The present invention relates generally to a sand blaster with reduced wear and vibration features. More particularly, the present application involves a sand blaster that may include, an adjustable air regulator, an engine support isolator, an air/sand mixing chamber, a pressure washer conversion, and a nozzle that features reduced wear.
Sand blasting is a blasting technique that applies sand at a high velocity against a surface to effect a change in the surface. The sand can be used to smooth a rough surface, roughen a smooth surface, or remove objects from the surface. Sand blasters generally include a hopper into which sand is located and a pressure source that pulls sand from the hopper. The sand is transferred to a gun that can be actuated by the user to dispense the sand through a nozzle of the gun and against the surface. The gun can be actuated by the user through the pulling of a trigger. Although capable of causing the gun to actuate to release sand, sand blasters are generally not adjustable in that one cannot regulate the amount of sand that is being dispensed from the sand blaster at any given time. As such, more sand may be released at a given time than is desired to be released by the user when using the sand blaster.
Sand blasters employ engines and pumps that function to generate the high pressures needed for dispensing the sand at a velocity that can wear away the surface or objects located on the surface. Unfortunately, the operation of the engine and pump creates vibrations that can in turn be transferred to the hopper as the hopper, engine and pump are attached to the same frame. Excessive vibration of the hopper will prevent the sand within the hopper from being pulled through the sand blaster and dispensed from the nozzle. This situation will reduce the effectiveness of the sand blasting operation.
Sand transferred through the pressure washer will cause the internal portions of the pressure washer to degrade as the sand is an abrasive substance. As the sand flows through the nozzle, it will contact the interior surfaces of the nozzle and wear it down creating an undesired larger opening size. Such wear will result in decreased performance and eventual part replacement. Although sand blasters are known for use in cleaning surfaces, challenges exist in their design and operation that shorten lifespan and reduce functionality. As such, there remains room for variation and improvement within the art.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, which makes reference to the appended FIGS. in which:
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the invention.
Reference will now be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, and not meant as a limitation of the invention. For example, features illustrated or described as part of one embodiment can be used with another embodiment to yield still a third embodiment. It is intended that the present invention include these and other modifications and variations.
It is to be understood that the ranges mentioned herein include all ranges located within the prescribed range. As such, all ranges mentioned herein include all sub-ranges included in the mentioned ranges. For instance, a range from 100-200 also includes ranges from 110-150, 170-190, and 153-162. Further, all limits mentioned herein include all other limits included in the mentioned limits. For instance, a limit of up to 7 also includes a limit of up to 5, up to 3, and up to 4.5.
The present invention provides for a sand blaster 10 that allows one to regulate the amount of sand 26 that is dispensed from the sand blaster 10 so that varying amount of sand 26 can be used for jobs of different scope. Further, the present sand blaster 10 is arranged so that reduced vibration is imparted to an air sand mixer 50 of the sand blaster 10. Reduction of vibration to this element may more easily allow sand 26 to flow through the sand blaster 10 so that the sand 26 is always available for dispensing. The present invention may also provide for a nozzle 180 of the sand blaster 10 from which the sand 26 and water are dispensed. The nozzle 180 may be provided in a construction that reduces or eliminates wear on components of the nozzle 180 that occurs due to sand 26 flow through the nozzle 180.
With reference now to
The sand blaster 10 is shown in perspective view in
The engine 12 is located generally in the center of the frame 16 and will produce vibrations when running. The top portion of the frame 16 has a pair of upper longitudinal bars 130 and 132 that have flat upper surfaces. The hopper 52 is located above the upper longitudinal bars 130 and 132. As stated, vibration from the engine 12 may be transferred to the hopper 52 and cause sand 26 within the hopper 52 from being pulled therefrom and through the sand blaster 10 so that it is not dispensed. In order to help minimize vibration to the sand 26 in the hopper 52, several elastic isolators 134 are located between the bottom of the hopper 52 and the upper surfaces of the upper longitudinal bars 130 and 132.
