector moment of the particle
The detection method is based on a miniature NMR detector tuned to the magnetic resonance of water. When the sample is magnetically homogenous (no bound targets), the NMR signal from water is clearly detectable and strong. The presence of magnetic material in the detector coil disturbs the magnetic field, resulting in reduction in water signal. One of the primary benefits of this detection method is that there is no magnetic background in biological samples which significantly reduces the requirements for stringency of sample processing. In addition, since the detected signal is generated by water, there is a built-in signal amplification which allows for the detection of a single labeled bacterium. NMR detection is described in further detail in co-pending and co-assigned U.S. application Ser. No. 13/091,506.
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof.
The present application is a continuation of U.S. non-provisional patent application Ser. No. 14/132,244, filed Dec. 18, 2013, which claims the benefit of and priority to U.S. provisional patent application Ser. No. 61/739,618, filed Dec. 19, 2012, the content of each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3970518 | Giaever | Jul 1976 | A |
4018886 | Giaever | Apr 1977 | A |
4180563 | Fauve | Dec 1979 | A |
4230685 | Senyei et al. | Oct 1980 | A |
4267234 | Rembaum | May 1981 | A |
4434237 | Dinarello | Feb 1984 | A |
4452773 | Molday | Jun 1984 | A |
4551435 | Liberti et al. | Nov 1985 | A |
4554088 | Whitehead et al. | Nov 1985 | A |
4659678 | Forrest et al. | Apr 1987 | A |
4677055 | Dodin et al. | Jun 1987 | A |
4683195 | Mullis et al. | Jul 1987 | A |
4683202 | Mullis | Jul 1987 | A |
4695393 | Chagnon et al. | Sep 1987 | A |
4795698 | Owen et al. | Jan 1989 | A |
4851330 | Kohne | Jul 1989 | A |
4901018 | Lew | Feb 1990 | A |
4925788 | Liberti | May 1990 | A |
4942124 | Church | Jul 1990 | A |
4988617 | Landegren et al. | Jan 1991 | A |
5004699 | Winters | Apr 1991 | A |
5047321 | Loken et al. | Sep 1991 | A |
5057413 | Terstappen et al. | Oct 1991 | A |
5089386 | Stackebrandt et al. | Feb 1992 | A |
5108933 | Liberti et al. | Apr 1992 | A |
5136095 | Tarnowski et al. | Aug 1992 | A |
5149625 | Church et al. | Sep 1992 | A |
5164297 | Josephson et al. | Nov 1992 | A |
5186827 | Liberti et al. | Feb 1993 | A |
5200084 | Liberti et al. | Apr 1993 | A |
5229724 | Zeiger | Jul 1993 | A |
5234816 | Terstappen | Aug 1993 | A |
5242794 | Whiteley et al. | Sep 1993 | A |
5254460 | Josephson et al. | Oct 1993 | A |
5270163 | Gold et al. | Dec 1993 | A |
5338687 | Lee et al. | Aug 1994 | A |
5342790 | Levine et al. | Aug 1994 | A |
5460979 | Levine et al. | Oct 1995 | A |
5466574 | Liberti et al. | Nov 1995 | A |
5494810 | Barany et al. | Feb 1996 | A |
5512332 | Liberti et al. | Apr 1996 | A |
5541072 | Wang et al. | Jul 1996 | A |
5583024 | McElroy et al. | Dec 1996 | A |
5583033 | Terstappen et al. | Dec 1996 | A |
5597531 | Liberti et al. | Jan 1997 | A |
5604097 | Brenner | Feb 1997 | A |
5605805 | Verwer et al. | Feb 1997 | A |
5622831 | Liberti et al. | Apr 1997 | A |
5622853 | Terstappen et al. | Apr 1997 | A |
5636400 | Young | Jun 1997 | A |
5646001 | Terstappen et al. | Jul 1997 | A |
5654636 | Sweedler et al. | Aug 1997 | A |
5660990 | Rao et al. | Aug 1997 | A |
5674713 | McElroy et al. | Oct 1997 | A |
5677133 | Oberhardt | Oct 1997 | A |
5681478 | Lea et al. | Oct 1997 | A |
5684401 | Peck et al. | Nov 1997 | A |
5695934 | Brenner | Dec 1997 | A |
5695946 | Benjamin et al. | Dec 1997 | A |
5698271 | Liberti et al. | Dec 1997 | A |
5700673 | McElroy et al. | Dec 1997 | A |
5741714 | Liberti | Apr 1998 | A |
5768089 | Finnigan | Jun 1998 | A |
5770461 | Sakazume et al. | Jun 1998 | A |
5773307 | Colin et al. | Jun 1998 | A |
5776710 | Levine et al. | Jul 1998 | A |
5795470 | Wang et al. | Aug 1998 | A |
5821066 | Pyle et al. | Oct 1998 | A |
5834217 | Levine et al. | Nov 1998 | A |
5840580 | Terstappen et al. | Nov 1998 | A |
5846719 | Brenner et al. | Dec 1998 | A |
5863722 | Brenner | Jan 1999 | A |
5866099 | Owen et al. | Feb 1999 | A |
5869252 | Bouma et al. | Feb 1999 | A |
5876593 | Liberti et al. | Mar 1999 | A |
5925573 | Colin et al. | Jul 1999 | A |
5935825 | Nishimura et al. | Aug 1999 | A |
5948412 | Murphy | Sep 1999 | A |
5955583 | Beavo et al. | Sep 1999 | A |
5985153 | Dolan et al. | Nov 1999 | A |
5993665 | Terstappen et al. | Nov 1999 | A |
6013188 | Terstappen et al. | Jan 2000 | A |
6013532 | Liberti et al. | Jan 2000 | A |
6060882 | Doty | May 2000 | A |
6097188 | Sweedler et al. | Aug 2000 | A |
6100099 | Gordon et al. | Aug 2000 | A |
