1. Incorporation by Reference
Applicant(s) hereby incorporate herein by reference any and all patents and published patent applications cited or referred to in this application.
2. Field of the Invention
Aspects of this invention relate generally to sampling devices and methods, and more particularly to such a device and method for collection and preservation of live cells from tissues and cell cultures.
3. Description of Related Art
The field of the invention is cell and cell cluster collection; more specifically, the present invention relates to direct collection of specific live cells from heterogeneous tissues and cell cultures for their further analysis (e.g. immunocytochemistry or isolation of macromolecules such as DNA, RNA or proteins) and sub-cultivation (e.g. primary cultures). Composition of methods and device developed for the collection of the specific exemplary live cells presented in this non-provisional patent application can be used in conjunction with the capillary-based cell and tissue acquisition system (“CTAS”) as disclosed in WO/2008/021202, which is incorporated herein by reference in its entirety. Combination of the presented device and methods for the collection of live cells with CTAS results in a generation of a CTAS-Live concept.
All referenced patents, applications and literature are incorporated herein by reference in their entirety. Furthermore, where a definition or use of a term in a reference, which is incorporated by reference herein is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply. The invention may seek to satisfy one or more of the above-mentioned desires. Although the present invention may obviate one or more of the above-mentioned desires, it should be understood that some aspects of the invention might not necessarily obviate them.
The following summary describes aspects of the present state of this field:
Cell specific analysis represents one of the leading technologies in biological science and is critical to the sound elucidation of cellular functions, which cannot be acquired from measurements at bulk population level. This is especially important for functional studies of the specific cell types that demand their accurate acquisition and sub-cultivation. Primary cell culture is a powerful tool to study cellular functions in vitro, providing valuable insights into their functions in vivo. However, collecting live single cells from cultures or tissues has remained challenging. It is especially challenging when live cells have to be collected from heterogeneous tissue sources for the purpose of their further sub-culturing as primary cultures. This is of particular importance in the field of stem cell research where numerous lines of progenitor cells residing in specific anatomical areas with a specific program to commit into particular cell types.
To summarize there are at least three main areas of application where specific live cells have to be collected. First, it is acquisition of live cells or cell clusters from tissues for the purpose of their re-culturing (e.g. stem cells). Second, collection of the specific live cells from cell cultures for the purpose of their re-culturing (e.g. clonal analysis) is often desired. And finally, acquisition of live cells and cell clusters from either tissues or cell cultures for the purpose of the analysis of cellular biological content is a further context. In this respect, collection of live cells ensures minimal damage and preserves specific profiles of the macromolecules to be analyzed. In recent years, single cell analysis has appeared as a novel frontier in life and biomedical sciences, particularly for omics studies (Fritzsch et al, 2012; Kalisky et al, 2011; Wang and Bodovitz, 2010; Wu and Singh, 2012). Single cell analysis reduces biological noise from the heterogeneous background, providing fundamental improvements for elucidating cellular diversity and heterogeneity. It is particularly useful in stem cell biology (Gobaa et al, 2011; Hope and Bhatia, 2011; Kobel and Lutolf, 2010), where understanding the functional properties of pluripotent or committed progenitors and differentiated cells within normally heterogeneous population requires the isolation of single cells for subculture and clonal expansion.
Cell specific analysis plays a central role in clinical diagnostics, drug discovery, molecular studies and the practice of medicine. Because most of the diseases affect specific cell types, selective analysis of individual cells, groups of cells or subanatomical parts from normally heterogeneous tissues is a prerequisite for sound molecular studies. The mixtures of different cell types result in “averaging out” of results, masking disease-specific changes pronounced only in specific subanatomical regions or cell types. This is a particularly important issue in neuroscience where brain tissues demonstrate incredible complexity and a disease usually affects only specific brain regions, cells or cell types, posing a remarkable challenge for understanding basic brain functions or the drug discovery process. Moreover, specific progenitors also reside only in specific areas; therefore, methods permitting their accurate acquisition are prerequisite. While several technologies have been developed permitting the acquisition of specific cells from already dead tissues, the technologies allowing obtaining specific live cells are very limited. This is particularly challenging when complex heterogeneous tissues have to be used.
There are several techniques ranging from manual microdissection to laser assisted technologies, such as micropunching and laser capture microdissection, which can be adopted for the collection of live cells. In addition, a capillary-based vacuum-assisted cell and tissue acquisition system (CTAS-Live) was recently developed based on WO/2008/021202. Manual tissue dissection may be performed on live tissues placed on non-coated glass slides. It is gross technology that is time-consuming, operator dependent and has a high risk of contamination. However, it can be applied at the cellular resolution. Laser-assisted microdissection techniques cope with high tissue complexity, reduce risks of contamination and increase reproducibility of cell procurement. However, its use with live cells and tissues is limited as it usually requires tissue pretreatment procedure. Therefore, it cannot be used with native (live) tissues effectively. Fluorescence assisted cell sorting instruments are capable of separating a heterogeneous suspension of cells into purified fractions on the basis of fluorescence and light scattering properties. Cells with the specific fluorescent signals can be directed in the collection tube and used for further analysis. Live cells may be collected if genetic GFP marker is expressed. However, one of the drawbacks of this technology is the invasive nature of tissue dissociation resulting in cell death and inability to separate specific live cells from adult heterogeneous tissues. In addition, both laser-assisted microdissection instruments and flow sorting machines are usually very expensive, limiting accessibility to these technologies for many research groups. In conclusion, most of the existing methods are unable to precisely collect live single cells in situ from native tissues or cell cultures.
