Environmental protection agencies in many countries have enacted strict regulations for diesel exhaust particulate matter (PM) and NOx emissions. With current technologies, it is difficult to meet such regulations unless diesel particulate filter (DPF) and NOx reduction devices are installed in a vehicle exhaust system. Thus, significantly more complex exhaust systems have been installed in diesel vehicles manufactured in 2007 or later. For a typical heavy-duty diesel truck to meet 2010 US emission standards, exhaust aftertreatment devices, such as a diesel oxidation catalyst (DOC), a DPF, and a selective catalytic reduction (SCR) catalyst with urea injection or a NOx adsorber may be installed.
A DPF removes diesel particulate matter based on a filtration mechanism. Thus, while exhaust gas moves through the DPF, particulate matter is removed from the exhaust gas and stored in the filter. Over time the passage of exhaust gas through the pores of a DPF is progressively blocked, and the pressure required to maintain the exhaust gas flow increases. This pressure, which is the pressure higher than the exhaust must work against, is called “back pressure.”
As a DPF operates it removes particulate from exhaust gas, and back pressure in the exhaust system increases. As the DPF is increasingly soiled, the back pressure will eventually increase to a point significantly greater than the back pressure of a clean DPF, particularly if pressure measurements are taken upstream of the DPF. Beyond a certain limit, excess back pressure can increase exhaust temperature, carbon monoxide emission, and PM.
Because of the detrimental effects of excessive exhaust back pressure on an engine, DPF's are periodically regenerated by removing trapped particulate matter. By regenerating a DPF loaded with soot, the back pressure in an exhaust system can be reduced to a normal level.
To study and evaluate the performance of engines and aftertreatment devices, engineers and researchers are interested in measuring gaseous emissions (CO, THC, NOx, CO2, etc.) under the varying back pressure conditions observed when a DPF is used in an exhaust system. However, the environmental conditions present in exhaust systems using a DPF present several problems for conventional gas analyzers and emissions benches, as discussed below.
For the purpose of the present disclosure, the term “emissions bench” refers to instrumentation that is configured to analyze one or more properties of exhaust gases generated by a combustion source, such as an internal combustion engine. For example, an emissions bench may include one or more instruments configured to measure or determine at least one of the identity, mass, and concentration of one or more components (e.g., O2, CO2, CO, NOR, and hydrocarbons) of such exhaust gases.
Conventional gas analyzers and emission benches are generally designed to operate in a low back pressure environment, such as in the range of 0 to 30 kPa above ambient air pressure. Once the back pressure exceeds 30 kPa above ambient air pressure or drops below ambient air pressure, the sample flow into the instrument may be beyond the control of the sampling system used to provide samples of the exhaust gas to a gaseous analyzer or emissions bench. This can lead to improper operation of the gaseous analyzer and other instruments in an emissions bench.
While the system shown in
To address this issue, several modification kits have been developed. One example of such modification utilizes a bypass to lower the sample inlet flow to the analyzing instruments when a high back pressure is detected. That is, when a high back pressure condition is detected, the system maintains the inlet pressure within a designed range by increasing a bypass flow upstream of the emission bench.
While the use of a bypass can address the pressure problem encountered during a high back pressure condition, the bypass impacts the residence time of a sample flowing through the system. Specifically, as back pressure increases, sample residence time decreases because more of the sample flow is vented through the bypass, e.g., via a bypass pump. In contrast, sample residence time increases under a lower back pressure condition. Due to this variance, the residence time of the sample may not correlate with a delay time that is stored in the emissions bench. This can bias the results of measurements taken with instrumentation within emissions bench 107, and may cause other measurement errors.
One aspect of the present disclosure relates to sampling systems, including sampling systems that are useful in the measurement of various characteristics of exhaust gases. In non-limiting embodiments, the sampling systems include a system inlet for receiving a gaseous sample, a pressure regulator coupled to the system inlet, and a pump coupled downstream of the pressure regulator. The systems further include a pressure monitor configured to receive the gaseous sample downstream of the system inlet, a proportional valve coupled downstream of the pressure monitor, and a controller coupled to the pressure monitor and the proportional valve. In operation, the pressure monitor is configured to measure a pressure differential of the gaseous sample as it flows through the pressure monitor, and to output a first pressure differential signal corresponding to a first gas flow rate to the controller. The controller is configured to compare the first pressure differential signal to a second pressure differential signal corresponding to a second gas flow rate, and to drive the proportional valve open or closed so as to adjust the first gas flow rate to the second gas flow rate.