6120856 | Liberti et al. | Sep 2000 | A |
6136182 | Dolan et al. | Oct 2000 | A |
6138077 | Brenner | Oct 2000 | A |
6146838 | Williams et al. | Nov 2000 | A |
6150516 | Brenner et al. | Nov 2000 | A |
6172214 | Brenner | Jan 2001 | B1 |
6172218 | Brenner | Jan 2001 | B1 |
6194900 | Freeman et al. | Feb 2001 | B1 |
6228624 | Terstappen | May 2001 | B1 |
6235475 | Brenner et al. | May 2001 | B1 |
6236205 | Ludeke et al. | May 2001 | B1 |
6242915 | Hurd | Jun 2001 | B1 |
6265150 | Terstappen et al. | Jul 2001 | B1 |
6287791 | Terstappen et al. | Sep 2001 | B1 |
6307372 | Sugarman et al. | Oct 2001 | B1 |
6326787 | Cowgill | Dec 2001 | B1 |
6348318 | Valkirs | Feb 2002 | B1 |
6352828 | Brenner | Mar 2002 | B1 |
6361749 | Terstappen et al. | Mar 2002 | B1 |
6361944 | Mirkin et al. | Mar 2002 | B1 |
6365362 | Terstappen et al. | Apr 2002 | B1 |
6397094 | Ludeke et al. | May 2002 | B1 |
6404193 | Dourdeville | Jun 2002 | B1 |
6456072 | Webb et al. | Sep 2002 | B1 |
6469636 | Baird et al. | Oct 2002 | B1 |
6487437 | Viswanathan et al. | Nov 2002 | B1 |
6495357 | Fuglsang et al. | Dec 2002 | B1 |
6512941 | Weiss et al. | Jan 2003 | B1 |
6514415 | Hatch et al. | Feb 2003 | B2 |
6551843 | Rao et al. | Apr 2003 | B1 |
6555324 | Olweus et al. | Apr 2003 | B1 |
6582938 | Su et al. | Jun 2003 | B1 |
6587706 | Viswanathan | Jul 2003 | B1 |
6594517 | Nevo | Jul 2003 | B1 |
6620627 | Liberti et al. | Sep 2003 | B1 |
6623982 | Liberti et al. | Sep 2003 | B1 |
6623983 | Terstappen et al. | Sep 2003 | B1 |
6645731 | Terstappen et al. | Nov 2003 | B2 |
6660159 | Terstappen et al. | Dec 2003 | B1 |
6696838 | Raftery et al. | Feb 2004 | B2 |
6700379 | Peck et al. | Mar 2004 | B2 |
6788061 | Sweedler et al. | Sep 2004 | B1 |
6790366 | Terstappen et al. | Sep 2004 | B2 |
6818395 | Quake et al. | Nov 2004 | B1 |
6822454 | Peck et al. | Nov 2004 | B2 |
6845262 | Albert et al. | Jan 2005 | B2 |
6858384 | Terstappen et al. | Feb 2005 | B2 |
6867021 | Maes et al. | Mar 2005 | B2 |
6876200 | Anderson et al. | Apr 2005 | B2 |
6890426 | Terstappen et al. | May 2005 | B2 |
6898430 | Liberti et al. | May 2005 | B1 |
6914538 | Baird et al. | Jul 2005 | B2 |
6958609 | Raftery et al. | Oct 2005 | B2 |
7011794 | Kagan et al. | Mar 2006 | B2 |
7056657 | Terstappen et al. | Jun 2006 | B2 |
7078224 | Bitner et al. | Jul 2006 | B1 |
7096057 | Hockett et al. | Aug 2006 | B2 |
7141978 | Peck et al. | Nov 2006 | B2 |
7169560 | Lapidus et al. | Jan 2007 | B2 |
7200430 | Thomas et al. | Apr 2007 | B2 |
7202667 | Barbic | Apr 2007 | B2 |
RE39793 | Brenner | Aug 2007 | E |
7271592 | Gerald, II et al. | Sep 2007 | B1 |
7274191 | Park et al. | Sep 2007 | B2 |
7282180 | Tibbe et al. | Oct 2007 | B2 |
7282337 | Harris | Oct 2007 | B1 |
7282350 | Rao et al. | Oct 2007 | B2 |
7304478 | Tsuda et al. | Dec 2007 | B2 |
7332288 | Terstappen et al. | Feb 2008 | B2 |
7345479 | Park et al. | Mar 2008 | B2 |
7393665 | Brenner | Jul 2008 | B2 |
7403008 | Blank et al. | Jul 2008 | B2 |
7405567 | McDowell | Jul 2008 | B2 |
7523385 | Nguyen et al. | Apr 2009 | B2 |
7537897 | Brenner et al. | May 2009 | B2 |
7544473 | Brenner | Jun 2009 | B2 |
7564245 | Lee | Jul 2009 | B2 |
7666308 | Scholtens et al. | Feb 2010 | B2 |
7688777 | Liberti, Jr. et al. | Mar 2010 | B2 |
7764821 | Coumans et al. | Jul 2010 | B2 |
7815863 | Kagan et al. | Oct 2010 | B2 |
7828968 | Tibbe et al. | Nov 2010 | B2 |
7863012 | Rao et al. | Jan 2011 | B2 |
7901950 | Connelly et al. | Mar 2011 | B2 |
7943397 | Tibbe et al. | May 2011 | B2 |
8067938 | McDowell | Nov 2011 | B2 |
8102176 | Lee | Jan 2012 | B2 |
8110101 | Tibbe et al. | Feb 2012 | B2 |
8111669 | Liberti, Jr. et al. | Feb 2012 | B2 |
8128890 | Droog et al. | Mar 2012 | B2 |
8841104 | Dryga et al. | Sep 2014 | B2 |
8889368 | Barbreau et al. | Nov 2014 | B2 |
9389225 | Dryga et al. | Jul 2016 | B2 |
9428547 | Dryga et al. | Aug 2016 | B2 |
9434940 | Dykes | Sep 2016 | B2 |
9476812 | Dryga et al. | Oct 2016 | B2 |
9551704 | Norvell | Jan 2017 | B2 |
9599610 | Sitdikov et al. | Mar 2017 | B2 |
9696302 | Dryga et al. | Jul 2017 | B2 |
20010018192 | Terstappen et al. | Aug 2001 | A1 |
20020009759 | Terstappen et al. | Jan 2002 | A1 |
20020012669 | Presnell et al. | Jan 2002 | A1 |
20020098531 | Thacker | Jul 2002 | A1 |
20020130661 | Raftery et al. | Sep 2002 | A1 |
20020132228 | Terstappen et al. | Sep 2002 | A1 |
20020141913 | Terstappen et al. | Oct 2002 | A1 |
20020164629 | Quake et al. | Nov 2002 | A1 |
20020164659 | Rao et al. | Nov 2002 | A1 |
20020172987 | Terstappen et al. | Nov 2002 | A1 |
20030003441 | Colston et al. | Jan 2003 | A1 |
20030022231 | Wangh et al. | Jan 2003 | A1 |
