This application is the national phase under 35 U.S.C. § 371 of PCT International Application No. PCT/US2016/051461, filed Sep. 13, 2016. The entire content of which is incorporated by reference herein.
The present disclosure relates to downhole tools, and more particularly to tools for reduction of inoperability and/or damage of electrical submersible pumps due to solid particle (e.g., formation sand, proppant, and the like) fall back such as used in oil and gas wells.
Natural formation sands and/or hydraulic fracturing proppant (referred to herein as sand) in subterranean oil and gas wells can cause significant problems for electrical submersible pumps (ESPs). Once sand is produced through the ESP it must pass through the tubing string prior to reaching the surface. Sand particles often hover or resist further downstream movement in the fluid stream above the ESP or move at a much slower velocity than the well fluid due to physical and hydrodynamic effects. When the ESP is unpowered, fluid and anything else in the tubing string above the pump begins to flow back through the pump. Check valves are often used to prevent flow back while also maintaining a static fluid column in the production tubing. However check valves are subject to failures caused by solids including sand.
Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved sand fall-back prevention/mitigation tools that protect the operability and reliability of ESPs. The present disclosure provides a solution for this need.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a downhole tool in accordance with the disclosure is shown in
String 10 includes production tubing 12, downhole tool 100, ESP 14, protector 16, and motor 18 for driving ESP 14. These components are strung together in a formation for production, e.g., of oil, gas and/or water, from within formation 20. In
With reference now to
A poppet valve 110 is mounted within the housing. The poppet valve 110 includes an upper member 112 defining an upper chamber 114 mounted in the flow path 104 so that flow through the flow path 104 flows around the upper member 112. A valve seat 116 is mounted in the flow path 104 with an opening 118 therethrough. A valve poppet 120 is mounted for longitudinal movement, e.g., in the direction of axis A, within the flow path 104 between a closed position, shown in
In both the open and closed positions, as shown in
The upper member 112 includes an upper surface 124 with at least one angled portion 126 that is angled, e.g. at angle α below the level dashed line in
As shown in
With reference again to
Housing 102 also includes a base 144 including the lower opening 108 and the valve seat 116. Hosing 102 further includes a housing body 146 mounted to the head 142 and base 144, spacing the head 142 and base 144 apart axially. Flow path 104 includes upper opening 106, passages 148 through head 142, the space 149 between housing body 146 and poppet valve 110 (as shown in
A method of reducing fall-back sand reaching an electrical submersible pump (ESP) includes holding a valve poppet, e.g., valve poppet 120, in an open position by operating an ESP, e.g., ESP 14, to drive flow through a flow path, e.g. flow path 114, past the valve poppet, as shown in
Referring now to
Accordingly, as set forth above, the embodiments disclosed herein may be implemented in a number of ways. For example, in general, in one aspect, the disclosed embodiments relate to a downhole tool for sand fall-back prevention. The downhole tool comprises, among other things, a housing defining a flow path therethrough in an axial direction from an upper opening to a lower opening. A poppet valve is mounted within the housing. The poppet valve includes an upper member defining an upper chamber mounted in the flow path so that flow through the flow path flows around the upper member, and a valve seat mounted in the flow path with an opening therethrough. A valve poppet is mounted for longitudinal movement within the flow path between a closed position in which the valve poppet seats against the valve seat to block flow through the flow path and an open position in which the valve poppet is spaced apart from the valve seat to permit flow through the flow path.
In general, in another aspect, the disclosed embodiments related to a method of reducing fall-back sand reaching an electrical submersible pump (ESP). The method comprises, among other things, holding a valve poppet in an open position by operating an ESP to drive flow through a flow path past the valve poppet, moving the valve poppet into a closed position blocking the flow path by reducing flow from the ESP, blocking sand through the flow path with the valve poppet, and preventing accumulation of sand above, e.g., directly above, the valve poppet while the valve poppet is in the closed position.
In accordance with any of the foregoing embodiments, in both the open and closed positions, the valve poppet can be at least partially within the upper chamber so that the upper chamber is always enclosed to prevent accumulation of fall-back sand above the valve poppet.
In accordance with any of the foregoing embodiments, a biasing member can be seated in the upper chamber biasing the valve poppet toward the valve seat.
In accordance with any of the foregoing embodiments, the upper member can include an upper surface with at least one angled portion that is angled to resist accumulation of sand on the upper surface.
