1. Field of the Invention
The invention relates to a sample/hold circuit, and more particularly to a sample/hold circuit appropriate for a pixel unit comprising a liquid crystal capacitor.
2. Description of the Related Art
Because cathode ray tubes (CRTs) are inexpensive and provide high definition, they are utilized extensively in televisions and computers. Flat-panel displays such as liquid crystal displays (LCD), plasma display panels (PDP), organic electroluminescent displays (OLED), field emission displays (FED), have become the mainstream display device in recent years. When a larger display panel is required, the weight of the flat-panel display does not substantially change.
Liquid crystal displays (LCDs) are widely used, as they possess the favorable advantages of thin profile, light weight, and low radiation. LCDs are frequently utilized in portable devices, such as digital still cameras (DSCs), notebook computers (NBs), personal computers (PCs), and personal digital assistants (PDAs) among others. LCD driving methods include static driving, simple matrix driving, and active matrix driving. Simple matrix driving (also known as passive matrix) comprises a twisted nematic (TN) type and a super twisted nematic (STN) type. Thin film transistors (TFT) are typically utilized in active matrix LCDs.
The invention provides sample/hold circuits. An exemplary embodiment of a sample/hold circuit is appropriate for a pixel unit comprising a liquid crystal capacitor and comprises a sampling transistor, a sampling capacitor, a first switching transistor, and a second switching transistor. The sampling transistor is coupled to the liquid crystal capacitor for sampling a voltage stored in the liquid crystal capacitor. The sampling capacitor stores the sampling result. The first switching transistor comprises a gate and a source respectively coupled to two terminals of the sampling capacitor. The second switching transistor comprises a gate and a drain respectively coupled to the terminals of the sampling capacitor.
The invention further provides electronic systems. An exemplary embodiment of an electronic system comprises a plurality of pixel modules. Each pixel module comprises a pixel unit and a sample/hold circuit. The pixel unit is coupled to a gate electrode and a data electrode, and comprises a driving transistor and a liquid crystal capacitor. The driving transistor is turned on according to a scan signal provided by the gate electrode. The liquid crystal capacitor stores a data signal provided by the data electrode when the driving transistor is turned on. The sample/hold circuit comprises a sampling transistor, a sampling capacitor, a first switching transistor, and a second switching transistor. The sampling transistor is coupled to the liquid crystal capacitor for sampling a voltage stored in the liquid crystal capacitor. The sampling capacitor stores the sampling result. The first switching transistor comprises a gate and a source respectively coupled to two terminals of the sampling capacitor. The second switching transistor comprises a gate and a drain respectively coupled to the terminals of the sampling capacitor.
A control method for the above electronic system is provided. An exemplary embodiment of a control method is described in the following. The data signal is stored in the liquid crystal capacitor via the driving transistor. A voltage stored in the liquid crystal capacitor is sampled. The data signal is stored in the liquid crystal capacitor via the first and the second switching transistors according to the sampling result.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by referring to the following detailed description and examples with references made to the accompanying drawings, wherein:
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
Since pixel modules P11˜Pmn operate on the same principle, pixel module P11 is provided as an example.
Sample/hold circuit 320 can comprise a sampling transistor 321, a sampling capacitor 322, switching transistors 323 and 324. Sampling transistor 321 is coupled to liquid crystal capacitor 313 for sampling the voltage stored in liquid crystal capacitor 313. Sampling capacitor 322 stores the sampling result. Switching transistor 323 comprises a gate and a source respectively coupled to two terminals of sampling capacitor 322. Switching transistor 324 comprises a gate and a drain respectively coupled to the terminals of sampling capacitor 322.
When sampling signal SSAM provided by controller 230 is high, sampling transistor 321 samples the voltage stored in liquid crystal capacitor 313 and then stores the sampling result in sampling capacitor 322. Thus, the voltage stored in sampling capacitor 322 is equal to the voltage stored in liquid crystal capacitor 313. For example, if the voltage stored in liquid crystal capacitor 313 is 5V, the voltage stored in sampling capacitor 322 is 5V. Thus, switching transistors 323 and 324 are turned on to provide the data signal provided by data electrode D1 to liquid crystal capacitor 313. Because the data signal provided by data electrode D1 is transmitted to liquid crystal capacitor 313 via another path, the voltage stored in liquid crystal capacitor 313 is further stabilized.
In this embodiment, pixel module P11 can further comprise a reference transistor 325 and a separation transistor 326. Reference transistor 325 is coupled between data electrode D1 and switching transistor 323. When reference signal SR provided by controller 230 is high, reference transistor 325 is turned on for providing a level to sampling capacitor 322. As shown in
Separation transistor 326 is coupled between switching transistor 324 and liquid crystal capacitor 313. When separation signal SS provided by controller 230 is at a low level, separation transistor 326 is turned off, thus, sampling transistor 321 only samples the voltage stored in liquid crystal capacitor 313. Separation transistor 326 comprises a drain coupled to a source of switching transistor 324 and a source coupled to liquid crystal capacitor 313 and a drain of sampling transistor 321.
When switching transistors 323 and 324, reference transistor 325, and separation transistor 326 are turned on, the data signal provided by data electrode D1 is transmitted to liquid crystal capacitor 313 through reference transistor 325, switching transistors 323 and 324, and separation transistor 326. In some embodiments, reference transistor 325 and separation transistor 326 can be omitted or a compensation capacitor can be added to pixel module P11. With reference to
Next, a voltage stored in the liquid crystal capacitor is sampled (step S420). When the sampling signal SSAM is high, sampling transistor 321 is turned on for sampling the voltage stored in liquid crystal capacitor 313. At this time, reference transistor 325 is turned on and separation transistor 326 is turned off. After sampling, separation transistor 326 is switched from off to on.
The data signal is stored in the liquid crystal capacitor via the first and second switching transistors according to the sampling result (step S430). Sampling capacitor 322 stores the sampling result. Switching transistors 323 and 324 transmit the data signal provided by data electrode D1 to liquid crystal capacitor 313 according to the voltage stored in sampling capacitor 322. Thus, the voltage stored in liquid crystal capacitor 313 is stabilized.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Name | Date | Kind |
---|---|---|---|
6703995 | Bird et al. | Mar 2004 | B2 |
20060181495 | Edward | Aug 2006 | A1 |
20060232577 | Edwards et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
WO2004090854 | Oct 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090002582 A1 | Jan 2009 | US |