20030054376 | Mullis et al. | Mar 2003 | A1 |
20030088181 | Gleich | May 2003 | A1 |
20030092029 | Josephson et al. | May 2003 | A1 |
20030129676 | Terstappen et al. | Jul 2003 | A1 |
20030170613 | Straus | Sep 2003 | A1 |
20030203507 | Liberti et al. | Oct 2003 | A1 |
20030206577 | Liberti et al. | Nov 2003 | A1 |
20030222648 | Fan | Dec 2003 | A1 |
20040004043 | Terstappen et al. | Jan 2004 | A1 |
20040018611 | Ward et al. | Jan 2004 | A1 |
20040072269 | Rao et al. | Apr 2004 | A1 |
20040076990 | Picard et al. | Apr 2004 | A1 |
20040087032 | Chandler et al. | May 2004 | A1 |
20040101443 | Kagan et al. | May 2004 | A1 |
20040118757 | Terstappen et al. | Jun 2004 | A1 |
20040151629 | Pease et al. | Aug 2004 | A1 |
20050003464 | Tibbe et al. | Jan 2005 | A1 |
20050006990 | Williquette et al. | Jan 2005 | A1 |
20050026144 | Maes et al. | Feb 2005 | A1 |
20050043521 | Terstappen et al. | Feb 2005 | A1 |
20050069900 | Lentrichia | Mar 2005 | A1 |
20050079520 | Wu | Apr 2005 | A1 |
20050111414 | Liberti et al. | May 2005 | A1 |
20050128985 | Liberti et al. | Jun 2005 | A1 |
20050181353 | Rao et al. | Aug 2005 | A1 |
20050181463 | Rao et al. | Aug 2005 | A1 |
20050245814 | Anderson et al. | Nov 2005 | A1 |
20060024756 | Tibbe et al. | Feb 2006 | A1 |
20060115380 | Kagan et al. | Jun 2006 | A1 |
20060129237 | Imran | Jun 2006 | A1 |
20060129327 | Kim et al. | Jun 2006 | A1 |
20060147901 | Jan et al. | Jul 2006 | A1 |
20060194192 | Rao et al. | Aug 2006 | A1 |
20060233712 | Penades et al. | Oct 2006 | A1 |
20060257847 | Scholtens et al. | Nov 2006 | A1 |
20060257945 | Masters et al. | Nov 2006 | A1 |
20060281094 | Squirrell et al. | Dec 2006 | A1 |
20060292555 | Xu et al. | Dec 2006 | A1 |
20070037173 | Allard et al. | Feb 2007 | A1 |
20070037231 | Sauer-Budge et al. | Feb 2007 | A1 |
20070090836 | Xiang et al. | Apr 2007 | A1 |
20070114181 | Li et al. | May 2007 | A1 |
20070116602 | Lee | May 2007 | A1 |
20070117158 | Coumans et al. | May 2007 | A1 |
20070152669 | Park et al. | Jul 2007 | A1 |
20070152670 | Park et al. | Jul 2007 | A1 |
20070154960 | Connelly et al. | Jul 2007 | A1 |
20070166835 | Bobrow et al. | Jul 2007 | A1 |
20070183935 | Clemmens et al. | Aug 2007 | A1 |
20070231926 | Ikeda | Oct 2007 | A1 |
20070264629 | Holmes et al. | Nov 2007 | A1 |
20070296413 | Park et al. | Dec 2007 | A1 |
20080026451 | Braman et al. | Jan 2008 | A1 |
20080042650 | McDowell | Feb 2008 | A1 |
20080081330 | Kahvejian | Apr 2008 | A1 |
20080099715 | Adams et al. | May 2008 | A1 |
20080113350 | Terstappen | May 2008 | A1 |
20080135490 | Li et al. | Jun 2008 | A1 |
20080199851 | Egan et al. | Aug 2008 | A1 |
20080204011 | Shoji | Aug 2008 | A1 |
20080204022 | Sillerud et al. | Aug 2008 | A1 |
20080272788 | McDowell | Nov 2008 | A1 |
20080286838 | Yuan et al. | Nov 2008 | A1 |
20080315875 | Sillerud | Dec 2008 | A1 |
20090026082 | Rothberg et al. | Jan 2009 | A1 |
20090053799 | Chang-Yen et al. | Feb 2009 | A1 |
20090061456 | Allard et al. | Mar 2009 | A1 |
20090061476 | Tibbe et al. | Mar 2009 | A1 |
20090061477 | Tibbe et al. | Mar 2009 | A1 |
20090088336 | Burd | Apr 2009 | A1 |
20090127589 | Rothberg et al. | May 2009 | A1 |
20090134869 | Lee | May 2009 | A1 |
20090136946 | Connelly et al. | May 2009 | A1 |
20090146658 | McDowell et al. | Jun 2009 | A1 |
20090148847 | Kokoris et al. | Jun 2009 | A1 |
20090156572 | Ikeura et al. | Jun 2009 | A1 |
20090173681 | Siddiqi | Jul 2009 | A1 |
20090191535 | Connelly et al. | Jul 2009 | A1 |
20090227044 | Dosev et al. | Sep 2009 | A1 |
20090246796 | Bernard et al. | Oct 2009 | A1 |
20090256572 | McDowell | Oct 2009 | A1 |
20090258365 | Terstappen et al. | Oct 2009 | A1 |
20090286264 | Scholtens et al. | Nov 2009 | A1 |
20100035252 | Rothberg et al. | Feb 2010 | A1 |
20100061890 | Miller et al. | Mar 2010 | A1 |
20100068723 | Jovanovich et al. | Mar 2010 | A1 |
20100072994 | Lee et al. | Mar 2010 | A1 |
20100129785 | Pris et al. | May 2010 | A1 |
20100137143 | Rothberg et al. | Jun 2010 | A1 |
20100144005 | Bin Kingombe et al. | Jun 2010 | A1 |
20100184033 | West et al. | Jul 2010 | A1 |
20100188073 | Rothberg et al. | Jul 2010 | A1 |
20100197507 | Rothberg et al. | Aug 2010 | A1 |
20100219824 | Sillerud et al. | Sep 2010 | A1 |
20100225315 | McDowell | Sep 2010 | A1 |
20100282617 | Rothberg et al. | Nov 2010 | A1 |
20100282788 | Liberti | Nov 2010 | A1 |
20100300559 | Schultz et al. | Dec 2010 | A1 |
20100300895 | Nobile et al. | Dec 2010 | A1 |
20100301398 | Rothberg et al. | Dec 2010 | A1 |
20100304982 | Hinz et al. | Dec 2010 | A1 |
20100326587 | Kagan et al. | Dec 2010 | A1 |
20110014686 | Tibbe et al. | Jan 2011 | A1 |
