This invention relates, in general, to equipment utilized in conjunction with operations performed in subterranean wells and, in particular, to a sand control screen assembly that has a control line capture assembly operable to receive, retain and protect the control line during installation and operation of the sand control screen assembly.
Without limiting the scope of the present invention, its background will be described with reference to producing fluid from a hydrocarbon bearing subterranean formation, as an example.
It is well known in the subterranean well drilling and completion art that relatively fine particulate materials may be produced during the production of hydrocarbons from a well that traverses an unconsolidated or loosely consolidated formation. Numerous problems may occur as a result of the production of such particulate. For example, the particulate causes abrasive wear to components within the well, such as flow control devices, safety equipment, tubing and the like. In addition, the particulate may partially or fully clog the well creating the need for an expensive workover. Also, if the particulate matter is produced to the surface, it must be removed from the hydrocarbon fluids using surface processing equipment.
One method for preventing the production of such particulate material is to gravel pack the well adjacent to the unconsolidated or loosely consolidated production interval. In a typical gravel pack completion, sand control screen assemblies are lowered into the wellbore as part of a completion string to a position proximate the desired production interval. A fluid slurry including a liquid carrier and a relatively coarse particulate material, such as sand, gravel or proppants which are typically sized and graded and which are typically referred to herein as gravel, is then pumped down the work string and into the well annulus formed between the sand control screen assemblies and the perforated well casing or open hole production zone. The liquid carrier either flows into the formation or returns to the surface by flowing through a wash pipe or both. In either case, the gravel is deposited around the sand control screen assemblies to form the gravel pack, which is highly permeable to the flow of hydrocarbon fluids but blocks the flow of the fine particulate materials carried in the hydrocarbon fluids. As such, gravel packs can successfully prevent the problems associated with the production of these particulate materials from the formation.
It is also well known in the subterranean well drilling and completion art that it is desirable to install smart well components that enable the management of downhole equipment and production fluids. For example, these smart well components may include one or more sensing devices such as temperature sensors, pressure sensors, flow rate sensors, fluid composition measurement devices or the like as well as control mechanisms such as flow control devices, safety devices and the like. These smart well systems are typically controlled or communicated with using one or more control lines that may include hydraulic lines, electrical lines, fiber optic bundles or the like and combination thereof.
It has been found, however, that control lines installed over sand control screen assemblies are susceptible to damage during installation and operation of the sand control screen assemblies in the wellbore. Accordingly, a need has arisen for a sand control screen assembly operable to receive, retain and protect the control lines during installation and operation of the sand control screen assembly.
The present invention disclosed herein comprises a sand control screen assembly that has a control line capture assembly operable to receive, retain and protect the control line during installation and operation of the sand control screen assembly. In one implementation, the control line capture assembly utilizes a spring channel that is operable to receive and retain the control line and a flange assembly that is operable to protect the control line during installation and operation of the sand control screen assembly.
In one aspect, the present invention is directed to a sand control screen assembly having control line capture capability for use in a subterranean wellbore. The sand control screen assembly includes a base pipe and a screen jacket positioned around the base pipe that is operable to prevent the flow of particulate material of a predetermined size therethrough and to allow the flow of production fluids therethrough. The sand control screen assembly also includes a control line capture assembly coupled to the screen jacket. The control line capture assembly is operable to receive, retain and protect the control line during installation and operation of the sand control screen in the wellbore.
In one embodiment of the sand control screen assembly, the screen jacket includes an outer shroud. In another embodiment of the sand control screen assembly, the control line capture assembly may include an axially extending flange that is coupled to the screen jacket by welding, bonding or other suitable technique, wherein the flange is operable to receive and retain the control line. In this embodiment, the flange may be mechanically formable to retain the control line. In this embodiment, the forming process may preferably take place on the rig floor and may be a manual process or an automated process.
In another embodiment of the sand control screen assembly, the control line capture assembly may include an axially extending flange coupled to the screen jacket, wherein the flange is operable to protect the control line during installation and operation of the sand control screen in the wellbore. In this embodiment, an axially extending channel, such as a spring channel, may be coupled to the flange, wherein the channel is operable to receive and retain the control line. Also in this embodiment, the flange may have a channel receptacle and a pair of oppositely disposed legs having a plurality axially distributed openings such that the flange forms a pair of axially extending fluid passageways with the screen jacket.
In another aspect, the present invention is directed to a sand control screen assembly having control line capture capability for use in a subterranean wellbore. The sand control screen assembly includes a base pipe and a screen jacket positioned around the base pipe that is operable to prevent the flow of particulate material of a predetermined size therethrough and to allow the flow of production fluids therethrough. The sand control screen assembly also includes a control line capture assembly operably associated with the screen jacket. The control line capture assembly includes an axially extending flange coupled to the screen jacket. The flange is operable to protect the control line during installation and operation of the sand control screen in the wellbore. An axially extending spring channel is coupled to the flange. The channel is operable to receive and retain the control line.