The user may push the hopper 52 when he or she desires access to the interior components of the sand blaster 10 through the top of the frame 16. The user can simply apply force with his or her hands to cause the hopper 52 to be tilted from the non-tilted position 152 to a tilted position 150 as shown for example in
The sand blaster 10 may be provided with one or more engine support isolators 30 that function to reduce vibration in the sand blaster 10. In this regard, the engine support isolators 30 will absorb or damped vibration from the engine 12 so that this vibration is not transferred to other parts of the sand blaster, such as the air sand mixer 50 and hopper 52. The engine support isolator 30 can function to reduce some or all of transfer of vibration from the engine 12 or other components of the sand blaster 10. Although described as isolating the vibrations of the engine 12, the engine support isolator 30 may be used to reduce or isolate vibrations of any member or members of the sand blaster 10. A cross-sectional view of the engine support isolator 30 is shown with reference to
A stud guide, that may be an intermediate stud guide 38, is open through its center and has a longitudinal axis 48 that extends through its center. A stud 32 extends completely through the opening of the intermediate stud guide 38 and is coaxial with the longitudinal axis. An upper stud guide 42 is present and the stud 32 may extend through the upper stud guide 42. The upper stud guide 42 may be capable of moving with respect to member 46 and may engage the member 46. The stud 32 can be rigidly attached to the mounting plate attachment member 46 through a threaded engagement. A first coil 34 extends from the upper stud guide 42 to the intermediate stud guide 38 and may engage both of these members. Force, such as vibrational forces, acting on the engine mounting plate 14 are transferred into the mounting plate attachment member 46 which in turn may cause a compression of the first coil 34 through the engagement with the upper stud guide 42. The first coil 34 may function to absorb this force and dampen same through its compression and bias back.
The stud 32 extends completely through a lower stud guide 44 and has a flange that engages the bottom surface of the lower stud guide 44 to prevent the stud 32 from being withdrawn through the lower stud guide 44 from bottom to top. A second coil 36 is between and engages both the lower stud guide 44 and the intermediate stud guide 38. Forces on the mounting plate attachment member 46 are transferred to the stud 32 that in turn act on the lower stud guide 44 to draw the lower stud guide 44 upwards. This will cause compression to the second coil 36 and dampening of the force as the second coil 36 will absorb the force and in turn act against the force to push the lower stud guide 44 and engaged stud 32 back down. As such, the second coil 36 and lower stud guide absorb vibrational forces from upward movement of the stud 32 but do not dampen forces causing downward movement of the stud 32. Likewise, the first coil 34 and the upper stud guide 42 absorb vibrational forces from downward movement of the stud 32 and/or mounting plate attachment member 46 but do not dampen forces from upward movement of these components. The coils 34 and 36 thus dampen vibrational forces generated at the engine 12 and isolate or minimize these forces to in turn prevent or minimize vibration of other components of the sand blaster 10 such as the hopper 52 or air sand mixer 50.
The intermediate stud guide 38 may or may not engage the first and second coils 34 and 36. In some instances the first and second coil 34 and 36 may engage the frame 16 or other component. The intermediate stud guide 38 may be rigidly attached to the engine mounting plate support. The intermediate stud guide 38 has an inner surface 40 that is a dual tapered inner surface. In this regard, in the direction along the longitudinal axis 48 the circumference of the inner surface 40 will narrow to a certain point and then will expand from this certain point. The entire inner surface 40 is dual tapered in the embodiment shown in
When no forces are imparted onto the stud 32, a longitudinal axis of the stud 32 will, be coaxial with the longitudinal axis 48 of the intermediate stud guide 38. When vibrational forces are imparted onto the stud 32, the longitudinal axis of the stud 32 may move out of alignment with the longitudinal axis 48. This misalignment may be a wobbling of the stud 32 such that it in effect pivots within the interior of the intermediate stud guide 38. The dual tapered inner surface 40 accommodates this wobbling or misalignment such that the stud 32 is both guided by the intermediate stud guide 38 and allowed enough play to wobble within the intermediate stud guide 38. The coils 34 and 36 may also have enough flexibility to accommodate this wobbling or rocking of the stud 32 when vibration is imparted onto the stud 32. The stud 32 can rotate within the intermediate stud guide 38 and the intermediate stud guide 38 allows this rotation.
One arrangement of the engine mounting plate 14 and engine support isolators 30 is shown with reference to
With reference now to
With reference back to
The air regulator 80 is shown in
The cover 84 has a side wall 88 that surrounds the circumference of the cover 84, and a plurality of air inlets 86 are defined through the side wall 88. Three air inlets 86 are present and are disclosed at 120 degree angles about the longitudinal axis 82. An interior wall 90 is present and is continuous about the entire longitudinal axis 82. Air will enter the cover 84 through the air inlets 86 and into the space defined between the interior wall 90 and the side wall 88.