20110018538 | Lee | Jan 2011 | A1 |
20110044527 | Tibbe et al. | Feb 2011 | A1 |
20110046475 | Assif et al. | Feb 2011 | A1 |
20110052037 | Coumans et al. | Mar 2011 | A1 |
20110059444 | Stromberg et al. | Mar 2011 | A1 |
20110070586 | Slezak et al. | Mar 2011 | A1 |
20110086338 | Hwang et al. | Apr 2011 | A1 |
20110091987 | Weissleder et al. | Apr 2011 | A1 |
20110098623 | Zhang et al. | Apr 2011 | A1 |
20110104718 | Rao et al. | May 2011 | A1 |
20110137018 | Chang-Yen et al. | Jun 2011 | A1 |
20110183398 | Dasaratha et al. | Jul 2011 | A1 |
20110262893 | Dryga et al. | Oct 2011 | A1 |
20110262925 | Dryga et al. | Oct 2011 | A1 |
20110262926 | Esch et al. | Oct 2011 | A1 |
20110262927 | Dryga et al. | Oct 2011 | A1 |
20110262932 | Esch et al. | Oct 2011 | A1 |
20110262933 | Dryga et al. | Oct 2011 | A1 |
20110262989 | Clarizia et al. | Oct 2011 | A1 |
20110263833 | Dryga et al. | Oct 2011 | A1 |
20110300551 | Rao et al. | Dec 2011 | A1 |
20110300609 | Lim et al. | Dec 2011 | A1 |
20110301042 | Steinmann et al. | Dec 2011 | A1 |
20120045828 | Davis et al. | Feb 2012 | A1 |
20120094275 | Rao et al. | Apr 2012 | A1 |
20120100546 | Lowery, Jr. et al. | Apr 2012 | A1 |
20120112744 | McDowell et al. | May 2012 | A1 |
20130109590 | Clarizia et al. | May 2013 | A1 |
20130196341 | Neely et al. | Aug 2013 | A1 |
20130203634 | Jovanovich et al. | Aug 2013 | A1 |
20130316355 | Dryga et al. | Nov 2013 | A1 |
20140100136 | Clarizia et al. | Apr 2014 | A1 |
20140170021 | Dryga | Jun 2014 | A1 |
20140170639 | Norvell | Jun 2014 | A1 |
20140170640 | Dykes | Jun 2014 | A1 |
20140170641 | Macemon | Jun 2014 | A1 |
20140170652 | Sitdikov et al. | Jun 2014 | A1 |
20140170667 | Dykes et al. | Jun 2014 | A1 |
20140170669 | Vandervest | Jun 2014 | A1 |
20140170727 | Dryga et al. | Jun 2014 | A1 |
20140171340 | Dykes et al. | Jun 2014 | A1 |
20150212079 | Dryga et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
2 342 047 | Sep 2001 | CA |
1 304 581 | Apr 2003 | EP |
2138835 | Dec 2009 | EP |
2261650 | Dec 2010 | EP |
1988003957 | Jun 1988 | WO |
8906699 | Jul 1989 | WO |
9008841 | Aug 1990 | WO |
9102811 | Mar 1991 | WO |
9208805 | May 1992 | WO |
9215883 | Sep 1992 | WO |
9217609 | Oct 1992 | WO |
9531481 | Nov 1995 | WO |
9820148 | May 1998 | WO |
9953320 | Oct 1999 | WO |
0173460 | Oct 2001 | WO |
0298364 | Dec 2002 | WO |
2005026762 | Mar 2005 | WO |
2005106480 | Nov 2005 | WO |
2007018601 | Feb 2007 | WO |
2007123345 | Nov 2007 | WO |
2007135099 | Nov 2007 | WO |
2007123342 | Nov 2007 | WO |
2008119054 | Oct 2008 | WO |
2008139419 | Nov 2008 | WO |
2008147530 | Dec 2008 | WO |
2009048673 | Apr 2009 | WO |
2009055587 | Apr 2009 | WO |
2009072003 | Jun 2009 | WO |
2009122216 | Oct 2009 | WO |
2011019874 | Feb 2011 | WO |
2011133630 | Oct 2011 | WO |
2011133632 | Oct 2011 | WO |
2011133759 | Oct 2011 | WO |
2011133760 | Oct 2011 | WO |
Entry |
---|
Moudrianakis et al., Proc. Natl. Acad. Sci. 53:564-71 (1965). |
Mulder, et al., Characterization of two human monoclonal antibodies reactive with HLA-B12 and HLA-B60, respectively, raised by in vitro secondary immunization of peripheral blood lymphocytes, Hum. Immunol., 36 (3):186-192 (1993). |
Myers and Gelfand, Biochemistry 30:7661 (1991). |
Narang et al., Methods Enzymol., 68:90 (1979). |
NCBI Geo Gene Expression Omnibus, Entry for GSE22885, retrieved from https://www.nobi.nlm.nih.gov/geo/query/acc.cgi?aco=GSE22885 on May 25, 2017, with excerpts of files GPL10672_IMS_annotation.ann.txt.gz and GSM565264.txt.gz therein (five pages total), publicly available on Jul. 13, 2010 (5 pages). |
Nordstrom et al., J. Biol. Chem. 256:3112 (1981). |
Nyquist, Thermal Agitation of Electrical Charge in Conductors, Phys. Rev., 32:110-113 (1928). |
Ohno et al, 2011, Effects of Blood Group Antigen-Binding Adhesin Expression during Helicobacter pylori Infection of Mongolian Gerbils, The Journal of Infectious Diseases 203:726-735. |
Olson, et al., High-resolution microcoil Nmr for analysis of mass-limited, nanoliter samples, Anal. Chem., 70:645-650 (1998). |
Olsvik_et_al_Magnetic_Seperation_Techniques_in_Diagnostic_Microbiology_Clinical_Microbiol_Rev_1994_7_43_54. |
Pappas, et al., Cellular Separations: A Review of New Challenges in Analytical Chemistry, Analytica Chimica Acta, 601 (1):26-35 (2007). |
Payne, M.J. et al., “The Use of Immobilized Lectins in the Separation of Staphylococcus aureus, Escherichia coli, Listeria and Salmonella spp. from Pure Cultures and Foods”, Journal of Applied Bacteriology, 1992, No. 73, pp. 41-52 (12 Pages). |
Peck, et al., Design and Analysis of Microcoils for NMR Microscopy, J. Magn. Reson. B 108:114-124 (1995). |