In a further aspect, the present invention is directed to a method for securing a control line to a sand control screen assembly for use in a subterranean wellbore. The method includes providing a sand control screen assembly having a base pipe with a screen jacket positioned therearound and a control line capture assembly having an axially extending flange coupled to the screen jacket and an axially extending spring channel coupled to the flange and positioning the control line in the spring channel such that the control line is retained by the spring channel and protected by the flange.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention, and do not delimit the scope of the present invention.
Referring initially to
In one example, once completion string 22 is positioned as shown within wellbore 12, a treatment fluid containing sand, gravel, proppants or the like may be pumped down completion string 22 such that formations 14, 16 and production intervals 26, 34 may be treated. Sensors operably associated with completion string 22 may be used to provide substantially real time data to the operator via control line 40 on the effectiveness of the treatment operation such as identifying voids during the gravel placement process to allow the operator to adjust treatment parameters such as pump rate, proppant concentration, fluid viscosity and the like to overcome deficiencies in the gravel pack. In addition, such sensors may be used to provide valuable information to the operator via control line 40 during the production phase of the well such as fluid temperature, pressure, velocity, constituent composition and the like such that the operator can enhance the production operations.
Even though
Referring now to
Positioned around screen 106 is an outer shroud 108 that has a plurality of openings 110 which allow the flow of production fluids therethrough. The exact number, size and shape of openings 110 are not critical to the present invention, so long as sufficient area is provided for fluid production and the integrity of outer shroud 108 is maintained. Typically, various sections of screen 106 and outer shroud 108 are manufactured together as a unit and are commonly referred to as a screen jacket. Several screen jackets are typically placed over each joint of base pipe 102 and secured thereto by welding or other suitable technique.
Sand control screen assembly 100 includes a control line capture assembly 112. Control line capture assembly 112 includes an axially extending flange 114 that is coupled to outer shroud 108 by welding or other suitable technique. As best seen in
Control line capture assembly 112 includes an axially extending channel depicted as spring channel 134. Spring channel 134 is received within channel receptacle 116 of flange 114 and is coupled thereto by welding or other suitable technique. As best seen in
Preferably, the biasing force created by arms 142, 144 of spring channel 134 exerts a significant retention force on control line 146 such that control line 146 will not accidentally become dislodged from spring channel 134 during installation of sand control screen assembly 100 in the wellbore or during other operations. In certain installations, however, it may be desirable to be able to easily remove a control line from a spring channel of the present invention. For example, as best seen in
In other installations, it may be desirable to permanently position a control line in a spring channel of the present invention. For example, as best seen in
In operation, each joint of sand control screen assembly 100 is preferably assembled in the shop prior to being transported to the wellsite. For example, each joint of sand control screen assembly 100 preferably includes a base pipe with multiple screen jackets attached thereto as described above with one or more axially extending control line capture assemblies 112 positioned between two support rings 128. Preferably, control line 146 is coupled to each joint of sand control screen assembly 100 at the wellsite during installation of the completion string. Specifically, after each adjacent joint of sand control screen assembly 100 is coupled to the next joint, preferably aligning adjacent control line capture assemblies 112 through the use of timed threads or other alignment technique, control line 146 is press fit into spring channel 134 of control line capture assembly 112. The process of inserting control line 146 into spring channel 134 may be a manual process or may be automated depending upon the facilities available on the well platform. Once the completion string is fully assembled, it is run downhole to the desired location with flange 114 protecting control line 146 during installation.
Thereafter, a treatment operation may proceed wherein a treatment fluid, such as a gravel pack slurry, is pumped downhole. Due to the fluid paths created by fluid pathways 130, 132 and fluid passageways 124, 126, the treatment fluid is able to travel around any sand bridges that may form adjacent to one of the sand control screen assemblies 100. Once production begins, due to openings 122 in legs 118, 120 of flange 114, there is minimal loss of screen area as production fluids enter fluid passageways 124, 126 and pass through the portion of screen 106 positioned adjacent thereto.
Referring now to
As best seen in
Referring now to
As best seen in
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments as well as other embodiments of the invention will be apparent to persons skilled in the art upon reference to the description. It is, therefore, intended that the appended claims encompass any such modifications or embodiments.
Number | Name | Date | Kind |
---|---|---|---|
6516882 | McGregor et al. | Feb 2003 | B2 |
6681854 | Danos | Jan 2004 | B2 |
6789624 | McGregor et al. | Sep 2004 | B2 |
6983796 | Bayne et al. | Jan 2006 | B2 |
7100690 | Mullen et al. | Sep 2006 | B2 |
7802622 | Roaldsnes | Sep 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20110297376 A1 | Dec 2011 | US |