Also disclosed herein are methods for operating sampling systems in accordance with the present disclosure. In some embodiments, the methods include providing a gas sampling system that includes a system inlet for receiving a gaseous sample at an inlet pressure; a pressure regulator coupled to the system inlet; a pump coupled downstream of the pressure regulator; a pressure monitor configured to receive the gaseous sample downstream of the system inlet; a proportional valve coupled downstream of the pressure monitor; and a controller coupled to the pressure monitor and the proportional valve. The methods further include supplying a gaseous sample to the pressure monitor at a first gas flow rate and measuring a pressure differential of the gaseous sample as it flows through the pressure monitor. Such methods may further include providing a first pressure differential signal corresponding to the pressure differential to at least one controller, and comparing the first pressure differential signal to a second pressure differential signal corresponding to a second gas flow with the at least one controller. In addition, the methods may further include outputting a signal from the at least one controller to drive the proportional valve open or closed, thereby adjusting the first gas flow rate to the second gas flow rate.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several non-limiting embodiments of the present disclosure and, together with the description, serve to explain the principles of the present disclosure.
Reference will now be made in detail to exemplary embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
One aspect of the present disclosure relates to sampling systems, including sampling systems for use in analyzing exhaust gases emitted from an internal combustion engine. In some embodiments, such systems can enable accurate measurements to be taken from a source of gaseous samples, regardless of the gaseous sample inlet pressure.
In this regard, reference is made to
System inlet 201 is generally configured to receive a sample gas flow from a source, such as the exhaust gas of an engine, and to convey that sample gas flow to other components of sampling system 200. In this regard, system inlet 201 may be configured as a probe, an open tube, or another structure suitable for receiving a sample gas flow. In operation, system inlet 201 is connected to or disposed within a source of a sample gas. Non-limiting examples of such sources include ambient air, exhaust from an internal combustion engine, exhaust from a power plant, a canister, and a syringe. In some embodiments, system inlet 201 is connected to or disposed within the exhaust gas of a diesel engine. For example, system inlet 201 may be connected to the exhaust pipe of a diesel engine, such that at least a portion of the exhaust flowing through the exhaust pipe enters sampling system 200 via system inlet 201.
Once a sample gas flow enters system inlet 201, it is conveyed to other components of sampling system 200. In the non-limiting example shown in
As the sample gas flow passes through pressure monitor 202, the pressure differential is measured by pressure monitor 202, which then outputs a pressure differential signal (shown in
Controller 203 compares the measured pressure differential signal to reference pressure differential signal 206, or set point, which may be stored in a memory of controller 203. Generally, reference pressure differential signal 206 correlates to a reference gas flow rate, which may be the same or different from the gas flow rate of the sample gas flow passing through pressure monitor 202. If the measured pressure differential signal differs from reference pressure differential signal 206, controller 203 communicates with proportional valve 207, and drives proportional valve further open or closed so as to adjust the sample gas flow rate to the reference gas flow rate.
Proportional valve 207 is an electrically controlled, variably acting valve. Generally, this means that the size of the opening in proportional valve 207 through which gas/material can pass is controlled in response to an electronic signal. In this way, proportional valve 207 controls the amount and rate of material that passes through it. It should be noted that while the present disclosure repeatedly describes the use of a proportional valve, other types of variably active valves may also be used. For example, a servovalve or a servo-proportional valve or a mass flow controller or a volume flow controller may be used instead of or in addition to proportional valve 207.
As noted above, controller 203 communicates with proportional valve 207, and drives proportional valve 207 further open or closed based on the difference between the measured pressure differential signal of the sample gas and reference pressure differential signal 206. If the measured pressure differential signal is lower than reference pressure differential signal 206, controller 203 drives proportional valve 207 further open, so as to adjust the sample gas flow rate to the reference gas flow rate. If the measured pressure differential signal is higher than reference pressure differential signal 206, controller 203 drives proportional valve 207 further closed, so as to adjust the sample gas flow rate to the reference gas flow rate. In this way, the flow rate of the sample gas exiting system outlet 208 is maintained at constant value, e.g., corresponding to the reference gas flow rate, regardless of the inlet pressure of the sample gas flow at system inlet 201.
The sample gas flow exiting system outlet 208 may be input to a variety of downstream systems and instrumentation, such as spectrometers, particulate analyzers, and chromatographs. In some embodiments, the sample gas flow from system outlet 208 is input to an emissions bench. Such emissions bench may contain equipment for analyzing characteristics of the sample gas flow, such as CO content, total hydrocarbon content, NOx content, and CO2 content.
All or a portion of the components of sampling system 200 may be disposed within an enclosure. This concept is illustrated in
In some embodiments, the source of sample gas may be laden with impurities such as particulate matter. Indeed, the presence of particulate matter is expected when the sample gas originates or is derived from a combustion source, such as an internal combustion engine or a power plant. To prevent sampling system 200 from becoming contaminated with such particulate matter, a filter may be installed upstream of system inlet 201 or between system inlet 201 and downstream components. For example, a high efficiency particulate air filter or a small diesel particulate filter (DPF) may be installed upstream of system inlet 201, so as to remove at least a portion of the particulate from the sample gas before it enters sampling system 200. The filter may be disposed within enclosure 209, and may be heated (independently or within enclosure 209) for the same reasons noted above with respect to the heating of other components of sampling system 200.