Peck, et al., RF Microcoils patterned using microlithographic techniques for use as microsensors in NMR, Proc. 15th Ann. Int. Conf. of the IEEE, Oct. 28-31, pp. 174-175 (1993). |
Perez, et al., Viral-induced self-assembly of magnetic nanoparticle allows detection of viral particles in biological media, J. Am. Chem. Soc., 125:10192-10193 (2003). |
Qiu, et al., Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics, Talanta, 79:787-795 (2009). |
Rogers, et al., Using microcontact printing to fabricate microcoils on capillaries for high resolution proton nuclear magnetic resonance on nanoliter volumes, Appl. Phys. Lett., 70:2464-2466 (1997). |
Safarik et al., “The application of magnetic separations in applied Microbiology” Journal of Applied Bacteriology 1995, 78, 575-585. |
Sealer, et al., Design and Testing of high sensitivity Microreceiver Coil Apparatus for Nuclear Magnetic Resonance and Imaging, Rev. Sci. Inst., 72:2171-2179 (2001). |
Sealer, et al., Triaxial Magnetic Field Gradient System for Microcoil Magnetic Resonance Imaging, Rev. Sci. Inst., 71:4263-4272 (2000). |
Sillerud, et al., 1H NMR Detection of Superparamagnetic Nanoparticles at 1 T using a Microcoil and Novel Tuning Circuit, J. Magn. Reson. 181:181-190 (2006). |
Sista et al., 2008, Heterogeneous Immunoassays Using Magnetic beads on a Digital Microfluidic Platform, Lab Chip 8 (2):2188-2196. |
Skjerve, et al., Detection of Listeria monocytogenes in foods by immunomagnetic separation, Appl. Env. Microbiol., 56:3478 (1990). |
Soni et al., Clin Chem 53:1996-2001 (2007). |
Sorli, et al., Micro-spectrometer for NMR: analysis of small quantities in vitro, Meas. Sci. Technol., 15:877-880 (2004). |
Stauber, et al. Rapid generation of monoclonal antibody-secreting hybridomas against African horse sickness virus by in vitro immunization and the fusion/cloning technique, J. Immunol. Methods, 161(2):157-168 (1993). |
Stenesh and McGowan, Biochim Biophys Acta, 475:32 (1977). |
Stocker, et al. Nanoliter volume, high-resolution NMR Microspectroscopy using a 60 um planer microcoil, IEEE Trans. Biomed. Eng., 44:1122-1127 (1997). |
Subramanian, et al., RF Microcoil Design for Practical NMR of Mass-Limited Samples, J. Magn. Reson., 133:227-231 (1998). |
Takagi et al., Appl. Environ. Microbiol. 63:4504 (1997). |
Taktak, et al., Multiparameter Magnetic Relaxation Switch Assays, Analytical Chemistry, 79(23):8863-8869 (2007). |
The United States Naval Research Laboratory (NRL), “The FABS Device: Magnetic Particles”, retrieved from http://www.nrl.navy.mil/chemistry/6170/6177/beads.php on Jan. 8, 2013, two pages. |
Torensama, et al., Monoclonal Antibodies Specific for the Phase-Variant O-Acetylated Ki Capsule of Escerichia coli, J. Clin. Microbiol., 29(7):1356-1358 (1991). |
Trumbull, et al., Integrating microfabricated fluidic systems and NMR spectroscopy, IEEE Trans. Biomed. Eng., 47 (1):3-7 (2000). |
Van Bentum, et al., Towards Nuclear Magnetic Resonance (MU)-Spectroscopy and (MU)-Imaging, Analyst, Royal Society of Chemistry, London, 129(9):793-803 (2004). |
Vandeventer, J. Clin. Microbiol. Jul. 2011, 49(7):2533-39. |
Venkateswaran, et al., Production of Anti-Fibroblast Growth Factor Receptor Monoclonal Antibodies by In Vitro Immunization, Hybridoma, 11(6):729-739 (1992). |
Verma, Biochim Biophys Acta. 473:1-38 (1977). |
Vermunt, et al., Isolation of salmonelas by immunomagnetic separation, J. Appl. Bact., 72:112-118 (1992). |
Wang and Irudayaraj, Multifunctional Magnetic-Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens, Small, 6(2):283-289 (2010). |
Wang et al., 2010, Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes, Analytical and Bioanalytical Chemistry, 399(3):1271-1278. |
Wang Hong, Ph.D., “Rapid and Simultaneous Detection of Foodborne Bacterial Pathogens Using Multiplex Assays”, Dissertation Abstract, University of Arkansas, 2010 (2 Pages). |
Webb and Grant, Signal-to-Noise and Magnetic Susceptibility Trade-offs in Solenoidal Microcoils for NMR, J. Magn. Reson. B, 113:83-87 (1996). |
Wensink, et al., High Signal to Noise Ratio in Low-field NMR on a Chip: Simulations and Experimental Results, 17th IEEE MEMS, 407-410 (2004). |
Williams and Wang, Microfabrication of an electromagnetic power micro-relay using SU-8 based UV-LIGA technology, Microsystem Technologies, 10(10):699-705 (2004). |
Wu, et al., 1H-NMR Spectroscopy on the Nanoliter Scale for Static and On-Line Measurements, Anal. Chem., 66:3849 (1994). |
Yang et al., “Simultaneous Detection of Escherichia coli O157:H7 and Salmonella typhimurium Using Quantum Dots as Fluorescence Labels”, Analyst 131(3), Mar. 2006, pp. 394-101 (8 Pages). |
