This application claims the priority to Chinese patent application No. 201910389871.X filed May 10, 2019, the entirety of which is hereby incorporated by reference.
The embodiments of the application relate to, but are not limited to, an oil exploration tool, in particular to, but are not limited to, a sampling-by-pushing system and a setting method thereof.
In the process of oil development, it is needed to measure the fluid pressure inside the formation and extract fluid samples from formation to accurately determine the location of the oil layer so as to facilitate oil exploitation. At present, during the setting and sealing of the tool for formation pressure measurement and fluid sampling available in the market after it is lowered into the borehole, the tool may be not centered during the setting and sealing due to different sizes of the boreholes, thus affecting the setting effect of the tool and causing errors in formation pressure measurement and fluid sampling.
The following is an overview of the subject matter described in detail herein. This summary is not intended to limit the protection scope of the claims.
The embodiments of the application provide a sampling-by-pushing system and a setting method thereof.
In order to achieve the purpose of the application, the embodiments of the application provide the following technical schemes.
A sampling-by-pushing system includes a setting-by-pushing mechanism and a centralizing device. The setting-by-pushing mechanism is connected with the centralizing device through a connecting pipe, and is configured to be set and sealed in a borehole. The centralizing device includes a base body and a retractable support arm arranged on the base body. The support arm is configured to be in contact with the wall of the borehole so as to position the setting-by-pushing mechanism in the center of the borehole.
A method for setting the sampling-by-pushing system includes: lowering the sampling-by-pushing system into the borehole; controlling the support arm of the centralizing device to extend outwardly so as to contact with the wall of the borehole, and enabling the setting-by-pushing mechanism to be positioned in the center of the borehole by controlling the extension and retraction of the support arm; and controlling the setting-by-pushing mechanism to set and seal within the borehole.
Other features and advantages of the present application will be set forth in the following description.
The drawings are provided for further understanding of the technical schemes of the present application and constitute a part of the description, and together with the embodiments of the application, are used for explaining the technical schemes of the application without limiting the same.
Hereinafter, embodiments of the present application will be described in detail with reference to the accompanying drawings.
As shown in
After the sampling-by-pushing system is lowered into the borehole, the support arm 202 can extend out and contact with the wall of the borehole to centralize the setting-by-pushing mechanism 1, so that the setting-by-pushing mechanism 1 is centered in the borehole, i.e., the setting-by-pushing mechanism 1 is positioned in the center of the borehole through the extension and retraction of the support arm 202, thus providing a premise for good setting of the setting-by-pushing mechanism 1. In addition, since the sampling-by-pushing system of the embodiment of the present application can achieve centralizing of the setting-by-pushing mechanism 1 by the centralizing device 2, the sampling-by-pushing system of the embodiment of the present application can be suitable for working in a highly inclined or horizontal borehole, which enlarges the application range of the sampling-by-pushing system of the embodiment of the present application. Besides, the sampling-by-pushing system of the embodiment of the application also has the advantages of compact in structure, stable and reliable in performance and the like.
As shown in
The base body 201 may be provided with a plurality of mounting holes 205 at intervals along its circumferential direction, for example, 3, 4, 5 or more. The plurality of mounting holes 205 may be uniformly distributed along the circumferential direction of the base body 201 and may extend along the radial direction of the base body 201. A slidable support arm 202 is provided in the mounting hole 205 so that the support arm 202 can be extended and retracted.
The mounting hole 205 may be covered with a top cover 206 with a through hole 207, and the support arm 202 may extend into the mounting hole 205 through the through hole 207 of the top cover 206. A flange 208 is provided at the bottom of the support arm 202 (i.e., at the end of the support arm 202 extending into the mounting hole 205), and may be sealed against the side wall of the mounting hole 205 to form a hydraulic chamber between the flange 208 and the bottom of the mounting hole 205. The hydraulic chamber may be communicated with a liquid inlet in the base body 201.
A return spring for resetting the support arm 202 may be provided between the flange 208 and the top cover 206.
In this embodiment, the operation principle of controlling the extension and retraction of the support arm 202 is as follows: filling the hydraulic chamber with liquid through the liquid inlet in the base body 201, increasing the pressure in the hydraulic chamber so as to push the support arm 202 to extend outwardly, and retracting the support arm 202 by means of the elastic force of the return spring after the pressure in the hydraulic chamber is relieved.
As shown in
For example, in on-site operation, there are boreholes generally having a diameter of 8.5 inches or 12.2 inches. For the borehole having a diameter of 8.5 inches, the support arm 202 is arranged in a retracted state so that the setting-by-pushing mechanism 1 is centralized by the dimension of the base body 201. For the borehole having a diameter of 12.2 inches, the support arm 202 is extended so that the setting-by-pushing mechanism 1 is positioned at the center of the borehole by means of the support arm 202.
As shown in
As shown in
As shown in
The control mechanism 4 may include a base plate 401 provided thereon with a first integrated valve 402, a second integrated valve 403, and an accumulator 404. The first integrated valve 402 may be used to control the retraction of the support arm 202, the second integrated valve 403 may be used to control the extension of the support arm 202, and the accumulator 404 may be used to control the emergency retraction of the support arm 202, i.e., to automatically retract the support arm 202 when an accident occurs in downhole operation to ensure operation safety.