The intermediate member 94 is disc shaped and its upper surface directly faces the lower surface of the cover 84. A center aperture 96 is defined through the intermediate member 94 and the male threaded bolt 92 extends completely through the center aperture 96. A plurality of air inlet apertures 98 are spaced from the center of the center aperture 96 in the radial direction. In the disclosed embodiment six air inlet apertures 98 are shown and they are all of different sizes and increase in size sequentially about the longitudinal axis 82. In other embodiments, two or more of the air inlet apertures 98 may be of the same size. Although shown as having six air inlet apertures 98, it is to be understood that from 1-5, from 7-10, from 11-15, or up to 50 air inlet apertures 98 may be present in accordance with other exemplary embodiments. The intermediate member 94 rotates relative to the base 102 and may rotate 360 degrees completely relative to the base 102. The intermediate member 94 may rotate relative to the cover 84 or may be rigidly attached to the cover 84 in various arrangements.
An upper surface 104 of the base 102 directly faces a lower surface 100 of the intermediate member 94. The male threaded bolt 92 extends through a center aperture of the base 102 and into a female threaded receiving portion 106 and is rigidly attached thereto via a threaded connection. The base 102 may be rigidly attached to the female threaded receiving portion 106 or the fastening of the male threaded bolt 92 may cause the base 102 to be secured to the female threaded receiving portion 106. An air outlet aperture 108 extends through the base 102. The user will align a desired one of the air inlet apertures 98 with the air outlet aperture 108 by rotating the intermediate member 94. Air will then have a flow path through the air inlets 86 into the cover 84 and through the aligned air inlet aperture 98 and into the air outlet aperture 108 and onward into the sand blaster 10.
A pair of dummy holes 110 are located in the base 102 and O-rings 114 are located in the dummy holes 110. The dummy holes 110 are present in order to aid in engagement and rotation of the lower surface 100 relative to the upper surface 104. The dummy holes 110 may provide proper cushion to the intermediate member 94 and the base 102. The air outlet aperture 108 has an O-ring 112 and it may function to effect a seal at the air outlet aperture 108 to prevent air leakage at this location. The O-rings 112 and 114 may engage the lower surface 100 and may function to aid in engagement of the lower surface 100 with the upper surface 104 and rotation of these two components relative to one another. The user may rotate the intermediate member 94 relative to the base 102 to align the desired air inlet aperture 98 so that a desired amount of air flow will flow through the air regulator 80. It may be the case that the alignment of a smaller air inlet aperture 98 with the air outlet aperture 108 will cause more sand to be released from the air sand mixer 50 and thus dispensed from the sand blaster 10.
Other arrangements of the air regular 80 are possible. For example, with reference to
With reference back to
The sand blaster 10 includes a gun 160, one example of which is illustrated in
The gun 160 can be provided with a nozzle shield 172 that surrounds the nozzle 180. The nozzle shield 172 has a cone shaped aperture 174 that expands in the distal direction. The distal end of the nozzle 180 is located within the cone shaped aperture 174. The nozzle shield 172 may be constructed from a transparent plastic material and may protect the user when the user dispenses water, air, and sand 26 from the gun 160 when in close proximity to the surface being struck. It may be the case that rocks, paint chips, surface particles, sand, or other objects are deflected back to the user and strike the user such as in the hands or face of the user. The nozzle shield 172 functions to prevent this deflection back to the user by blocking the objects within the interior of the nozzle shield 172. The nozzle shield 172 is an optional feature that need not be present in other versions of the sand blaster 10.
One exemplary embodiment of the nozzle 180 is shown with reference to
The nozzle 180 includes a pressure increasing member 210 that has external threading that engages internal threading 220 to cause the pressure increasing member 210 to be attached to the base 216. The pressure increasing member 210 has a proximally located large aperture 214 and a distally located small aperture 212. The apertures 214 and 212 are in fluid communication with one another and a cone shaped transition is present between the apertures 214 and 212. The large and small apertures 214 and 212 may be cylindrical in shape, and the circumference of the large aperture 214 is larger than the circumference of the small aperture 212.