Yeung et al., 2002, Quantitative Screening of Yeast Surface-Displayed Polypeptide Libraries by Magnetic Bead Capture. Biotechnol. 18:212-220. |
Yu et al. “Development of a Magnetic Microplate Chemifluorimmunoassay for Rapid Detection of Bacteria and Toxin in Blood”, Analytical Biochemistry 261 (1998), pp. 1-7. |
Zhao, et al., A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles, PNAS, 101(42):15027-15032 (2004). |
Agrawal et al., 1990, Tetrahedron Letters 31:1543-46. |
Andreassen, Jack, “One micron magnetic beads optimised for automated immunoassays” as Published in CLI Apr. 2005, retrieved from http://www.cli-online.com/uploads/tx_ttproducts/datasheet/one-micron-magnetic-beads-optimised-for-automatedimmunoassays.pdf on Dec. 28, 2015, four pages. |
Armenean, et al., NMR Radiofrequency Microcoil Design: Electromagnetic Simulation Usefulness, Compes Rendus Biologies, 325(4):457-463 (2002). |
Armenean, et al., Solenoidal and Planar Microcoils for Nmr Spectroscopy, Proc. of the 25th Annual Int. Conf. of the IEEE Eng. in Med. and Bio. Soc., Cancun, Mexico, Sep. 17, 2003, pp. 3045-3048. |
Barany et al., Gene, 108:1 (1991). |
Barmy F. (1991) PNAS 88:189-193. |
Barmy, F., Genome research, 1:5-16 (1991). |
Behnia and Webb, Limited-Sample NMR Using Solenoidal Microcoils, Perfluorocarbon Plugs, and Capillary Spinning, Anal. Chem., 70:5326-5331 (1998). |
Braslaysky et al., PNAS, 100:3690-3694 (2003). |
Brown et al., Methods Enzymol., 68:109 (1979). |
Bruno et al., “Development of an Immunomagnetic Assay System for Rapid Detection of Bacteria and Leukocytes in Body Fluids,” J Mol Recog, 9 (1996) 474-479. |
Burtis et al. (Burtis, C.A. (Ed.), Tietz Textbook of Clinical Chemistry, 3rd Edition (1999), W.B. Saunders Company, Philadelphia, PA, pp. 1793-1794). |
Butter et al., 2002, Synthesis and properties of iron ferrofluids, J. Magn. Magn. Mater. 252:1-3. |
Byrne, et al., Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins, Sensors, 9:4407-4445 (2009). |
Campuzano, et al., Bacterial Isolation by Lectin Modified Microengines, Nano Lett. Jan. 11, 2012; 12(1): 396-401. |
Cann et al., Proc. Natl. Acad. Sci. 95:14250 (1998). |
Cariello et al., Nucl Acids Res, 19:4193 (1991). |
Carroll, N. M., E. E. Jaeger, et al. (2000). “Detection of and discrimination between grampositive and gram-negative bacteria in intraocular samples by using nested PCR.” J Clin 15 Microbiol 38(5): 1753-1757. |
Chandler et al., Automated immunomagnetic separation and microarray detection of E. coli 0157:H7 from poultry carcass rinse, Int. J. Food Micro., 70 (2001) 143-154. |
Chapman, et al., Use of commercial enzyme immunoassays and immunomagnetic separation systems for detecting Escherichia coli O157 in bovine fecal samples, Applied and Environmental Microbiology, 63(7):2549-2553 (1997). |
Cheng et al, 2012, Concentration and detection of bacteria in virtual environmental samples based on non-Immunomagnetic separation and quantum dots by using a laboratory-made system, Proc. of SPIE:82310Y-1-82310Y-18. |
Chien et al., J. Bacteriol, 127:1550 (1976). |
Chungang Wang et al. “Multifunctional Magnetic-OPtical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens”, Small, vol. 6, No. 2 Jan. 18, 2010, pp. 283-289. |
Ciobanu and Pennington, 3D Micron-scale MRI of Single Biological Cells, Solid State Nucl. Magn. Reson., 25:138-141 (2004). |
Cold Spring Harbor Protocols, Recipe for Dulbecco's phosphate-buffered saline (Dulbecco's PBS, 2009, retrieved from http://cshprotocols.cshIp.Org/content/2009/3/pdb.rec11725. full?text_only=true on Mar. 9, 2015, one page. |
Cooper et al., 2011, A micromagnetic flux concentrator device for isolation and visualization of pathogens. 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Oct. 2-6, 2011, Seattle, Washington, USA. |
Cross, et al., Choice of Bacteria in Animal Models of Sepsis, Infec. Immun. 61(7):2741-2747 (1983). |
Dam et al. “Garlic (Allium sativum) Lectins Bind to High Mannose Oligosaccharide Chains”, Journal of Biological Chemistry vol. 273, No. 10, Issue of Mar. 6, pp. 5528-5535, 1998. |
Diaz et al., Braz J. Med. Res., 31:1239 (1998). |
Djukovic, et al., Signal Enhancement in HPLC/Microcoil NMR Using Automated col. Trapping, Anal. Chem., 18:7154-7160 (2006). |
Dover, Jason E., et al. “Recent advances in peptide probe-based biosensors for detection of infectious agents.” Journal of microbiological methods 78.1 (2009): 10-19. |
Drancourt, et al., Diagnosis of Mediterranean Spotted Fever by Indirect Immunofluorescence of Rickettsia conorii in Circulating Endothelial Cells Isolated with Monoclonal Antibody-Coated Immunomagnetic Beads, J. Infectious Diseases, 166(3):660-663, 1992. |
