The present disclosure relates to an apparatus and method for mechanically filling sandbags, for instance, at a site where sandbags are to be piled for flood control. More particularly, the disclosure relates to a mechanical system and method that provides two or more filling stations to fill sand or aggregate bags from a single supply source.
Sand bags are commonly filled using shovels or hand implements so that they can be piled for flood control. Due to the hard labor required and, in some instances, the short time available in emergency conditions, it is desirable to have a more automated means of filling sandbags.
Some prior art semi-automated systems have employed a sand hopper having an outlet chute that allows a bag to be positioned to receive sand from the outlet chute. In such systems, a manual gate or valve is typically utilized to permit sand or aggregate to flow through the outlet chute and into the bag. Such systems also require closing the gate or valve once the bag is filled and commonly result in spillage of sand due to overfilling. Further, such prior systems have limited throughput as a filled bag must be removed from the chute in order to reposition another empty bag relative to the chute. During the removal and repositioning of the bags, such systems sit idle.
A number of fully automated sag bag filling devices have also been proposed. However, such fully automated sand bag filling devices are mechanically complex and typically expensive. Accordingly, adoption of such fully automated devices has been limited.
Generally, an apparatus and method (i.e., utility) is provided for filling portable containers, such as sandbags, with aggregate materials. The utility utilizes a transfer mechanism to selectively transfer aggregate between a supply of aggregate material (e.g., sand) and first and second filling stations that direct received aggregate into portable containers or bags. The transfer mechanism is operative to alternately supply aggregate between the first and second filling stations and operates primarily under the force of gravity. That is, the weight of the aggregate received by the transfer mechanism moves the transfer mechanism between first and second positions to provide aggregate material to the first and second filling stations. Further, the transfer mechanism provides a metered amount of aggregate.
The utility includes a supply hopper having an inlet and an outlet. Aggregate material received by the inlet of the supply hopper drains through the outlet. A carriage located beneath the supply hopper supports first and second transfer hoppers, which are selectively positionable beneath the outlet of the supply hopper. The first and second transfer hoppers are adapted to alternately rotate between the supply hopper outlet and the inlets of first and second filling stations or bag filling hoppers, respectively. The outlets of the bag filling hoppers are adapted to receive portable storage containers (hereafter ‘bags’ or ‘sandbags’). In operation, the carriage moves between first and second positions to move the transfer hoppers between the supply hopper outlet and their respective bag filling hopper. In the first position, the first transfer hopper is positioned beneath the outlet of supply hopper to receive aggregate material and the second transfer hopper is tilted over an inlet of the second bag filling hopper to dump or spill aggregate into the second bag filling hopper. Once the first transfer hopper is filled with aggregate and the second transfer hopper is at least partially emptied, the carriage rotates to a second position where the first transfer hopper is tilted over the first bag filling hopper and the second transfer hopper is disposed beneath the outlet of the supply hopper.
Each transfer hopper includes an open end to receive aggregate material into a close ended volume. The volume of the transfer hoppers may be sized to receive a predetermined amount of aggregate, which may be matched to a size of a container/bag that will be filled. In one arrangement, the volumes of the transfer hoppers are sized to hold approximately 40 pounds of dry sand. However, this is not a requirement. While the transfer hoppers are upright beneath the supply hopper outlet, the aggregate is maintained within the volume. When the transfer hoppers are tilted, aggregate material within the volume flows back out of the open end.
The carriage supports the first and second transfer hoppers at first and second angular positions relative to the rotational axis of the carriage. The first and second angular positions are offset by at least 90°. More preferably, the first and second hoppers are offset by at least 100° and yet more preferably by at least 110°. In this regard, when one transfer hopper is positioned upright beneath the outlet of the supply hopper to receive aggregate, the other transfer hopper is rotated at least partially downward to allow aggregate material to flow out. In a further arrangement, a radial surface extends between open ends of the first and second transfer hoppers. In such an arrangement, the radial surface may be positioned beneath the supply hopper outlet as the carriage moves between the first and second positions. Disposition of the radial surface beneath the supply hopper outlet impedes flow of aggregate out of the supply hopper as the carriage moves between the first and second positions.
In one arrangement, the geometric centers or centroids of the first and second volumes of the transfer hoppers are laterally offset on opposing sides of the pivot point/rotational axis of the carriage. In this regard, when aggregate material flows into a transfer hopper positioned beneath the supply hopper outlet, the center of mass of the aggregate in the transfer hopper is laterally offset from the rotational axis of the carriage. This lateral offset of the aggregate mass causes the carriage to rotate moving the filled transfer hopper from position beneath the supply hopper outlet to a tilted or spill position above its respective bag filling hopper. Stated otherwise, the weight of the aggregate material in the filled hopper, acting under the force of gravity, overcomes the weight of the other emptied transfer hopper and rotates the carriage. Further, this rotates the emptied transfer hopper to the position beneath the supply hopper outlet where it is refilled.
In a further arrangement, the carriage includes locking member or latches that maintain the carriage in the first and second positions. Such latches, prevent the carriage from rotating until a user releases the latch. In this regard, a filled transfer hopper may not dump its contents until a user is ready.
Reference will now be made to the accompanying drawings, which at least assist in illustrating the various pertinent features of the presented inventions. The following description is presented for purposes of illustration and description and is not intended to limit the inventions to the form disclosed herein. Consequently, variations and modifications commensurate with the following teachings, and skill and knowledge of the relevant art, are within the scope of the presented inventions. The embodiments described herein are further intended to explain the best modes known of practicing the inventions and to enable others skilled in the art to utilize the inventions in such, or other embodiments and with various modifications required by the particular application(s) or use(s) of the presented inventions.