Pressure monitor 202 may have any configuration suitable for inciting a pressure differential in a gas flow, and measuring that pressure differential. For example, pressure monitor 202 may be configured to include at least one of an orifice flow meter, a nozzle flow meter, and a venturi flow meter, the construction and operation of which will be understood by one of ordinary skill in the art.
In some embodiments, pressure monitor 202 is configured as an orifice flow meter. This concept is illustrated in
Controller 203 may be of any configuration suitable for comparing a pressure differential signal corresponding to the measured pressure differential of a sample gas to a reference pressure differential signal, as noted above. For example, controller 203 may be configured as a feedback controller such as a proportional, integral, derivative (PID) controller.
This concept is illustrated in
Reference pressure differential signal 206 may be manually inputted to controller 203, or it may be derived by a calibration measurement performed using a source of calibration gas. In the latter case, a source of calibration gas is connected to sampling system 200, and is allowed to flow through pressure monitor 202. As with the sample gas flow, the pressure monitor 202 induces a pressure differential in the flow of calibration gas. The pressure monitor measures this pressure differential, and outputs reference pressure differential signal 206 to controller 203. Reference pressure differential signal 206 may be stored in a memory of controller 203, and is used in the performance of controller 203's functions, as described previously.
The calibration gas may be any source of gas that is suitable for generating a reference pressure differential signal. Non-limiting examples of calibration gas include ambient air, CO2, He, Ar, Kr, N2, O2, and Xe. In some embodiments, the calibration gas is ambient air.
Reference pressure differential signal 206 (and its associated flow rate) may be used to calibrate certain parameters of analytical instrumentation connected downstream of system outlet 208. For example, the reference pressure differential signal may be used to calibrate the expected sample residence time in such instrumentation. Because controller 203 operates to control the flow rate of the sample gas exiting system outlet 208 to the reference gas flow rate, using reference pressure differential signal 206 to calibrate downstream instrumentation can result in even further improvements to the measurement accuracy of such instrumentation. This is because the residence time of the sample gas flow in the downstream analytical instruments may not fluctuate in response to the sample gas pressure at system inlet 201 (i.e., the inlet pressure of the sample gas). Indeed, in some cases the residence time of the sample gas flow in downstream analytical instrumentation does not fluctuate in response to the inlet pressure of the sample gas.
The inlet pressure of the sample gas flow of the present disclosure (i.e., the pressure at system inlet 201 in
The ability of the systems and methods described herein to control sample gas flow rate exiting system outlet 208 can be particularly useful in the context of an emissions measurement system. In such a system, an emissions bench measures the characteristics of an exhaust gas, such as the exhaust of a diesel engine. As noted above, the exhaust pressure of a diesel engine can vary widely, e.g., from about 30 kPa below ambient pressure to about 1000 kPa above ambient pressure. Left unchecked, the variation inlet pressure may cause an emissions bench to make inaccurate measurements because the residence time of the sample gas could fluctuate in response to changes in exhaust pressure. If sampling system 200 is used to connect the exhaust gas source to the emissions bench, the sample gas flow rate exiting system exit 208 can remain substantially constant, e.g., at or about the flow rate of a calibration gas. In this way, the systems and methods of the present disclosure can allow the emissions bench to make accurate measurements, regardless of whether a source of exhaust gas is under a vacuum or high pressure condition.
In some instances, the pressure of the sample gas at system inlet 201 may be very high or very low. In such instances, actuation of the opening of proportional valve 207 may be insufficient to regulate the flow rate of the sample gas exiting system exit 208 to a reference gas flow rate. For example, in circumstances where the inlet pressure of the sample gas is high, proportional valve 207 may not be able to reduce the flow rate of the sample gas to the reference gas flow rate, even if it is in an almost fully closed position. Conversely, in circumstances where the inlet pressure of the sample gas is low or under a vacuum, the flow rate of the sample gas exiting system exit 208 may be below the reference gas flow rate, even if proportional valve 207 is in a fully open position.
To address these circumstances, the systems of the present disclosure may further include a sample regulator 302 coupled downstream of system inlet and upstream of pressure monitor 202. Generally, sample regulator 302 operates to control the pressure of the sample gas flow to a value that enables proportional control valve 207 to perform its aforementioned functions.