Dynabeads® for Immunoassay IVD, retrieved from http://www.in vitrogen.com/site/i3s/en/home/Products-and-Services/Applications/DiagnosticsClinical-Research/Bead-based-IVD-Assays/Bead-based-Immunoassav-iVD.html on May 29, 2013, four pages). |
Elnifro, Elfath M., et al. “Multiplex PCR: optimization and application in diagnostic virology.” Clinical Microbiology Reviews 13.4 (2000): 559-570. |
Engvall, Enzyme immunoassay ELISA and EMIT, Meth. in Enzymol., 70:419-439 (1980). |
Extended European Search Report dated Aug. 20, 2014, for EP Application No. 11864030.9 (7 pages). |
Extended European Search Report dated Feb. 2, 2017 for European Application No. 16190239.0 (8 Pages). |
Extended European Search Report, dated Oct. 15, 2013 for EP application No. 1177260.7. |
Fan, et al., Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays, Science, 304:567 (2004). |
Fenwick et al., 1986, Mechanisms Involved in Protection Provided by Immunization against Core Lipopolysaccarides of Escherichia coli J5 from Lethal Haemophilus pleuropneumoniae Infections in Swine, Infection and Immunity 53 (2):298-304. |
Fu, et al., Rapid Detection of Escherichia coli O157:H7 by Immunogmagnetic Separation and Real-time PCR, Int. J. Food Microbiology, 99(1):47-57, (2005). |
Fung, M-C., et al. PCR amplification of mRNA directly from a crude cell lysate prepared by thermophilic protease digestion, Nucleic Acids Research, vol. 19 (15), p. 4300, 1991. |
Furdui , Vasile I. et al., “Immunomagnetic T Cell Capture From Blood for PCR Analysis Using Microfluidic Systems”, Lab on a Chip, 2004, vol. 4. No. 6, pp. 614-618 (5 Pages). |
Furdui , Vasile I. et al., “Microfabricated Electrolysis Pump System for Isolating Rare Cells in Blood; Micro-Electrolysis Pumps for Blood”, Journal of Micromechanics & Microengineering, vol. 13, No. 4, Jul. 1, 2003, pp. S164-S170 (7 Pages). |
Gesbert et al. “Asparagine Assimilation is Critical for Intracellular Replication and Dissemination of Francisella” Cellular Microbiology, 2014, 16(3), pp. 434-449 (16 Pages). |
Goding, J.W., Conjugation of antibodies with fluorochromes: modifications to the standard methods, J. Immunol. Meth. 13:215 (1976). |
Goloshevsky, et al., Development of Low Field Nuclear Magnetic Resonance Microcoils, Rev. Sci. Inst.., 76:024101-1 to 024101-6 (2005). |
Goloshevsky, et al., Integration of Biaxial Planar Gradient Coils and an RF Microcoil for NMR Flow Imaging, Meas. Sci. Technol., 16:505-512 (2005). |
Grant, et al., Analysis of Multilayer Radio Frequency Microcoils for Nuclear Magnetic Resonance Spectroscopy, IEEE Trans. Magn., 37:2989-2998 (2001). |
Grant, et al., NMR Spectroscopy of Single Neurons, Magn. Reson. Med., 44:19-22 (2000). |
Zordan, et al., Detection of Pathogenic E coli O157:H7 by a Hybrid Microfluidic SPR and Molecular Imaging Cytometry Device, Cytometry A, 75A:155-162 (2009). |
Griffiths et al., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13 (14):3245-3260. |
Gu et al., 2003, Using Biofunctional Magentic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration, J. Am. Chem. Soc., 125:15702-15703. |
Gu et al., 2006, Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chem. Commun.:941-949. |
Halbach, Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material, Nuclear Instrum Methods, 169:1-10 (1980). |
Harada, et al., Monoclonal antibody G6K12 specific for membrane-associated differentiation marker of human stratified squamous epithelia and squamous cell carcinoma, J. Oral. Pathol. Med., 22(4):1145-152 (1993). |
Harkins and Harrigan, “Labeling of Bacterial Pathogens for Flow Cytometric Detection and Enumeration” Curr Prot Cytom (2004) 11.17.1-11.17.20. |
Harlow, et al., 1988, ‘Antibodies’, Cold Spring Harbor Laboratory, pp. 93-117. |
Harris et al., Science 320:106-109 (2008). |
Heijnen et al., 2009, Method for rapid detection of viable Escherichia coli in water using real-time NASBA, Water Research, 43:3124-3132. |
Hijmans, et al., An immunofluorescence procedure for the detection of intracellular immunoglobulins, Clin. Exp. Immunol., 4:457 (1969). |
Hirsch, et al., Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation, Anal. Biochem., 208(2):343-57 (2002). |
Hongwei Gu et al: :Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistent Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration, Journal of the American Chemical Society, vol. 125, No. 51, Dec. 1, 2003 (Dec. 1, 2003), pp. 15702-15703, XP055087066, ISSN; 002-7863, DOI: 10.1021/ja0359310. |
Hoult and Richards, The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment, J. Magn. Reson., 24:71-85 (1976). |