By the operation of the second integrated valve 403, the hydraulic control system can be controlled to fill the hydraulic chamber with liquid so as to push the support arm 202 out. By the operation of the first integrated valve 402, the hydraulic control system can be controlled to relieve the pressure in the hydraulic chamber, and the support arm 202 can be retracted by means of the return spring.
As shown in
The upper control mechanism 41 can control the extension, retraction and safety emergency retraction of the support arm of the upper centralizing device 21. In addition, the upper control mechanism 41 can also be used to control the pushing, setting and safety emergency retraction of the sealing probe 103 in the setting-by-pushing mechanism 1.
The upper control mechanism 41 may include a base plate, a circuit control part, a first integrated valve, a second integrated valve, a third integrated valve, an accumulator, a sensor, and upper and lower joints. The circuit control part may include a high temperature and pressure resisting component, a pressure resisting housing, and a control circuit board, and may be used to control an electromagnetic valve located at the fluid inlet of the sealing probe 103 in the setting-by-pushing mechanism 1. The first integrated valve can be used to control the retraction of the sealing probe 103 of the setting-by-pushing mechanism 1, the retraction of the support arm of the upper centralizing device 21, the emergency pressure relief, etc. The accumulator can be used for the automatic retraction of the support arm when an accident occurs in downhole operation of the upper centralizing device 21, so as to ensure the operation safety. The second integrated valve can control the extension of the support arm of the upper centralizing device 21. The third integrated valve can be used to control the pushing of the sealing probe 103 of the setting-by-pushing mechanism 1.
The lower control mechanism 42 can be used to control the extension, retraction and safety emergency retraction of the support arm of the lower centralizing device 22, and can also control the flow direction, pressure measurement of the fluid within the sealing probe 103 of the setting-by-pushing mechanism 1, borehole diameter measurement, etc.
The lower control mechanism 42 may include a base plate, a circuit control part, five integrated valves (i.e., a first integrated valve, a second integrated valve, a third integrated valve, a fourth integrated valve, a fifth integrated valve), an accumulator, three mechanical valves, three quartz pressure sensors, and upper and lower joints.
The circuit control part of the lower control mechanism 42 may include a high temperature and pressure resisting component, a pressure resisting housing, a control circuit board, and may cooperate with the circuit control part of the upper control mechanism 41 to control together the electromagnetic valve at the fluid inlet of the sealing probe 103 in the setting-by-pushing mechanism 1, thereby controlling the flow direction of the fluid within the sealing probe 103 of the setting-by-pushing mechanism 1. In addition, the circuit control part of the lower control mechanism 42 can also be used to collect data from the displacement sensor arranged on the sealing probe 103 and thus obtain data about the borehole diameter.
The first integrated valve of the lower control mechanism 42 can be used to control the retraction of the support arm of the lower centralizing device 22, and emergency pressure relief, etc. The first integrated valve of the lower control mechanism 42 can also cooperate with the first integrated valve of the upper control mechanism 41 to control together the retraction of the sealing probe 103 in the setting-by-pushing mechanism 1. For example, the first integrated valve of the upper control mechanism 41 may control the retraction of some of the sealing probes 103, and the first integrated valve of the lower control mechanism 42 may control the retraction of the remaining sealing probes 103.
The second integrated valve of the lower control mechanism 42 can be used to control the extension of the support arm of the lower centralizing device 22. The accumulator of the lower control mechanism 42 can be used to automatically retract the support arm when an accident occurs in downhole operation of the lower centralizing device 22, so as to ensure operation safety. The third, fourth, and fifth integrated valves of the lower control mechanism 42 can be respectively combined with three mechanical valves for controlling the communication between the sealing probe 103 in the setting-by-pushing mechanism 1 and the external fluid. The three quartz pressure sensors can be used to monitor the pressure of the fluid entering the sealing probe 103.
As shown in
After the sampling-by-pushing system is lowered into the borehole and reaches the target layer, the support arms of the upper and lower centralizing devices are extended to contact with the wall of the borehole, so that the setting-by-pushing mechanism is positioned in the center of the borehole. The sealing probe of the setting-by-pushing mechanism is actuated to realize the setting and sealing against the borehole. The fluid inlet of the sealing probe is opened based on the physical properties of the reservoir, and the fluid in the formation is extracted by means of a pump, so as to measure the pressure and take sample. After the operation is completed, the sealing probe and the upper and lower centralizing devices are retracted.
In the process of controlling the retractable support arm to locate the setting-by-pushing mechanism in the center of the borehole, when the setting-by-pushing mechanism is deviated from the center of the borehole toward one side, the support arm on that side is controlled to extend outwardly, and the support arm on opposite side is retracted, so that the setting-by-pushing mechanism is centralized in the borehole.
The sampling-by-pushing system can achieve a good setting effect and is suitable for boreholes with various inclination angles.
While the embodiments of the application are disclosed as above, the foregoing embodiments are merely used for facilitating understanding of the present application, and are not intended to limit the present application. A person skilled in the art to which this application pertains can make any modification and change in the forms and details of the embodiments without departing from the spirit and scope of the present application, while the patent protection scope of the present application shall be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201910389871.X | May 2019 | CN | national |