Aspects of the present invention fulfill these needs and provide further related advantages as described in the following summary.
Aspects of the present invention teach certain benefits in construction and use which give rise to the exemplary advantages described below.
More particularly, aspects of the current invention relate to a collection/sampling cartridge designed for the use in conjunction with a capillary-based cell and tissue acquisition system (CTAS) as disclosed in WO/2008/021202. The sampling cartridge consists of the glass capillary, collection tube with the cell culture medium or any buffer that ensures cell viability during the dissection procedure, and a part permitting attachment of the device to the CTAS linear actuator head (e.g. Luer hub;
Several representative versions of DCU-Live designed to handle various volumes of the collected cells are presented in
A primary object of the present invention is to provide means of collecting specific live cells from complex native tissues and cell cultures for the purpose of their re-cultivation or extraction of cellular material. Live cell specific collection may be performed with DCU-Live via capillary-based vacuum-assisted cell and tissue acquisition system (“CTAS”) operated at the settings sufficient for the collection of live cells ensuring their overall viability and integrity of intracellular material as disclosed in WO/2008/021202.
Another object of the present invention is to provide a device that substantially precisely collects live single cells in situ from native tissues or cell cultures that is relatively inexpensive and relatively less invasive than pre-existing collection devices.
Another object of the present invention is to decrease the invasive nature of tissue dissociation resulting in cell death and inability to separate specific live cells from adult heterogeneous tissues.
Alternatively, the described exemplary “DCU-Live” for collecting live cells may utilize other methods for collecting live cells such as a continuous vacuum or any vacuum source not related with the cell and tissue acquisition system, as well as any volume displacement- or plunger-based devices. For example, DCU-Live may be connected to a tube connected to the vacuum source and collection may be performed under direct microscopic visualization with DCU-Live held by a micromanipulator or any other device permitting relatively precise positioning of the DCU-Live above the area of interest and permitting its positioning in the area of interest (cells).
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of the construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting. Relative to the accomplishment of one or more of the above and related objects, this invention may be embodied in the form illustrated in the accompanying drawings, attention being called to the fact, however, that the drawings are illustrative only, and that changes may be made in the specific construction illustrated. It should be noted that the drawing figures may be in simplified form and might not be to precise scale.
Other features and advantages of aspects of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of aspects of the invention.
The accompanying drawings illustrate aspects of the present invention. In such drawings:
The above described drawing figures illustrate aspects of the invention in at least one of its exemplary embodiments, which are further defined in detail in the following description. Features, elements, and aspects of the invention that are referenced by the same numerals in different figures represent the same, equivalent, or similar features, elements, or aspects, in accordance with one or more embodiments.
The above described drawing figures illustrate aspects of the invention in at least one of its exemplary embodiments, which are further defined in detail in the following description.
Turning now to
In a bit more detail, and with continued reference to
Turning now to
Finally, turning now to
To summarize, regarding the exemplary embodiments of the present invention as shown and described herein, it will be appreciated that a sampling apparatus is disclosed and configured for collection and preservation of live cells from tissues and cell cultures. Because the principles of the invention may be practiced in a number of configurations beyond those shown and described, it is to be understood that the invention is not in any way limited by the exemplary embodiments, but is generally directed to a disposable capillary unit (DCU-Live) sampling apparatus configured for operable engagement with a live cell and tissue acquisition system (“CTAS”) such as disclosed in WO/2008/021202 (CTAS-Live) and is able to take numerous forms to do so without departing from the spirit and scope of the invention. It will also be appreciated by those skilled in the art that the present invention is not limited to the particular geometries and materials of construction disclosed, but may instead entail other functionally comparable structures or materials, now known or later developed, without departing from the spirit and scope of the invention.
Furthermore, while aspects of the invention have been described with reference to at least one exemplary embodiment, it is to be clearly understood by those skilled in the art that the invention is not limited thereto. Rather, the scope of the invention is to be interpreted only in conjunction with the appended claims and it is made clear here, that the inventor believes that the claimed subject matter is the invention.
This application claims priority and is entitled to the filing date of U.S. Provisional application Ser. No. 61/732,711, filed on Dec. 3, 2012 and entitled “Sampling device and method for collection and preservation of live cells from tissues and cell cultures.” The contents of the aforementioned application are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61732711 | Dec 2012 | US |