Hunter, et al., Immunoassays for Clinical Chemistry, pp. 147-162, Churchill Livingston, Edinborough (1983). |
Inai, et al., Immunohistochemical detection of an enamel protein-related epitope in rat bone at an early stage of osteogenesis, Histochemistry, 99(5):335-362 (1993). |
International Search Report in PCT/US2011/33184, dated Jul. 25, 2011, 2 pages. |
International Search Report in PCT/US2011/33186, dated Jun. 22, 2011, 1 page. |
International Search Report in PCT/US2011/33410, dated Jul. 19, 2011, 2 pages. |
International Search Report in PCT/US2011/33411, dated Jun. 22, 2011, 1 page. |
International Search Report issued in PCT/US2013/076649, dated Feb. 27, 2014. |
IPRP in PCT/US2008/058518, dated Jul. 7, 2008, 21 pages. |
ISR and Written Opinion in PCT/US2008/058518, date of issuance Jul. 7, 2008, 15 pages. |
ISR and Written Opinion in PCT/US2008/062473, dated Oct. 29, 2008, 20 pages. |
ISR and Written Opinion in PCT/US2008/080983, dated Mar. 3, 2009, 14 pages. |
ISR and Written Opinion in PCT/US2009/067577, ated Feb. 5, 2010, 13 pages. |
ISR and Written Opinion in PCT/US2011/48447, dated Dec. 22, 2011, 7 pages. |
ISR and Written Opinion in PCT/US2011/48452, dated Dec. 22, 2011, 7 pages. |
Johne, et al., Staphylococcus aureus exopolysaccharide in vivo demonstrated by immunomagnetic separation and electron microscopy, J. Clin. Microbiol. 27:1631-1635 (1989). |
Johnson, Thermal Agitation of Electricity in Conductors, Phys. Rev., 32:97-109 (1928). |
Kaittanis, et al., One-step nanoparticle mediated bacterial detection with magentic relaxation, Nano Lett., 7(2):381-383 (2007). |
Klaschik, S., L. E. Lehmann, et al. (2002). “Real-time PCR for detection and differentiation of gram-positive and gram-negative bacteria.” J Clin Microbiol 40(11): 4304-4307. |
Lecomte et al. Nucl Acids Res. 11:7505 (1983). |
Lee, et al., Chip-NRM Biosensor for detection and molecular analysis of cells, Nature Medicine, 14(8):869-874 (2008). |
Levin, Cell 88:5-8 (1997). |
Li et al., 2010, Chemiluminescent Detect of E. coli O157:H7 Using Immunological Method Based on Magnetic Nanoparticles, J. of Nanoscience and Nanotechnology 10:696-701. |
Life Technologies, “Dynabeads® for Immunoassay IVD”, retrieved from http://www.invitrogen.com/site/us/en/home/Productsand-Services/Applications/Diagnostics-Clinical-Research/Bead-based-IVD-Assays/Bead-based-Immunoassay-IVD.html on May 29, 2013, four pages. |
Lu et al., 2007, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed. 46:1222-1244. |
Lund, et al. Immunomagnetic separation and DNA hybridization for detection of enterotoxigenic Escherichia coli in a piglet model, J. Clin. Microbiol., 29:2259-2262 (1991). |
Madonna A J, et al. “Detection of Bacteria from Biological Mixtures Using Immunomagnetic Separation Combined with Matrix-Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry”, Rapid Communications in Mass Spectrometry, John Wiley & Sons, GB, vol. 15, No. 13, Jan. 1, 2001, pp. 1068-1074. |
Magin, et al., Miniature Magnetic Resonance Machines, IEEE Spectrum 34(10):51-61 (1997). |
Malba, et al., Laser-lathe Lithography—A Novel Method for Manufacturing Nuclear Magnetic Resonance Microcoils, Biomed. Microdev., 5:21-27 (2003). |
Margin, et al., High resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples, Science, 270:1967 (1995). |
Margulies et al., Nature, 437: 376-380 (2005). |
Massin, et al., Planar Microcoil-based magnetic resonance imaging of cells, Transducers '03, The 12th Int. Conf. on Solid State Sensors, Actuators, and Microsystems, Boston, Jun. 8-12, pp. 967-970 (2003). |
Massin, et al., Planar Microcoil-based Microfluidic NMR Probes, J. Magn. Reson., 164:242-255 (2003). |
Matar et al., 1990, Magnetic particles derived from iron nitride, IEEE Transactions on magnetics 26(1):60-62. |
McDowell, et al., Operating Nanoliter Scale NMR Microcoils in a Itesla Field, J. Mag. Reson., 188(1):74-82 (2007). |
Minard, et al., Solenoidal Microcoil Design, Part I: Optimizing RF Homogeneity and coil dimensions, Concepts in Magn. Reson., 13(2):128-142 (2001). |
Moreira et al., 2008, Detection of Salmonella typhimurium in Raw Meats using In-House Prepared Monoclonal Antibody Coated Magnetic Beads and PCR Assay of the fimA Gene. Journal of Immunoassay & Immunochemistry 29:58-69. |
Moresi and Magin, Miniature Permanent Magnet for Table-top NMR, Concept. Magn. Res., 19B:35-43 (2003). |
Number | Date | Country | |
---|---|---|---|
20180335428 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
61739618 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14132244 | Dec 2013 | US |
Child | 16005187 | US |