In accordance with any of the foregoing embodiments, the valve poppet can be narrower than the upper chamber to allow movement of the valve poppet without resistance from fall-back sand or debris.
In accordance with any of the foregoing embodiments, the valve poppet can include an axially oriented perimeter surface matched in shape with an axially oriented interior surface of the upper chamber.
In accordance with any of the foregoing embodiments, a wiper seal or similar functioning seal can engage between the valve poppet and the upper member, wherein the seal is configured to allow passage of fluid while inhibiting passage of sand or debris.
In accordance with any of the foregoing embodiments, a weep hole can be defined through the upper member from a space outside the upper chamber to a space inside the upper chamber, wherein the weep hole is configured to equalize pressure between the space outside the upper chamber with the space inside the upper chamber. A filter material can be included within the weep hole.
In accordance with any of the foregoing embodiments, the valve seat can be defined by an angular surface configured to encourage wedging of sand during closing of the valve poppet against the valve seat.
In accordance with any of the foregoing embodiments, a poppet channel can be defined through the valve poppet for limited fluid communication through the flow path with the valve poppet in the closed position. The poppet channel can have a flow area equal to one-half of that through the flow path or greater. The poppet channel can include a tributary with an opening on a peripheral surface of the poppet valve, wherein the tributary of the poppet channel is directed downward toward the valve seat for initiating a buoyancy change in sand seated between the valve seat and the valve poppet prior to the valve poppet moving from the closed position to the open position. The tributary of the poppet channel can be defined along a tributary axis angled downward, e.g., 45° from level.
In accordance with any of the foregoing embodiments, the housing can include a head including the upper member and upper opening, a base including the lower opening and the valve seat, and a housing body mounted to the head and base, spacing the head and base apart axially.
In accordance with any of the foregoing embodiments, back flow can be allowed thorough a poppet channel defined through the valve poppet.
In accordance with any of the foregoing embodiments, initiating movement of the valve poppet from the closed position to an open position can be done by directing flow through a tributary of a poppet channel defined through the valve poppet, wherein the flow through the tributary is directed at sand accumulated between the valve poppet and an adjacent valve seat.
In accordance with any of the foregoing embodiments, increasing flow through the ESP can move the valve poppet into an open position for flow through the flow path, and accumulated fall-back sand can be discharged from a tool including the valve poppet in an upward direction.
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for reduction or prevention of fall-back sand reaching an ESP with superior properties including accommodation for desirable back flow, extended useable life, and improved reliability relative to traditional systems and methods. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/051461 | 9/13/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/052396 | 3/22/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3967679 | Liljestrand | Jul 1976 | A |
4817739 | Jeter | Apr 1989 | A |
6167969 | Schoeffler | Jan 2001 | B1 |
6289990 | Dillon | Sep 2001 | B1 |
6543532 | Estep et al. | Apr 2003 | B2 |
7487831 | Pluchek et al. | Feb 2009 | B2 |
8545190 | Osborne | Oct 2013 | B2 |
10132151 | Leitch | Nov 2018 | B2 |
10132152 | Leitch | Nov 2018 | B2 |
10337323 | Kruger | Jul 2019 | B2 |
10584571 | Leitch | Mar 2020 | B2 |
20050121233 | Frith | Jun 2005 | A1 |
20050230120 | Victor | Oct 2005 | A1 |
20130264069 | Williamson, Jr. | Oct 2013 | A1 |
20130299181 | Coyle et al. | Nov 2013 | A1 |
20130299200 | Hughes et al. | Nov 2013 | A1 |
20140014358 | Leitch | Jan 2014 | A1 |
20150300136 | Jefferies et al. | Oct 2015 | A1 |
20190203565 | Reed | Jul 2019 | A1 |
20190271210 | Reed | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
2018052396 | Mar 2018 | WO |
2018052470 | Mar 2018 | WO |
2018052857 | Mar 2018 | WO |
Entry |
---|
“SandRight Solids Fallback Preventer: Sand Management Tool”; Summit ESP, A Halliburton Service; 2019; 2 pages. |
International Search Report, issued in PCT/US2017/051031, dated Dec. 22, 2017. |
International Search Report issued in PCT/US2017/012025, dated Jun. 2, 2017. |
International Search Report issued in PCT/US2016/051461 dated May 10, 2017. |
Number | Date | Country | |
---|---|---|---|
20190203565 A1 | Jul 2019 | US |