An intermediate member 202 is present in the nozzle 180 and has external threading 208 that engages internal threading 218 to cause the intermediate member 202 to be attached to the base 216. The intermediate member 202 has a conical aperture 204. The conical aperture 204 is shown as not extending through the entire intermediate member 202 but the entire aperture could be conical in other arrangements. The conical aperture 204 may decrease in size in the distal direction as shown. However, other arrangements exist in which the conical aperture 204 is reversed from that shown in
Water flowing through the water aperture 222 enters the large aperture 214 and then flows into the small aperture 212. The size of the flow path is decreased and the velocity of water exiting is faster at this point to increase a high pressure drop. The water will exit small aperture 212 at high velocity into the conical aperture 204. This high velocity water flow causes a vacuum to be generated that draws air and sand 26 all the way back to the air regulator 80 and hopper 52 as these components are all in fluid communication with the conical aperture 204. The air and sand 26 will mix with the water in the conical aperture 204 and be pushed forward in the distal direction of the nozzle 180.
The nozzle 180 includes a tightening member 196 with internal threading 198 along a portion of, but not all of, its inner surface. An aperture extends all the way through the tightening member 196. The internal threading 198 engages the external threading 208 to cause the tightening member 196 to engage and be attached to the intermediate member 202. As such, both the base 216 and the tightening member 196 engage the external threading 208.
The intermediate member 202 has a terminal end surface 206 located on its distal end that engages a compression member 194 which may be in the form of a gasket. The compression member 194 may be made of a material capable of being compressed and functioning as a seal. The compression member 194 may be a flat disc shaped member with a central aperture. Tightening of the tightening member 196 draws a tip 182 in the proximal direction against the terminal end surface 206 to compress the compression member 194 and form a tight engagement in the nozzle 180.
The tip 182 of the nozzle 180 has a lip 190 that has a terminal end surface 192 that is at the proximal terminal end of the tip 182 that engages the compression member 194. The tip 182 has a lip 190 that engages an internal lip engagement surface 200 of the tightening member 196. Movement of the tightening member 196 in the proximal direction causes the lip 190 to move in the proximal direction through this engagement to cause surface 192 to engage the compression member 194. The arrangement with the compression member 194 may cause the tip 182 to be more accurately aligned with the other components of the nozzle 180 to minimize wear within the nozzle 180 through sand engagement with the inner surfaces of the tip 182 and other components of the nozzle 180.
The tip 182 is open through its entire longitudinal length. A conical aperture 188 is at the proximal end of the tip 182. The conical aperture 188 decreases in size as it extends in the longitudinal direction. The conical aperture 188 is in fluid communication with a cylindrical aperture 186 that extends from the conical aperture 188 to a terminal end 184 of the tip 182. Combined air, water and sand 26 travels into and through the conical aperture 188 and then into the cylindrical aperture 186 and out of the nozzle 180 for engagement with the surface to be treated or the item to be removed.
The various components of the nozzle 180 may be made of any suitable material. The tip 182 can be made of a ceramic material and the base 216, pressure increasing member 210, intermediate member 202, and tightening member 196 may be made of a metal such as aluminum or stainless steel. The compression member 194 may be made of an elastic material such as rubber. Alignment of the various components of the nozzle 180 about a common longitudinal axis a precise amount will reduce wear of the components of the nozzle 180 from sand 26 entering and flowing through the nozzle 180.
With reference to
The term “sand” as used in the present application and claims is broad enough to include sand, pellets, glass beads, or any type of coarse media. It is therefore the case that the term “sand” is broad enough to include any type of abrasive media and that the sand blaster 10 can be an abrasive blaster. For sake of convenience the present application and claims have been described in terms of a sand blaster. However, the subject matter of the present application and claims is not limited to sand but can be any type of abrasive media and it is to be understood that the sand blaster is broad enough to encompass all types of abrasive blasters.
While the present invention has been described in connection with certain preferred embodiments, it is to be understood that the subject matter encompassed by way of the present invention is not to be limited to those specific embodiments. On the contrary it is intended for the subject matter of the invention to include all alternatives, modifications and equivalents as can be included within the spirit and scope of the following claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/696,335, filed Sep. 4, 2012 and which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2678520 | Jewett | May 1954 | A |
5312040 | Woodward | May 1994 | A |
5816129 | Singer | Oct 1998 | A |
5862985 | Neibrook | Jan 1999 | A |
6224000 | Wang | May 2001 | B1 |
20060104825 | Etter | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20180147696 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
61696335 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13761381 | Feb 2013 | US |
Child | 15850052 | US |