Sample regulator 302 may be of any configuration than enables the provision of a sample gas flow to pressure monitor 202 at a suitable pressure. As a non-limiting example of such a sample regulator, reference is made to
It should be noted that while a combination of pressure regulator 402 and pump 404 are shown in
Pressure regulator 402 may have any configuration suitable for receiving a sample gas flow at an inlet pressure, and outputting a sample gas flow at a set outlet pressure that is suitable for downstream components of sampling system 200. In the non-limiting examples shown in
When the inlet pressure of the sample gas is too low, actuation of proportional valve 207 may be insufficient to raise the sample gas flow to a reference gas flow, even if proportional valve 207 is fully open. In such instances, pump 404 can operate to increase the sample gas pressure, thereby allowing the sample gas flow rate to be controlled downstream to a reference gas flow rate. Pump 404 may have any configuration suitable for performing this function. In some embodiments, pump 404 is a vacuum pump, such as a leak-free vacuum pump. Like pressure regulator 402, pump 404 may be configured to withstand operation at high temperature, such as greater than or equal to about 100° C., 150° C., 191° C., or more.
With reference to
The sampling systems of the present disclosure may include a directional control valve, e.g., to facilitate the measurement of the sample gas pressure differential signals and reference pressure differential signals previously described. This concept is illustrated in
While the non-limiting examples shown in
It should be further understood that the sampling systems described herein may be configured without solenoid 502, e.g., as shown in
The components of sampling system 200 may also be configured to withstand high temperatures. Indeed, all or a portion of a system inlet 201, sample regulator 302, pressure monitor 202, proportional valve 207, solenoid 502, and controller 203 may be configured as “high temperature” components capable of withstanding temperatures ranging from about 100° C. to about 350° C., such as about 191° C. to about 350° C. In some embodiments, system inlet 201 is connected to a source of high temperature gas, such as exhaust gas from a diesel engine, and all or a portion of the components of sampling system 200 are configured to withstand temperatures ranging from about 191° C. to about 350° C.
Another aspect of the present disclosure relates to methods for sampling gases from a gaseous source, such as the exhaust stream of an internal combustion engine. In this regard, reference is made to
In start step 601, a sampling system in accordance with the present disclosure is provided. Before the sampling system takes the sample from a source of sample gas (e.g., engine or vehicle exhaust), it may be fully warmed up to a constant or substantially constant temperature, as depicted in
Upon achieving a desired warm up temperature, the sampling system may be calibrated in calibration step 603 by inputting a pre-determined reference pressure differential signal to controller 203, or by measuring the reference pressure differential signal from a source of calibration gas. Such calibration may take place in a “calibration mode” that facilitates the measurement or input of the reference pressure differential signal, e.g., by isolating the sampling system from other external inputs. In some embodiments, instruments downstream of the sampling system are isolated from the flow of calibration and/or sample gas, e.g., by a cutoff valve located between system outlet 208 and downstream instrumentation. When the cutoff valve is fully closed, flow to the downstream instrumentation is prevented, and the flow of calibration gas may exit the sampling system through another outlet or a bypass connected to the outlet of the instrumentation downstream of the sampling system.
Measurement of a reference pressure differential signal may be achieved with or without the use of a directional valve, such as solenoid 502 shown in
In embodiments wherein the sampling system does not include a directional valve such as solenoid 502, calibration may be achieved by connecting the sampling system to a source of calibration gas upstream of pressure monitor 202. Once the reference pressure differential signal is measured, the sampling system may be reconnected to a source of sample gas. This methodology may be particularly useful when the sample flow for the instrumentation downstream of system outlet 208 (e.g., an emissions bench) is stable, because it may not be necessary to recalibrate the sampling system after every measurement.
Regardless of whether the reference pressure differential signal is input or measured, it may be utilized as a set point (reference value) for controller 203. That is, the reference pressure differential signal may be utilized by controller 203 to determine the difference between the pressure differential of a sample gas flow through pressure monitor 202 and the reference pressure differential.
After the reference pressure differential signal has been input to controller 203, the sampling system may take a sample from a source of sample gas, such as the exhaust of an internal combustion engines. At this time, the opening of proportional valve 207 may be adjusted to an initial setting, such as fully open, fully closed, or a predetermined intermediate setting. In some embodiments, proportional valve 207 is set to a fully open position prior to the time at which the sampling system takes a sample from a source of sample gas. In instances where a directional control valve is used, the directional control valve is actuated to facilitate the flow of sample gas to pressure monitor 202. In the example shown in
In embodiments wherein a pump is coupled upstream of the pressure monitor, as is the case in the non-limiting example of
In the example shown in
The pressure monitor 202 introduces a pressure differential in the flow of sample gas, which is recorded and output by pressure monitor 202 as a pressure differential signal to controller 203. In the non-limiting embodiment shown in
Specifically, and with reference to
After the orifice pressure difference is recorded, the inlet of the orifice is connected to the outlet of the high temperature leak-free vacuum pump. Finally, the PID loop controls the flow into the emission bench at a constant value by adjusting the proportional valve.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.