Generally, the rotating carriage 30 is operative to alternately move between the first and second positions illustrated in
As shown, the supply hopper 20 includes an inlet end 22 and an outlet end 24. In illustrated embodiment, the supply hopper is a container for receiving a bulk material that tapers downward between the inlet end 22 and the outlet end 24. However, it will be appreciated that variations to the supply hopper are considered within the scope of the presented inventions. That is, the supply hopper 20 need not include tapered sidewalls between an inlet and outlet. What is important is that the supply hopper 20 provides a supply of sand or aggregate to the transfer mechanism 28. Further, any appropriate means may be utilized to load the supply hopper 20.
The rotating carriage is further illustrated in
The carriage 30 supports the first and second transfer hoppers 40, 50 at first and second angular positions relative to the rotational axis 32 of the carriage 30. This is illustrated in
To prevent sand from exiting the outlet 24 of the supply hopper 20 as the carriage rotates between the first and second positions, a radial surface 34 disposed between the face plates 36, 38 extend between the open ends 42, 52 of the transfer hoppers 40, 50. See
The rotating carriage 30 allows filling one transfer hopper 40, 50 while the while the other transfer hopper 40, 50 is tilted to spill sand into one of the filling stations 60, 70. Once the sand is spilled from the tilted transfer hopper and the upright hopper is filled, the carriage rotates to other position, repeating the process. To provide adequate time for users to position bags on the outlets of the bag filling stations 60, 70 the apparatus 10 allows for locking the rotating carriage 30 in the first and second positions. In this regard, the carriage further includes first and second catches 82, 84 that are, in the illustrated embodiment. connected to the carriage proximate to the first transfer hopper 40 and the second transfer hopper 50. See
In the present embodiment, the first and second latches 92, 94 are attached to opposing ends of a common lever 96 that is pivotally interconnected to the frame 14. Various springs may be utilized to maintain a neutral position of the latches 92, 94. When a user of one of the station 60, 70 is ready to receive a filled transfer hopper 40, 50, the user may pull up on their respective filling station 60, 70 to rotate the lever 96 and thereby release the engaged catch 82, 84. Accordingly, this releases the carriage 30 such that it may rotate into position above the filling station. See, e.g.,
Referring again to
The rotation of the carriage between the first and second positions is actuated by the weight of the sand within the transfer hoppers 40, 50. That is, the stored kinetic energy of the sand in a filled transfer hopper supplies the energy to rotate the carriage 30. This is better illustrated in
While the weight of the sand within transfer hopper 40 is operative to move the carriage 30 between the first and second positions, it will be appreciated that the sand will extend in a continuous column between the supply hopper and the transfer hopper 40. In order to move the radial surface 34 of the carriage 30 through this continuous column of sand, an initiation force in addition to the kinetic energy of the sand in the upright transfer hopper may be required. In some embodiments, a restoring spring 88 is provided to facilitate the initiation of movement between the first and second positions and vice-versa. As shown in
Variations may be made to the illustrated sand bag filling apparatus. For instance,
The foregoing description has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the inventions and/or aspects of the inventions to the forms disclosed herein. Consequently, variations and modifications commensurate with the above teachings, and skill and knowledge of the relevant art, are within the scope of the presented inventions. The embodiments described hereinabove are further intended to explain best modes known of practicing the inventions and to enable others skilled in the art to utilize the inventions in such, or other embodiments and with various modifications required by the particular application(s) or use(s) of the presented inventions. It is intended that the appended claims be construed to include alternative embodiments to the extent permitted by the prior art.
Number | Name | Date | Kind |
---|---|---|---|
4044921 | Caverly | Aug 1977 | A |
5168906 | Combrink | Dec 1992 | A |
5215127 | Bergeron | Jun 1993 | A |
5417261 | Kanzler et al. | May 1995 | A |
5547331 | Podd et al. | Aug 1996 | A |
5575315 | Wengert | Nov 1996 | A |
5687781 | Grizz | Nov 1997 | A |
5701937 | Bourboulou et al. | Dec 1997 | A |
5771665 | Nelson et al. | Jun 1998 | A |
5806576 | Sutherlin | Sep 1998 | A |
5845685 | Cooper | Dec 1998 | A |
5848625 | Ebert | Dec 1998 | A |
5873396 | Biebrach et al. | Feb 1999 | A |
5927356 | Henderson | Jul 1999 | A |
5957172 | DeGreef et al. | Sep 1999 | A |
5988237 | Bedsole | Nov 1999 | A |
6047748 | Rooker | Apr 2000 | A |
6085810 | Castillo et al. | Jul 2000 | A |
6105640 | Holand et al. | Aug 2000 | A |
6119740 | Wilham, Jr. et al. | Sep 2000 | A |
6161600 | Borkes | Dec 2000 | A |
6269849 | Fields, Jr. | Aug 2001 | B1 |
6374874 | Payne | Apr 2002 | B1 |
6662528 | Holt et al. | Dec 2003 | B2 |
6863945 | Beitz et al. | Mar 2005 | B2 |
6932126 | Spagnolo | Aug 2005 | B1 |
7665489 | Smith | Feb 2010 | B1 |
7942171 | Hartley, III | May 2011 | B2 |
7954520 | England | Jun 2011 | B2 |
20010032442 | Holt et al. | Oct 2001 | A1 |
20100022361 | Raines et al. | Jan 2010 | A1 |
20110005636 | Hartley, III et al. | Jan 2011 | A1 |
20110067780 | Kellly et al. | Mar 2011 | A1 |
20120132316 | Nielsen | May 2012 | A1 |
20120279610 | Krum | Nov 2012 | A1 |
20130092283 | Votel et al. | Apr 2013 | A1 |